SlideShare a Scribd company logo
1 of 42
Download to read offline
GRLWEAP - Santa Cruz, 20151
Congreso Internacional de Fundaciones Profundas de Bolivia
Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015
Day 1: Software Demonstrations
Frank Rausche, Ph.D., P.E., D.GE - Pile Dynamics, Inc.
Applications of Stress Wave
Theory to Deep Foundations
with an Emphasis on
“The Wave Equation”
(GRLWEAP)
GRLWEAP - Santa Cruz, 20152
CONTENTCONTENT
• Introduction
– Dynamic Formula
– Static Formula
• The One‐Dimensional Wave Equation and Wave 
Demonstrations
• Wave Equation Models
• Bearing Graph and Driveability
• Example
• Conclusions
GRLWEAP - Santa Cruz, 20154
WAVE EQUATION OBJECTIVESWAVE EQUATION OBJECTIVES
Smith’s Basic Interest: 
– Allow for realistic stress calculations
– Replace Unreliable Energy Formulas
– Use improved models
• elastic pile
• elasto‐plastic static resistance
• viscous dynamic (damping) resistance 
• detailed driving system representation
GRLWEAP - Santa Cruz, 20155
Wave Demonstrations
– Slinky
– Pendulum
– Buddies
– Shear Waves
– Compressive Waves
GRLWEAP - Santa Cruz, 20156
Animation courtesy of Dr. Dan Russell, Kettering Univ.
http://paws.kettering.edu/~drussell/demos.html
WAVES
Example of a Baseball Wave
GRLWEAP - Santa Cruz, 20157
Animation courtesy of Dr. Dan Russell, Kettering Univ.
Example of a Shear Wave
GRLWEAP - Santa Cruz, 20158
Animation courtesy of Dr. Dan Russell, Kettering Univ.
Example of a Compressive Wave
GRLWEAP - Santa Cruz, 20159
The 1-D Wave Equation
ρ(δ2u/ δt2) = E (δ2u/ δx2)
E … elastic modulus
ρ … mass density
with  c2 = E/ ρ ... Wave Speed
Solution: u = f(x‐ct) + g(x+ct)
x … length coordinate
t ... time
u … displacement
f
g
x
GRLWEAP - Santa Cruz, 201510
x
Time
t
The compression
wave,induced by the
hammer at the pile top,
moves downward a
distance c t during the
time interval t.
Waves in a PileWaves in a Pile
GRLWEAP - Santa Cruz, 201511
x
Time
t t + t
C t
The compression wave,
induced by the hammer
at the pile top, moves
downward a distance c
t during the time
interval t.
Waves in a PileWaves in a Pile
GRLWEAP - Santa Cruz, 201512
The compression wave,
arrives at the pile toe where it
is reflected
(on a free pile in tension).
t Time t + t Waves in a Pile
GRLWEAP - Santa Cruz, 201513
2012 13 Wave Mechanics for Pile Testers
x
u
ρ(δ2u/ δt2) = E (δ2u/ δx2)
E … elastic modulus
ρ … mass density
with c2 = E/ ρ … Wave Speed
x … length coordinate t ... time
u … displacement
THE Wave Equation
Solution: u = f(x-ct) + g(x+ct)
GRLWEAP - Santa Cruz, 201514
2012 14 Wave Mechanics for Pile Testers
f
g
x
f
g
x
C t
C t
Time
t + t
Time
t
The Solution to the Wave Equation
u = f(x-ct) + g(x+ct)
GRLWEAP - Santa Cruz, 201515
Force, F – Time to + t
Point A
Point A, like all other
points along the pile, is
at rest at time to (when
contact between ram and
pile top occurs)
Compressed
distance, L
Time to
u
The first instant after impact
GRLWEAP - Santa Cruz, 201516
∆u is the displacement of a point of pile during time ∆t
F
∆L
Wave travels distance ∆L = c ∆t during time ∆t
Particle Velocity, v = ∆u/ ∆t
but ∆u = ε ∆L and therefore v = ε ∆L / ∆t
and with wave speed c = ∆L / ∆t:
∆u
Force Velocity ProportionalityForce Velocity Proportionality
v = ε c
GRLWEAP - Santa Cruz, 201517
This is the strain, stress, force-velocity
proportionality
Z = EA/c is the pile impedance (kN/m/s)
This is the strain, stress, force-velocity
proportionality
Z = EA/c is the pile impedance (kN/m/s)
Fd = vd (EA/c)Fd = vd (EA/c)
d = vd(E/c)d = vd(E/c)εd = vd / cεd = vd / c
Strain-Stress-Force Proportionality
Wave travels in one direction only
Strain-Stress-Force Proportionality
Wave travels in one direction only
GRLWEAP - Santa Cruz, 201518
Express Your ImpedanceExpress Your Impedance
Z = EA/c kN/(m/s)
with c = (E/ρ)1/2 Z = A (E ρ)1/2
with E = c2 ρ Z = A c ρ
with Mp= L A ρ Z = Mp c/ L (Mp ... pile mass)
The Pile Impedance is a force which changes the pile 
velocity suddenly by 1 m/s. 
Reversely, if the velocity changes by 1 m/s then pile 
will develop a force equal to Z. 
GRLWEAP - Santa Cruz, 201519
A Quick Look at Energy FormulasA Quick Look at Energy Formulas
Energy Dissipated in Soil =
Energy Provided by Hammer
Ru (s + sl) = ηWr h 
sl … “lost” set (empirical or measured),
η … efficiency of hammer/driving system
Engineering News: Rallow =  Wr h / 6(s + 0.1)
GRLWEAP - Santa Cruz, 201520
The Gates FormulaThe Gates Formula
Ru = 7 (Wrh)½ log(10Blows/25 mm) ‐ 550
Ru … Nominal Resistance (kN)
Wr… ram weight (kN)
h   … actual stroke (m)
log … logarithm to base 10
GRLWEAP - Santa Cruz, 201521
The Hiley Formula
using Set-Rebound Measurements
The Hiley Formula
using Set-Rebound Measurements
Ru = ηWr h    (Wr+ e2 WP)
(s + c/2) (Wr + WP)
Rebound: c
Set = s
Considers combined pile‐soil elasticity effect
Usually with F.S. = 3; η = hammer efficiency.
GRLWEAP - Santa Cruz, 201522
Bearing Graphs from 2 Energy Formulas
Hammer D 19-42; Er = 59 kJ
Bearing Graphs from 2 Energy Formulas
Hammer D 19-42; Er = 59 kJ
0
500
1000
1500
2000
2500
3000
3500
4000
0 25 50 75 100 125 150 175 200
Blows/0.25 m
CapacityinkN
Gates - w/ calculated Stroke ENR - Ru = Rd x 2
Ru = ηEr /(s + sl)
η = 1/3; sl = 2.5mm
Ru = 1.6 Ep ½ log(10Blows/25mm) – 120 kN
4000
[900]
Ru - kN
[kips]
2000
[450]
0
0 5 10 15 20
Blows/25mm
GRLWEAP - Santa Cruz, 201523
Shortcomings of FormulasShortcomings of Formulas
• Rigid pile model
• Poor hammer representation
• Inherently inaccurate for both capacity and blow 
count predictions
• No stress results
• Unknown hammer energy
• Relies on EOD Blow Counts
GRLWEAP - Santa Cruz, 201524
Static FormulasStatic Formulas
• Based on Soil Properties
• Always done for any deep foundation type
• Backed up by Static or Dynamic Testing
GRLWEAP - Santa Cruz, 201525
Static Analysis to Calculate LTSR
Basically for All Soil Types:
Ru = Ru,shaft + Ru,toe
Ru = fsAs + qt At
fs, Ru,shaft, As … Shaft Resistance/Area
qt, Ru,toe, At … End Bearing/Area
GRLWEAP - Santa Cruz, 201526
The β-Method for Cohesionless Soils
• Ru,shaft = fs As
– fs = ko tan(δ) po
po is the effective overburden pressure
ko is some earth pressure coefficient
– β = ko tan(δ)
• Ru,toe = Nt po At
Nt is a bearing capacity factor
All with Certain Limits
GRLWEAP - Santa Cruz, 201527
The α-Method for Cohesive Soils
• Ru,shaft =  fs As
– fs = α c
c is the undrained shear strength
α is a function of po
• Ru,toe = 9 c At
..... with certain limits
GRLWEAP provides 4 different static analysis methods
ST – based on Soil Type; SA‐ based on SPT‐N; CPT; API
GRLWEAP - Santa Cruz, 201528
GRLWEAP: ST Method
Non-Cohesive Soils (after Bowles)
Soil Parameters in ST Analysis for Granular Soil Types
Soil Type SPT N
Friction
Angle
Unit Weight, γ β Nt Limit (kPa)
degrees kN/m3 Qs Qt
Very loose 2 25 - 30 13.5 0.203 12.1 24 2400
Loose 7 27 - 32 16 0.242 18.1 48 4800
Medium 20 30 - 35 18.5 0.313 33.2 72 7200
Dense 40 35 - 40 19.5 0.483 86.0 96 9600
Very Dense 50+ 38 - 43 22 0.627 147.0 192 19000
GRLWEAP - Santa Cruz, 201529
ST - INPUTST - INPUT
GRLWEAP - Santa Cruz, 201530
GRLWEAP: ST Method
Cohesive Soils (after Bowles)
Soil Parameters in ST Analysis for Cohesive Soil Types
Soil Type SPT N
Unconfined Compr.
Strength
Unit Weight γ Qs Qt
kPa kN/m3 kPa kPa
Very soft 1 12 17.5 3.5 54
Soft 3 36 17.5 10.5 162
Medium 6 72 18.5 19 324
Stiff 12 144 20.5 38.5 648
Very stiff 24 288 20.5 63.5 1296
hard 32+ 384+ 19 – 22 77 1728
GRLWEAP - Santa Cruz, 201531
ST - INPUTST - INPUT
GRLWEAP - Santa Cruz, 201532
The Wave Equation ModelThe Wave Equation Model
• The Wave Equation Analysis calculates
– The displacement of any point along a slender, elastic 
rod at any time durting and after impact
– From the displacements forces, stresses, velocities
• The calculation is based on rod properties:  
– Length
– Cross Sectional Area
– Elastic Modulus
– Mass density
GRLWEAP - Santa Cruz, 201533
The Wave Equation ModelThe Wave Equation Model
• The Wave Equation Analysis calculates
– The displacement of any point along a slender, elastic 
rod at any time durting and after impact
– From the displacements forces, stresses, velocities
• The calculation is based on rod properties:  
– Length
– Cross Sectional Area
– Elastic Modulus
– Mass density
GRLWEAP - Santa Cruz, 201534
GRLWEAP FundamentalsGRLWEAP Fundamentals
• For a pile driving analysis, the “slender, 
elastic rod” consists of Hammer+Driving
System+Pile
• The soil is represented by resistance forces 
acting on the pile and representing the 
forces in the pile‐soil interface
Hammer
D.S.
Pile
GRLWEAP - Santa Cruz, 201535
Smith’s Numerical Solution of the Wave EquationSmith’s Numerical Solution of the Wave Equation
∆L
ρ(δ2u/ δt2) = E (δ2u/ δx2)
E … elastic modulus ‐ ρ … mass densitywith c2 = E/ ρ ... Wave Speed
Closed Form Solutions to the wave equation are 
not practical; we therefore solve the 
equation numerically:
(mi/ki)(ui,j+1 ‐2ui,j + ui,j‐1)/Δt2
= (ui+1,j – 2ui,j + ui‐1,j)
This is equivalent to considering mass points 
and springs!
i
i+1
i-1
GRLWEAP - Santa Cruz, 201536
The GRLWEAP Pile ModelThe GRLWEAP Pile Model
Each segment has a mass and spring stiffness
– of length ∆L ≤ 1 m (3.3 ft)
– with mass  m = ρ A ∆L 
– and stiffness k = E A / ∆L
there are N = L / ∆L pile segments which allow 
us to solve the wave equation numerically.
∆L
GRLWEAP - Santa Cruz, 201537
The Pile ModelThe Pile Model
Relationship between the uniform pile and the 
lumped mass model properties:
m k = (ρ A ∆L)(EA/∆L) = A2Eρ = Z2  [kN s/m]2
m/k = (ρ A ∆L)/(EA/∆L) = (ρ/E)∆L2  = (∆L/c)2 [s]2
Or
Z =  (mk)1/2 (pile impedance) and 
∆t = (m/k)1/2 (wave travel time)
Note: the smaller ∆L, the smaller ∆L and that 
means the higher the frequencies that can be 
represented.
∆L
GRLWEAP - Santa Cruz, 201540
We can model 3 hammer-pile systemsWe can model 3 hammer-pile systems
GRLWEAP - Santa Cruz, 201541
Ram: A, L for stiffness, mass
Cylinder and upper frame =
assembly top mass
Drop height
External Combustion Hammer Modeling
Ram guides for assembly stiffness
Hammer base =
assembly bottom mass
GRLWEAP - Santa Cruz, 201542
External Combustion Hammer ModelExternal Combustion Hammer Model
• Ram modeled like rod
• Stroke is an input (Energy/Ram Weight) 
• Impact Velocity Calculated from Stroke with Hammer 
Efficiency Reduction: vi = (2 g h η) ½ 
• Assembly also modeled because it may impact during 
pile rebound
• Note approximation in data file: 
Assembly mass = Total hammer mass – Ram mass
GRLWEAP - Santa Cruz, 201543
External Combustion Hammers
Ram Model
Ram segments 
~1m long
Combined Ram‐
H.Cushion
Helmet mass
GRLWEAP - Santa Cruz, 201544
External Combustion Hammers
Assembly model
External Combustion Hammers
Assembly model
Assembly segments, 
typically 2
Helmet mass
GRLWEAP - Santa Cruz, 201545
External Combustion Hammers
Combined Ram Assembly Model
External Combustion Hammers
Combined Ram Assembly Model
Combined Ram-
H.Cushion
Helmet mass
Ram segments
Assembly segments
GRLWEAP - Santa Cruz, 201546
External Combustion Hammer
Analysis Procedure
• Static equilibrium analysis
• Dynamic analysis starts when ram is within 1 ms of 
impact.
• All ram segments then have velocity
VRAM = (2 g h η)1/2 – 0.001 g
g is the gravitational acceleration 
h is the equivalent hammer stroke and η is the hammer efficiency
h = Hammer potential energy/ Ram weight
GRLWEAP - Santa Cruz, 201547
• Dynamic analysis ends when 
– Pile toe has rebounded to 80% of max dtoe
– Pile has penetrated more than 4 inches
– Pile toe has rebounded to 98% of max dtoe and energy 
in pile is essentially dissipated
External Combustion Hammer
Analysis Procedure
GRLWEAP - Santa Cruz, 201548
Diesel HammersDiesel Hammers
• Very popular in the US
• Have their own fuel tank 
and combustion “engine”
• Model therefore includes a 
thermodynamic analysis
• Stroke is computed
GRLWEAP - Santa Cruz, 201558
GRLWEAP hammer efficiencies
ηh = Ek/EP
GRLWEAP hammer efficiencies
ηh = Ek/EP
•The hammer efficiency reduces the impact velocity of 
the ram; it is based on experience
•Hammer efficiencies cover all losses which cannot be 
calculated
•Diesel hammer energy loss due to pre‐compression or 
cushioning can be calculated and, therefore, is not 
covered by hammer efficiency
GRLWEAP - Santa Cruz, 201560
WR
h
ER = WR h
Manufacturer’s Rating
WR
Max ET = ∫F(t) v(t) dt
(EMX, ENTHRU)
ηT =   ENTHRU/ ER
(transfer ratio or efficiency) Measure: 
Force, F(t)
Velocity, v(t)
Measured Transferred
Energy
Measured Transferred
Energy
GRLWEAP - Santa Cruz, 201562
Measured Transfer Ratios for Diesels
Steel Piles Concrete Piles
GRLWEAP - Santa Cruz, 201563
For all impact hammers GRLWEAP
needs impact velocity
WP
mR
h
Er = Wr he = mr g he
he = Er / Wr he – equivalent stroke
he = h for single acting hammers
Epr = η Er Wr he (η = Hammer efficiency )
WR
vi
Ek = Epr = ηh (½ mr vi
2) (kinetic energy)
vi = 2g heηh
GRLWEAP - Santa Cruz, 201564
GRLWEAP
Diesel hammer efficiencies , ηh
GRLWEAP
Diesel hammer efficiencies , ηh
Open end diesel hammers: 0.80
uncertainty of fall height, friction, alignment
Closed end diesel hammers: 0.80
uncertainty of fall height, friction, power assist, alignment
GRLWEAP - Santa Cruz, 201565
Modern Hydraulic Hammer
Efficiencies, ηh
Modern Hydraulic Hammer
Efficiencies, ηh
Hammers with internal monitor: 0.95
uncertainty of hammer alignment
Hydraulic drop hammers: 0.80
uncertainty of fall height, alignment, friction
Power assisted hydraulic hammers: 0.80
uncertainty of fall height, alignment, friction, power assist
GRLWEAP - Santa Cruz, 201568
Vibratory
Hammers
Vibratory
Hammers
GRLWEAP - Santa Cruz, 201569
Vibratory Force:
FV = me [ω2resin ω t ‐ a2(t)]
FL
FV
m1
m2
• Line Force
• Bias Mass and 
• Oscillator mass, m2
• Eccentric masses, me, 
radii, re
• Clamp
Vibratory Hammer ModelVibratory Hammer Model
GRLWEAP - Santa Cruz, 201571
The Driving Systems 
Consists of
1. Helmet including inserts to 
align hammer and pile
2. Optionally: Hammer Cushion 
to protect hammer
3. For Concrete Piles: Softwood 
Cushion
Driving System ModelsDriving System Models
GRLWEAP - Santa Cruz, 201572
Helmet + Inserts
Driving System Model
Example of a diesel hammer
on a concrete piles
Driving System Model
Example of a diesel hammer
on a concrete piles
Hammer Cushion: Spring plus 
Dashpot
Pile Top: Spring + Dashpot
Pile Cushion
GRLWEAP - Santa Cruz, 201575
Interface Soil: Elasto‐
Plastic Springs and 
Viscous Dashpots
Soil outside of 
interface: Rigid
The
Soil Model After Smith
GRLWEAP - Santa Cruz, 201576
Soil ResistanceSoil Resistance
• Soil resistance slows pile movement and causes pile 
rebound
• A very slowly moving pile only encounters static 
resistance
• A rapidly moving pile also encounters dynamic 
resistance
• The static resistance to driving (SRD) differs from the 
soil resistance under static loads
GRLWEAP - Santa Cruz, 201577
Segment 
i
Segment 
i‐1
Segment 
i+1
Pile‐Soil Interface
Soil Model ParametersSoil Model Parameters
ki,Rui
Ji
RIGID SOIL
ki+1,Rui+1
Ji+1
ki-1,Rui-1
Ji-1
GRLWEAP - Santa Cruz, 201578
Fixed
Soil
Smith’s Soil ModelSmith’s Soil Model
Total Soil Resistance
Rtotal = Rsi +Rdi
Total Soil Resistance
Rtotal = Rsi +Rdi
Displacement ui
Velocity vi
Pile
Segment i
GRLWEAP - Santa Cruz, 201579
The Static Soil ModelThe Static Soil Model
Displacement ui
Velocity vi
Pile
Segment i
Pile Displacement
Rui
Static Resistance
Rui … ult. resistance
qi … quake
ksi = Rui /qi
GRLWEAP - Santa Cruz, 201582
Recommended Toe Quakes, qtoeRecommended Toe Quakes, qtoe
0.1” or 2.5 mm for
all soil types
0.04” or 1 mm for 
hard rock
qtoe
Static Toe Res.
qtoe Ru,toe
Toe Displacement
D/120 for very dense or 
hard soils
D/60 for soils which are 
not very dense or v. hard
Displacement pilesNon‐displacement piles
D
GRLWEAP - Santa Cruz, 201583
Toe Quake Effect on Blow CountToe Quake Effect on Blow Count
S200
100m
610x12
95m
Approximatelyy 50% Shaft Resistance
Total No. of Blows: ∞ (qt =D/60); 27,490 (qt=D/120)
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800
DepthofPileToePenetration-m
Blow Count - Blows/m
qt = D/60
qt = D/120
GRLWEAP - Santa Cruz, 201584
The Dynamic Soil ModelThe Dynamic Soil Model
Displacement ui
Velocity vi
Pile
Segment i
Rd = RuJsv v
Smith‐viscous 
damping factor,
Jsv [s/m or s/ft]
For RSA and 
Vibratory Analysis
Smith damping 
factor,
Js [s/m or s/ft]
Rd = RsJs v
Standard
GRLWEAP - Santa Cruz, 201585
Recommended Smith damping factors
(Js or Jsv)
Recommended Smith damping factors
(Js or Jsv)
Shaft
Clay: 0.65 s/m or 0.20 s/ft
Sand: 0.16 s/m or 0.05 s/ft
Silts: use an intermediate value
Layered soils:  use a weighted average
for bearing graph 
Toe
All soils: 0.50 s/m or 0.15 s/ft
GRLWEAP - Santa Cruz, 201586
Shaft Damping on Blow CountShaft Damping on Blow Count
S200
100m
610x12
95m
Approximatelyy 50% Shaft Resistance
Total No. of Blows: ∞ (Js=0.65 s/m); 27,490 (Js=0.16 s/m)
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800
DepthofPileToePenetration-m
Blow Count - Blows/m
Js = 0.65 s/m
Js = 0.16 s/m
GRLWEAP - Santa Cruz, 201588
GRLWEAP’s Static Analysis MethodsGRLWEAP’s Static Analysis Methods
Rs
Rt
Q
Icon Input Basic Analysis
ST Soil Type Effective Stress, Total Stress
SA SPT N-value Effective Stress
CPT R at cone tip and sleeve Schmertmann
API φ, Su Effective Stress, Total Stress
• GRLWEAP’s static analysis methods may be used
for dynamic analysis preparation (resistance
distribution, estimate of capacity for driveability).
• For design, be sure to use a method based on
local experience.
GRLWEAP - Santa Cruz, 201589
Use of Static Analysis MethodsUse of Static Analysis Methods
• Should always be done for finding reasonable pile type 
and length
• For driven piles static analysis is only a starting point, 
since pile length is determined in the field (exceptions are 
piles driven to depth, for example, because of high soil 
setup)
• For LRFD when finding pile length by static analysis 
method use resistance factor for selected capacity 
verification method 
GRLWEAP - Santa Cruz, 201592
Resistance DistributionResistance Distribution
3. More Involved:
I. ST Input: Soil Type
II. SA Input: SPT Blow Count, Friction 
Angle or Unconfined Compressive 
Strength
III. API (offshore wave version)      
Input: Friction Angle or Undrained
Shear Strength
IV. CPT Input: Cone Record including Tip 
Resistance and Sleeve Friction vs 
Depth.
Penetration
All are good for a Bearing Graph
II, III and IV OK for Driveability Analysis
Local experience may provide better values
GRLWEAP - Santa Cruz, 201594
Mass i
Mass i-1
Mass i+1
Numerical TreatmentNumerical Treatment
• Predict displacements:
uni = uoi + voi ∆t 
Fi, ci
uni-1
uni
uni+1
Ri-1
Ri
Ri+1
• Calculate spring compression:
ci = uni - uni-1
• Calculate spring forces:
Fi = ki ci
• Calculate resistance forces:
Ri = Rsi + Rdi
GRLWEAP - Santa Cruz, 201595
Force balance at a segmentForce balance at a segment
Acceleration: ai = (Fi + Wi – Ri – Fi+1) / mi
Velocity, vi, and Displacement, ui, from Integration
Mass i
Force from upper spring, Fi
Force from lower spring, Fi+1
Resistance force, Ri Weight, Wi
GRLWEAP - Santa Cruz, 201597
Set or Blow Count Calculation
(a) Simplified: extrapolated toe displacement
Set or Blow Count Calculation
(a) Simplified: extrapolated toe displacement
Static soil Resistance
Pile
Displacement
Final Set
Max. Displacement
Quake
Ru
Extrapolated
Calculated
GRLWEAP - Santa Cruz, 2015100
Blow Count Calculation
(b) Residual Stress Analysis (RSA)
Blow Count Calculation
(b) Residual Stress Analysis (RSA)
Set  for 2 Blows
Convergence:
Consecutive Blows 
have same 
pile compression/sets
GRLWEAP - Santa Cruz, 2015101
RSA Effect on Blow CountRSA Effect on Blow Count
S500
100m
1220x25
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800
DepthofPileToePenetration-m
Blow Count - Blows/m
Standard
RSA
95m
Total No. of Blows: 8907 (Standard); 6235 (RSA)
0
20
40
60
80
100
120
0 200 400 600 800 1000
B low C ount (bl/m)
No RSA
RSA
GRLWEAP - Santa Cruz, 2015103
Static Equilibrium
Ram velocity
Dynamic analysis
Program Flow – Bearing GraphProgram Flow – Bearing Graph
Model hammer,
driving system
and pile
• Pile stresses
• Energy transfer
• Pile velocitiesChoose first Ru
Calculate Blow
Count
Distribute Ru
Set Soil Constants
Output
Increase
Ru?
Increase Ru
Input
N
Y
GRLWEAP - Santa Cruz, 2015104
Bearing Graph: Variable Capacity, One depth
SI-Units; Clay and Sand Example; D19-42; HP 12x53;
Bearing Graph: Variable Capacity, One depth
SI-Units; Clay and Sand Example; D19-42; HP 12x53;
GRLWEAP - Santa Cruz, 2015107
Driveability AnalysisDriveability Analysis
• Analyze a series of Bearing Graphs for different 
depths for SRD and/or LTSR
• Put the results in sequence so that we get predicted 
blow count and stresses vs pile toe penetration
• Note that, in many or most cases, shaft resistance is 
lower during driving (soil setup) and end bearing is 
about the same as long term
• In the few cases of relaxation, the toe resistance is 
actually higher during driving than long term
GRLWEAP - Santa Cruz, 2015108
Analysis
Program Flow – DriveabilityProgram Flow – Driveability
Model Hammer &
Driving System
Choose first
Depth to analyze
Next G/L
Pile Length and
Model
Calculate Ru
for first gain/loss
OutputIncrease
Depth?
Increase Depth
Input
Increase
G/L?
N
N
Y
Y
GRLWEAP - Santa Cruz, 2015109
Driveability Result
During a driving interruption soil setup occurs
GRLWEAP - Santa Cruz, 2015110
When Should we do the Analysis?When Should we do the Analysis?
• Before pile driving begins
– Equipment selection for safe and efficient installation
– Preliminary driving criterion
• After initial pile tests have been done
– Refined Wave Equation analysis for improved driving 
criterion
– For different driving systems
• In preparation of dynamic testing
GRLWEAP - Santa Cruz, 2015111
SummarySummary
• The wave equation analysis simulates what happens in 
the pile when it is struck by a heavy hammer input.
• It calculates a relationship between capacity and blow 
count, or blow count vs. depth.
• The analysis model represents hammer (3 types), driving 
system (cushions, helmet), pile (concrete, steel, timber) 
and soil (at the pile‐soil interface)
• GRLWEAP provides a variety of input help features 
(hammer and driving system data, static formulas among 
others).
GRLWEAP - Santa Cruz, 2015112
An example for a Dynamic Test
Preparation
An example for a Dynamic Test
Preparation
• Prepare dynamic test on a 400 mm dia. 
pile with  Expander Body of 600 mm 
diameter and 2000 mm length.
• Sand and Gravel
• Drop Weights 5 and 8 tons
• Drop Height 1.2 m
• Cushion 100 mm
GRLWEAP - Santa Cruz, 2015113
Ananlysis of a Pile with Expander BodyAnanlysis of a Pile with Expander Body
GRLWEAP - Santa Cruz, 2015114
Analysis results
Hammers 1 m drop height, 9 inch cushioin
Analysis results
Hammers 1 m drop height, 9 inch cushioin
30-Apr-2015GRL Engineers, Inc.
Expander Body: 8ton ram; 6" cushion
GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushion
30-Apr-2015GRL Engineers, Inc.
Expander Body: 8ton ram; 6" cushion
GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushionCompressiveStress(MPa)
0
6
12
18
24
30
TensionStress(MPa)
0
2
4
6
8
10
Blow Count (blows/.10m)
UltimateCapacity(kN)
0 10 20 30 40 50 60
0
800
1600
2400
3200
4000
GRL 8 ton GRL 5 ton
Stroke 0.91 0.91 m
Ram Weight 71.20 44.50 kN
Efficiency 0.800 0.800
Helmet Weight 0.00 0.00 kN
Pile Cushion 173 173 kN/mm
COR of P.C. 0.500 0.500
Skin Quake 2.500 mm 2.500 mm
Toe Quake 5.080 mm 5.080 mm
Skin Damping 0.164 sec/m 0.164 sec/m
Toe Damping 0.500 sec/m 0.500 sec/m
Pile Length
Pile Penetration
Pile Top Area
12.00
12.00
1256.63
Pile Model
Skin Friction
Distribution
Res. Shaft = 20 %
(Proportional)
12.00
12.00
1256.63
m
m
cm2
Pile Model
Skin Friction
Distribution
Res. Shaft = 20 %
(Proportional)
GRLWEAP - Santa Cruz, 2015115
Thank you for your
attention!
QUESTIONS?
Thank you for your
attention!
QUESTIONS?

More Related Content

What's hot

Numerical Simulation of Pile using PLAXIS
Numerical Simulation of Pile using PLAXISNumerical Simulation of Pile using PLAXIS
Numerical Simulation of Pile using PLAXIS
Dr. Naveen BP
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlement
Parth Joshi
 
The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. fellenius
cfpbolivia
 

What's hot (20)

Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Analysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundationAnalysis of vertically loaded pile foundation
Analysis of vertically loaded pile foundation
 
Rocks of Singapore (2013)
Rocks of Singapore (2013)Rocks of Singapore (2013)
Rocks of Singapore (2013)
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
Geotechnical Engineering-II [Lec #17: Bearing Capacity of Soil]
 
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
Geotechnical Engineering-II [Lec #7: Soil Stresses due to External Load]
 
Skempton's analysis for cohesive soils
Skempton's analysis for cohesive soilsSkempton's analysis for cohesive soils
Skempton's analysis for cohesive soils
 
Oedometer test
Oedometer testOedometer test
Oedometer test
 
Pda capwap - frank rausche
Pda capwap - frank rauschePda capwap - frank rausche
Pda capwap - frank rausche
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Essentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designersEssentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designers
 
Performance Based Design, Value Engineering, and Peer Review
Performance Based Design, Value Engineering, and Peer ReviewPerformance Based Design, Value Engineering, and Peer Review
Performance Based Design, Value Engineering, and Peer Review
 
5 plastic analysis
5 plastic analysis5 plastic analysis
5 plastic analysis
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
Geotechnical investigation for road work
Geotechnical investigation for road workGeotechnical investigation for road work
Geotechnical investigation for road work
 
Numerical Simulation of Pile using PLAXIS
Numerical Simulation of Pile using PLAXISNumerical Simulation of Pile using PLAXIS
Numerical Simulation of Pile using PLAXIS
 
Consolidation settlement
Consolidation settlementConsolidation settlement
Consolidation settlement
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
NEW AUSTRIAN TUNNELING METHOD
NEW AUSTRIAN TUNNELING METHODNEW AUSTRIAN TUNNELING METHOD
NEW AUSTRIAN TUNNELING METHOD
 
The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. fellenius
 

Viewers also liked

Peninsula seniors pg workshop power point
Peninsula seniors pg workshop power pointPeninsula seniors pg workshop power point
Peninsula seniors pg workshop power point
tzajac2792
 
Gauri Nanda Clocky
Gauri Nanda ClockyGauri Nanda Clocky
Gauri Nanda Clocky
guest77510c
 
Feng Shui Fitness signup form green
Feng Shui Fitness signup form greenFeng Shui Fitness signup form green
Feng Shui Fitness signup form green
Feng Shui Fitness
 

Viewers also liked (20)

Ringtracs andre estevao silva
Ringtracs   andre estevao silvaRingtracs   andre estevao silva
Ringtracs andre estevao silva
 
Bauer csm bolivia 2013-04-24
Bauer   csm bolivia 2013-04-24Bauer   csm bolivia 2013-04-24
Bauer csm bolivia 2013-04-24
 
Presentacion candidatura PP al concello de Verín
Presentacion candidatura PP al concello de VerínPresentacion candidatura PP al concello de Verín
Presentacion candidatura PP al concello de Verín
 
Intro To Gentoo Embedded Cclug
Intro To Gentoo Embedded CclugIntro To Gentoo Embedded Cclug
Intro To Gentoo Embedded Cclug
 
Présentation Quartier vert
Présentation Quartier vertPrésentation Quartier vert
Présentation Quartier vert
 
XII Jornada DESIGUALDADES SOCIALES y SALUD
XII Jornada DESIGUALDADES SOCIALES y SALUD XII Jornada DESIGUALDADES SOCIALES y SALUD
XII Jornada DESIGUALDADES SOCIALES y SALUD
 
Boletín Informativo Agosto - Organizaciones políticas aprobadas para eleccion...
Boletín Informativo Agosto - Organizaciones políticas aprobadas para eleccion...Boletín Informativo Agosto - Organizaciones políticas aprobadas para eleccion...
Boletín Informativo Agosto - Organizaciones políticas aprobadas para eleccion...
 
Peninsula seniors pg workshop power point
Peninsula seniors pg workshop power pointPeninsula seniors pg workshop power point
Peninsula seniors pg workshop power point
 
Was der Kanton Basel-Landschaft alles zur Bekämpfung der Neobiota tit
Was der Kanton Basel-Landschaft alles zur Bekämpfung der Neobiota titWas der Kanton Basel-Landschaft alles zur Bekämpfung der Neobiota tit
Was der Kanton Basel-Landschaft alles zur Bekämpfung der Neobiota tit
 
Imagine cup 2012
Imagine cup 2012Imagine cup 2012
Imagine cup 2012
 
Activ 21 Annonce Presse Nov 2007
Activ 21 Annonce Presse Nov 2007Activ 21 Annonce Presse Nov 2007
Activ 21 Annonce Presse Nov 2007
 
Oracle web center suite offering at yash
Oracle web center suite offering at yashOracle web center suite offering at yash
Oracle web center suite offering at yash
 
Gauri Nanda Clocky
Gauri Nanda ClockyGauri Nanda Clocky
Gauri Nanda Clocky
 
Roztočte pípy! - panely z výstavy
Roztočte pípy! - panely z výstavyRoztočte pípy! - panely z výstavy
Roztočte pípy! - panely z výstavy
 
HMRC Achieves Biggest Ever Digital Self Assessment in 2015
HMRC Achieves Biggest Ever Digital Self Assessment in 2015HMRC Achieves Biggest Ever Digital Self Assessment in 2015
HMRC Achieves Biggest Ever Digital Self Assessment in 2015
 
Feng Shui Fitness signup form green
Feng Shui Fitness signup form greenFeng Shui Fitness signup form green
Feng Shui Fitness signup form green
 
La Vida Es Una CancióN
La Vida Es Una CancióNLa Vida Es Una CancióN
La Vida Es Una CancióN
 
Dafo
DafoDafo
Dafo
 
Asociación Joyas de Autor - Hemeroteca Gold and Time 2013
Asociación Joyas de Autor - Hemeroteca Gold and Time 2013Asociación Joyas de Autor - Hemeroteca Gold and Time 2013
Asociación Joyas de Autor - Hemeroteca Gold and Time 2013
 
Fuehrung in Extremsituationen
Fuehrung in ExtremsituationenFuehrung in Extremsituationen
Fuehrung in Extremsituationen
 

Similar to Grlweap frank rausche

Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445
Amit Ramji ✈
 
Physics Semester 2 Review and Tutorial
Physics Semester 2 Review and TutorialPhysics Semester 2 Review and Tutorial
Physics Semester 2 Review and Tutorial
ffiala
 
Research Project Presentation_Michael Li
Research Project Presentation_Michael LiResearch Project Presentation_Michael Li
Research Project Presentation_Michael Li
Michael Li
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
Deltares
 

Similar to Grlweap frank rausche (20)

2.5 pda-capwap - gray
2.5   pda-capwap - gray2.5   pda-capwap - gray
2.5 pda-capwap - gray
 
Dynamics13lecture
Dynamics13lectureDynamics13lecture
Dynamics13lecture
 
【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測【潔能講堂】大型風力發電廠之發電效率分析與預測
【潔能講堂】大型風力發電廠之發電效率分析與預測
 
Diploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurementsDiploma sem 2 applied science physics-unit 1-chap 1 measurements
Diploma sem 2 applied science physics-unit 1-chap 1 measurements
 
Simple & Fast Fluids
Simple & Fast FluidsSimple & Fast Fluids
Simple & Fast Fluids
 
Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445Aeroelasticity_A_R_10241445
Aeroelasticity_A_R_10241445
 
Basic E&Mcalculations for a coal mining project
Basic E&Mcalculations for a coal mining projectBasic E&Mcalculations for a coal mining project
Basic E&Mcalculations for a coal mining project
 
"Reduction of uncertainties associated to the dynamic response of a ship unlo...
"Reduction of uncertainties associated to the dynamic response of a ship unlo..."Reduction of uncertainties associated to the dynamic response of a ship unlo...
"Reduction of uncertainties associated to the dynamic response of a ship unlo...
 
Final course project report
Final course project reportFinal course project report
Final course project report
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
 
Ch2 2011 s
Ch2 2011 sCh2 2011 s
Ch2 2011 s
 
Physics Semester 2 Review and Tutorial
Physics Semester 2 Review and TutorialPhysics Semester 2 Review and Tutorial
Physics Semester 2 Review and Tutorial
 
Chap_15Ha-Oscillations (1).pdf
Chap_15Ha-Oscillations (1).pdfChap_15Ha-Oscillations (1).pdf
Chap_15Ha-Oscillations (1).pdf
 
Research Project Presentation_Michael Li
Research Project Presentation_Michael LiResearch Project Presentation_Michael Li
Research Project Presentation_Michael Li
 
The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computationDSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
DSD-INT - SWAN Advanced Course - 02 - Setting up a SWAN computation
 
dynamics.ppt
dynamics.pptdynamics.ppt
dynamics.ppt
 
dynamics11lecture.ppt
dynamics11lecture.pptdynamics11lecture.ppt
dynamics11lecture.ppt
 

More from cfpbolivia

Design and dynamic testing of precast piles oscar varde
Design and dynamic testing of precast piles   oscar vardeDesign and dynamic testing of precast piles   oscar varde
Design and dynamic testing of precast piles oscar varde
cfpbolivia
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
cfpbolivia
 
Unisoft software bengt h. fellenius, pierre goudrault
Unisoft software   bengt h. fellenius, pierre goudraultUnisoft software   bengt h. fellenius, pierre goudrault
Unisoft software bengt h. fellenius, pierre goudrault
cfpbolivia
 
Static load testing and prediction bengt h. fellenius
Static load testing  and prediction   bengt h. felleniusStatic load testing  and prediction   bengt h. fellenius
Static load testing and prediction bengt h. fellenius
cfpbolivia
 
Risk evaluation according to standards cristina de hc tsuha
Risk evaluation according to standards  cristina de hc tsuhaRisk evaluation according to standards  cristina de hc tsuha
Risk evaluation according to standards cristina de hc tsuha
cfpbolivia
 
Ingeniería sostenible de fundaciones profundas alessandro mandolini
Ingeniería sostenible de fundaciones profundas   alessandro mandoliniIngeniería sostenible de fundaciones profundas   alessandro mandolini
Ingeniería sostenible de fundaciones profundas alessandro mandolini
cfpbolivia
 
Spt energy calibration frank rausche
Spt energy calibration  frank rauscheSpt energy calibration  frank rausche
Spt energy calibration frank rausche
cfpbolivia
 
Bolivia seismic properties k. rainer massarsch
Bolivia seismic properties   k. rainer massarschBolivia seismic properties   k. rainer massarsch
Bolivia seismic properties k. rainer massarsch
cfpbolivia
 
Bolivia driven vibrated piles 04 30.compressed
Bolivia driven vibrated piles 04 30.compressedBolivia driven vibrated piles 04 30.compressed
Bolivia driven vibrated piles 04 30.compressed
cfpbolivia
 
Bolivia driven vibrated piles k. rainer masssarsch
Bolivia driven vibrated piles   k. rainer masssarschBolivia driven vibrated piles   k. rainer masssarsch
Bolivia driven vibrated piles k. rainer masssarsch
cfpbolivia
 
Seismic cpt (scpt) peter robertson
Seismic cpt (scpt)   peter robertsonSeismic cpt (scpt)   peter robertson
Seismic cpt (scpt) peter robertson
cfpbolivia
 
The flat dilatomer test silvano marchetti
The flat dilatomer test   silvano marchettiThe flat dilatomer test   silvano marchetti
The flat dilatomer test silvano marchetti
cfpbolivia
 
El ensayo dilatométrico de marchetti silvano marchetti
El ensayo dilatométrico de marchetti   silvano marchettiEl ensayo dilatométrico de marchetti   silvano marchetti
El ensayo dilatométrico de marchetti silvano marchetti
cfpbolivia
 
Spt spt t procedures and practical applications -luciano decourt
Spt  spt t procedures and practical applications -luciano decourtSpt  spt t procedures and practical applications -luciano decourt
Spt spt t procedures and practical applications -luciano decourt
cfpbolivia
 
Influence of deep foundation installation methods morgan nesmith
Influence of deep foundation installation methods   morgan nesmithInfluence of deep foundation installation methods   morgan nesmith
Influence of deep foundation installation methods morgan nesmith
cfpbolivia
 
Prospección geofísica aplicada en las investigaciones geotécnicas noel perez
Prospección geofísica aplicada en las investigaciones geotécnicas  noel perezProspección geofísica aplicada en las investigaciones geotécnicas  noel perez
Prospección geofísica aplicada en las investigaciones geotécnicas noel perez
cfpbolivia
 

More from cfpbolivia (20)

Design and dynamic testing of precast piles oscar varde
Design and dynamic testing of precast piles   oscar vardeDesign and dynamic testing of precast piles   oscar varde
Design and dynamic testing of precast piles oscar varde
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
 
Unisoft software bengt h. fellenius, pierre goudrault
Unisoft software   bengt h. fellenius, pierre goudraultUnisoft software   bengt h. fellenius, pierre goudrault
Unisoft software bengt h. fellenius, pierre goudrault
 
Static load testing and prediction bengt h. fellenius
Static load testing  and prediction   bengt h. felleniusStatic load testing  and prediction   bengt h. fellenius
Static load testing and prediction bengt h. fellenius
 
Risk evaluation according to standards cristina de hc tsuha
Risk evaluation according to standards  cristina de hc tsuhaRisk evaluation according to standards  cristina de hc tsuha
Risk evaluation according to standards cristina de hc tsuha
 
Ingeniería sostenible de fundaciones profundas alessandro mandolini
Ingeniería sostenible de fundaciones profundas   alessandro mandoliniIngeniería sostenible de fundaciones profundas   alessandro mandolini
Ingeniería sostenible de fundaciones profundas alessandro mandolini
 
Spt energy calibration frank rausche
Spt energy calibration  frank rauscheSpt energy calibration  frank rausche
Spt energy calibration frank rausche
 
Integrity frank rausche
Integrity  frank rauscheIntegrity  frank rausche
Integrity frank rausche
 
4.4 integrity gray
4.4   integrity gray4.4   integrity gray
4.4 integrity gray
 
3.6 spt energy calibration -gray
3.6   spt energy calibration -gray3.6   spt energy calibration -gray
3.6 spt energy calibration -gray
 
Bolivia seismic properties k. rainer massarsch
Bolivia seismic properties   k. rainer massarschBolivia seismic properties   k. rainer massarsch
Bolivia seismic properties k. rainer massarsch
 
Bolivia driven vibrated piles 04 30.compressed
Bolivia driven vibrated piles 04 30.compressedBolivia driven vibrated piles 04 30.compressed
Bolivia driven vibrated piles 04 30.compressed
 
Bolivia driven vibrated piles k. rainer masssarsch
Bolivia driven vibrated piles   k. rainer masssarschBolivia driven vibrated piles   k. rainer masssarsch
Bolivia driven vibrated piles k. rainer masssarsch
 
Seismic cpt (scpt) peter robertson
Seismic cpt (scpt)   peter robertsonSeismic cpt (scpt)   peter robertson
Seismic cpt (scpt) peter robertson
 
The flat dilatomer test silvano marchetti
The flat dilatomer test   silvano marchettiThe flat dilatomer test   silvano marchetti
The flat dilatomer test silvano marchetti
 
Keynote silvano marchetti
Keynote   silvano marchettiKeynote   silvano marchetti
Keynote silvano marchetti
 
El ensayo dilatométrico de marchetti silvano marchetti
El ensayo dilatométrico de marchetti   silvano marchettiEl ensayo dilatométrico de marchetti   silvano marchetti
El ensayo dilatométrico de marchetti silvano marchetti
 
Spt spt t procedures and practical applications -luciano decourt
Spt  spt t procedures and practical applications -luciano decourtSpt  spt t procedures and practical applications -luciano decourt
Spt spt t procedures and practical applications -luciano decourt
 
Influence of deep foundation installation methods morgan nesmith
Influence of deep foundation installation methods   morgan nesmithInfluence of deep foundation installation methods   morgan nesmith
Influence of deep foundation installation methods morgan nesmith
 
Prospección geofísica aplicada en las investigaciones geotécnicas noel perez
Prospección geofísica aplicada en las investigaciones geotécnicas  noel perezProspección geofísica aplicada en las investigaciones geotécnicas  noel perez
Prospección geofísica aplicada en las investigaciones geotécnicas noel perez
 

Recently uploaded

Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
meharikiros2
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 

Grlweap frank rausche

  • 1. GRLWEAP - Santa Cruz, 20151 Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations Frank Rausche, Ph.D., P.E., D.GE - Pile Dynamics, Inc. Applications of Stress Wave Theory to Deep Foundations with an Emphasis on “The Wave Equation” (GRLWEAP) GRLWEAP - Santa Cruz, 20152 CONTENTCONTENT • Introduction – Dynamic Formula – Static Formula • The One‐Dimensional Wave Equation and Wave  Demonstrations • Wave Equation Models • Bearing Graph and Driveability • Example • Conclusions
  • 2. GRLWEAP - Santa Cruz, 20154 WAVE EQUATION OBJECTIVESWAVE EQUATION OBJECTIVES Smith’s Basic Interest:  – Allow for realistic stress calculations – Replace Unreliable Energy Formulas – Use improved models • elastic pile • elasto‐plastic static resistance • viscous dynamic (damping) resistance  • detailed driving system representation GRLWEAP - Santa Cruz, 20155 Wave Demonstrations – Slinky – Pendulum – Buddies – Shear Waves – Compressive Waves
  • 3. GRLWEAP - Santa Cruz, 20156 Animation courtesy of Dr. Dan Russell, Kettering Univ. http://paws.kettering.edu/~drussell/demos.html WAVES Example of a Baseball Wave GRLWEAP - Santa Cruz, 20157 Animation courtesy of Dr. Dan Russell, Kettering Univ. Example of a Shear Wave
  • 4. GRLWEAP - Santa Cruz, 20158 Animation courtesy of Dr. Dan Russell, Kettering Univ. Example of a Compressive Wave GRLWEAP - Santa Cruz, 20159 The 1-D Wave Equation ρ(δ2u/ δt2) = E (δ2u/ δx2) E … elastic modulus ρ … mass density with  c2 = E/ ρ ... Wave Speed Solution: u = f(x‐ct) + g(x+ct) x … length coordinate t ... time u … displacement f g x
  • 5. GRLWEAP - Santa Cruz, 201510 x Time t The compression wave,induced by the hammer at the pile top, moves downward a distance c t during the time interval t. Waves in a PileWaves in a Pile GRLWEAP - Santa Cruz, 201511 x Time t t + t C t The compression wave, induced by the hammer at the pile top, moves downward a distance c t during the time interval t. Waves in a PileWaves in a Pile
  • 6. GRLWEAP - Santa Cruz, 201512 The compression wave, arrives at the pile toe where it is reflected (on a free pile in tension). t Time t + t Waves in a Pile GRLWEAP - Santa Cruz, 201513 2012 13 Wave Mechanics for Pile Testers x u ρ(δ2u/ δt2) = E (δ2u/ δx2) E … elastic modulus ρ … mass density with c2 = E/ ρ … Wave Speed x … length coordinate t ... time u … displacement THE Wave Equation Solution: u = f(x-ct) + g(x+ct)
  • 7. GRLWEAP - Santa Cruz, 201514 2012 14 Wave Mechanics for Pile Testers f g x f g x C t C t Time t + t Time t The Solution to the Wave Equation u = f(x-ct) + g(x+ct) GRLWEAP - Santa Cruz, 201515 Force, F – Time to + t Point A Point A, like all other points along the pile, is at rest at time to (when contact between ram and pile top occurs) Compressed distance, L Time to u The first instant after impact
  • 8. GRLWEAP - Santa Cruz, 201516 ∆u is the displacement of a point of pile during time ∆t F ∆L Wave travels distance ∆L = c ∆t during time ∆t Particle Velocity, v = ∆u/ ∆t but ∆u = ε ∆L and therefore v = ε ∆L / ∆t and with wave speed c = ∆L / ∆t: ∆u Force Velocity ProportionalityForce Velocity Proportionality v = ε c GRLWEAP - Santa Cruz, 201517 This is the strain, stress, force-velocity proportionality Z = EA/c is the pile impedance (kN/m/s) This is the strain, stress, force-velocity proportionality Z = EA/c is the pile impedance (kN/m/s) Fd = vd (EA/c)Fd = vd (EA/c) d = vd(E/c)d = vd(E/c)εd = vd / cεd = vd / c Strain-Stress-Force Proportionality Wave travels in one direction only Strain-Stress-Force Proportionality Wave travels in one direction only
  • 9. GRLWEAP - Santa Cruz, 201518 Express Your ImpedanceExpress Your Impedance Z = EA/c kN/(m/s) with c = (E/ρ)1/2 Z = A (E ρ)1/2 with E = c2 ρ Z = A c ρ with Mp= L A ρ Z = Mp c/ L (Mp ... pile mass) The Pile Impedance is a force which changes the pile  velocity suddenly by 1 m/s.  Reversely, if the velocity changes by 1 m/s then pile  will develop a force equal to Z.  GRLWEAP - Santa Cruz, 201519 A Quick Look at Energy FormulasA Quick Look at Energy Formulas Energy Dissipated in Soil = Energy Provided by Hammer Ru (s + sl) = ηWr h  sl … “lost” set (empirical or measured), η … efficiency of hammer/driving system Engineering News: Rallow =  Wr h / 6(s + 0.1)
  • 10. GRLWEAP - Santa Cruz, 201520 The Gates FormulaThe Gates Formula Ru = 7 (Wrh)½ log(10Blows/25 mm) ‐ 550 Ru … Nominal Resistance (kN) Wr… ram weight (kN) h   … actual stroke (m) log … logarithm to base 10 GRLWEAP - Santa Cruz, 201521 The Hiley Formula using Set-Rebound Measurements The Hiley Formula using Set-Rebound Measurements Ru = ηWr h    (Wr+ e2 WP) (s + c/2) (Wr + WP) Rebound: c Set = s Considers combined pile‐soil elasticity effect Usually with F.S. = 3; η = hammer efficiency.
  • 11. GRLWEAP - Santa Cruz, 201522 Bearing Graphs from 2 Energy Formulas Hammer D 19-42; Er = 59 kJ Bearing Graphs from 2 Energy Formulas Hammer D 19-42; Er = 59 kJ 0 500 1000 1500 2000 2500 3000 3500 4000 0 25 50 75 100 125 150 175 200 Blows/0.25 m CapacityinkN Gates - w/ calculated Stroke ENR - Ru = Rd x 2 Ru = ηEr /(s + sl) η = 1/3; sl = 2.5mm Ru = 1.6 Ep ½ log(10Blows/25mm) – 120 kN 4000 [900] Ru - kN [kips] 2000 [450] 0 0 5 10 15 20 Blows/25mm GRLWEAP - Santa Cruz, 201523 Shortcomings of FormulasShortcomings of Formulas • Rigid pile model • Poor hammer representation • Inherently inaccurate for both capacity and blow  count predictions • No stress results • Unknown hammer energy • Relies on EOD Blow Counts
  • 12. GRLWEAP - Santa Cruz, 201524 Static FormulasStatic Formulas • Based on Soil Properties • Always done for any deep foundation type • Backed up by Static or Dynamic Testing GRLWEAP - Santa Cruz, 201525 Static Analysis to Calculate LTSR Basically for All Soil Types: Ru = Ru,shaft + Ru,toe Ru = fsAs + qt At fs, Ru,shaft, As … Shaft Resistance/Area qt, Ru,toe, At … End Bearing/Area
  • 13. GRLWEAP - Santa Cruz, 201526 The β-Method for Cohesionless Soils • Ru,shaft = fs As – fs = ko tan(δ) po po is the effective overburden pressure ko is some earth pressure coefficient – β = ko tan(δ) • Ru,toe = Nt po At Nt is a bearing capacity factor All with Certain Limits GRLWEAP - Santa Cruz, 201527 The α-Method for Cohesive Soils • Ru,shaft =  fs As – fs = α c c is the undrained shear strength α is a function of po • Ru,toe = 9 c At ..... with certain limits GRLWEAP provides 4 different static analysis methods ST – based on Soil Type; SA‐ based on SPT‐N; CPT; API
  • 14. GRLWEAP - Santa Cruz, 201528 GRLWEAP: ST Method Non-Cohesive Soils (after Bowles) Soil Parameters in ST Analysis for Granular Soil Types Soil Type SPT N Friction Angle Unit Weight, γ β Nt Limit (kPa) degrees kN/m3 Qs Qt Very loose 2 25 - 30 13.5 0.203 12.1 24 2400 Loose 7 27 - 32 16 0.242 18.1 48 4800 Medium 20 30 - 35 18.5 0.313 33.2 72 7200 Dense 40 35 - 40 19.5 0.483 86.0 96 9600 Very Dense 50+ 38 - 43 22 0.627 147.0 192 19000 GRLWEAP - Santa Cruz, 201529 ST - INPUTST - INPUT
  • 15. GRLWEAP - Santa Cruz, 201530 GRLWEAP: ST Method Cohesive Soils (after Bowles) Soil Parameters in ST Analysis for Cohesive Soil Types Soil Type SPT N Unconfined Compr. Strength Unit Weight γ Qs Qt kPa kN/m3 kPa kPa Very soft 1 12 17.5 3.5 54 Soft 3 36 17.5 10.5 162 Medium 6 72 18.5 19 324 Stiff 12 144 20.5 38.5 648 Very stiff 24 288 20.5 63.5 1296 hard 32+ 384+ 19 – 22 77 1728 GRLWEAP - Santa Cruz, 201531 ST - INPUTST - INPUT
  • 16. GRLWEAP - Santa Cruz, 201532 The Wave Equation ModelThe Wave Equation Model • The Wave Equation Analysis calculates – The displacement of any point along a slender, elastic  rod at any time durting and after impact – From the displacements forces, stresses, velocities • The calculation is based on rod properties:   – Length – Cross Sectional Area – Elastic Modulus – Mass density GRLWEAP - Santa Cruz, 201533 The Wave Equation ModelThe Wave Equation Model • The Wave Equation Analysis calculates – The displacement of any point along a slender, elastic  rod at any time durting and after impact – From the displacements forces, stresses, velocities • The calculation is based on rod properties:   – Length – Cross Sectional Area – Elastic Modulus – Mass density
  • 17. GRLWEAP - Santa Cruz, 201534 GRLWEAP FundamentalsGRLWEAP Fundamentals • For a pile driving analysis, the “slender,  elastic rod” consists of Hammer+Driving System+Pile • The soil is represented by resistance forces  acting on the pile and representing the  forces in the pile‐soil interface Hammer D.S. Pile GRLWEAP - Santa Cruz, 201535 Smith’s Numerical Solution of the Wave EquationSmith’s Numerical Solution of the Wave Equation ∆L ρ(δ2u/ δt2) = E (δ2u/ δx2) E … elastic modulus ‐ ρ … mass densitywith c2 = E/ ρ ... Wave Speed Closed Form Solutions to the wave equation are  not practical; we therefore solve the  equation numerically: (mi/ki)(ui,j+1 ‐2ui,j + ui,j‐1)/Δt2 = (ui+1,j – 2ui,j + ui‐1,j) This is equivalent to considering mass points  and springs! i i+1 i-1
  • 18. GRLWEAP - Santa Cruz, 201536 The GRLWEAP Pile ModelThe GRLWEAP Pile Model Each segment has a mass and spring stiffness – of length ∆L ≤ 1 m (3.3 ft) – with mass  m = ρ A ∆L  – and stiffness k = E A / ∆L there are N = L / ∆L pile segments which allow  us to solve the wave equation numerically. ∆L GRLWEAP - Santa Cruz, 201537 The Pile ModelThe Pile Model Relationship between the uniform pile and the  lumped mass model properties: m k = (ρ A ∆L)(EA/∆L) = A2Eρ = Z2  [kN s/m]2 m/k = (ρ A ∆L)/(EA/∆L) = (ρ/E)∆L2  = (∆L/c)2 [s]2 Or Z =  (mk)1/2 (pile impedance) and  ∆t = (m/k)1/2 (wave travel time) Note: the smaller ∆L, the smaller ∆L and that  means the higher the frequencies that can be  represented. ∆L
  • 19. GRLWEAP - Santa Cruz, 201540 We can model 3 hammer-pile systemsWe can model 3 hammer-pile systems GRLWEAP - Santa Cruz, 201541 Ram: A, L for stiffness, mass Cylinder and upper frame = assembly top mass Drop height External Combustion Hammer Modeling Ram guides for assembly stiffness Hammer base = assembly bottom mass
  • 20. GRLWEAP - Santa Cruz, 201542 External Combustion Hammer ModelExternal Combustion Hammer Model • Ram modeled like rod • Stroke is an input (Energy/Ram Weight)  • Impact Velocity Calculated from Stroke with Hammer  Efficiency Reduction: vi = (2 g h η) ½  • Assembly also modeled because it may impact during  pile rebound • Note approximation in data file:  Assembly mass = Total hammer mass – Ram mass GRLWEAP - Santa Cruz, 201543 External Combustion Hammers Ram Model Ram segments  ~1m long Combined Ram‐ H.Cushion Helmet mass
  • 21. GRLWEAP - Santa Cruz, 201544 External Combustion Hammers Assembly model External Combustion Hammers Assembly model Assembly segments,  typically 2 Helmet mass GRLWEAP - Santa Cruz, 201545 External Combustion Hammers Combined Ram Assembly Model External Combustion Hammers Combined Ram Assembly Model Combined Ram- H.Cushion Helmet mass Ram segments Assembly segments
  • 22. GRLWEAP - Santa Cruz, 201546 External Combustion Hammer Analysis Procedure • Static equilibrium analysis • Dynamic analysis starts when ram is within 1 ms of  impact. • All ram segments then have velocity VRAM = (2 g h η)1/2 – 0.001 g g is the gravitational acceleration  h is the equivalent hammer stroke and η is the hammer efficiency h = Hammer potential energy/ Ram weight GRLWEAP - Santa Cruz, 201547 • Dynamic analysis ends when  – Pile toe has rebounded to 80% of max dtoe – Pile has penetrated more than 4 inches – Pile toe has rebounded to 98% of max dtoe and energy  in pile is essentially dissipated External Combustion Hammer Analysis Procedure
  • 23. GRLWEAP - Santa Cruz, 201548 Diesel HammersDiesel Hammers • Very popular in the US • Have their own fuel tank  and combustion “engine” • Model therefore includes a  thermodynamic analysis • Stroke is computed GRLWEAP - Santa Cruz, 201558 GRLWEAP hammer efficiencies ηh = Ek/EP GRLWEAP hammer efficiencies ηh = Ek/EP •The hammer efficiency reduces the impact velocity of  the ram; it is based on experience •Hammer efficiencies cover all losses which cannot be  calculated •Diesel hammer energy loss due to pre‐compression or  cushioning can be calculated and, therefore, is not  covered by hammer efficiency
  • 24. GRLWEAP - Santa Cruz, 201560 WR h ER = WR h Manufacturer’s Rating WR Max ET = ∫F(t) v(t) dt (EMX, ENTHRU) ηT =   ENTHRU/ ER (transfer ratio or efficiency) Measure:  Force, F(t) Velocity, v(t) Measured Transferred Energy Measured Transferred Energy GRLWEAP - Santa Cruz, 201562 Measured Transfer Ratios for Diesels Steel Piles Concrete Piles
  • 25. GRLWEAP - Santa Cruz, 201563 For all impact hammers GRLWEAP needs impact velocity WP mR h Er = Wr he = mr g he he = Er / Wr he – equivalent stroke he = h for single acting hammers Epr = η Er Wr he (η = Hammer efficiency ) WR vi Ek = Epr = ηh (½ mr vi 2) (kinetic energy) vi = 2g heηh GRLWEAP - Santa Cruz, 201564 GRLWEAP Diesel hammer efficiencies , ηh GRLWEAP Diesel hammer efficiencies , ηh Open end diesel hammers: 0.80 uncertainty of fall height, friction, alignment Closed end diesel hammers: 0.80 uncertainty of fall height, friction, power assist, alignment
  • 26. GRLWEAP - Santa Cruz, 201565 Modern Hydraulic Hammer Efficiencies, ηh Modern Hydraulic Hammer Efficiencies, ηh Hammers with internal monitor: 0.95 uncertainty of hammer alignment Hydraulic drop hammers: 0.80 uncertainty of fall height, alignment, friction Power assisted hydraulic hammers: 0.80 uncertainty of fall height, alignment, friction, power assist GRLWEAP - Santa Cruz, 201568 Vibratory Hammers Vibratory Hammers
  • 27. GRLWEAP - Santa Cruz, 201569 Vibratory Force: FV = me [ω2resin ω t ‐ a2(t)] FL FV m1 m2 • Line Force • Bias Mass and  • Oscillator mass, m2 • Eccentric masses, me,  radii, re • Clamp Vibratory Hammer ModelVibratory Hammer Model GRLWEAP - Santa Cruz, 201571 The Driving Systems  Consists of 1. Helmet including inserts to  align hammer and pile 2. Optionally: Hammer Cushion  to protect hammer 3. For Concrete Piles: Softwood  Cushion Driving System ModelsDriving System Models
  • 28. GRLWEAP - Santa Cruz, 201572 Helmet + Inserts Driving System Model Example of a diesel hammer on a concrete piles Driving System Model Example of a diesel hammer on a concrete piles Hammer Cushion: Spring plus  Dashpot Pile Top: Spring + Dashpot Pile Cushion GRLWEAP - Santa Cruz, 201575 Interface Soil: Elasto‐ Plastic Springs and  Viscous Dashpots Soil outside of  interface: Rigid The Soil Model After Smith
  • 29. GRLWEAP - Santa Cruz, 201576 Soil ResistanceSoil Resistance • Soil resistance slows pile movement and causes pile  rebound • A very slowly moving pile only encounters static  resistance • A rapidly moving pile also encounters dynamic  resistance • The static resistance to driving (SRD) differs from the  soil resistance under static loads GRLWEAP - Santa Cruz, 201577 Segment  i Segment  i‐1 Segment  i+1 Pile‐Soil Interface Soil Model ParametersSoil Model Parameters ki,Rui Ji RIGID SOIL ki+1,Rui+1 Ji+1 ki-1,Rui-1 Ji-1
  • 30. GRLWEAP - Santa Cruz, 201578 Fixed Soil Smith’s Soil ModelSmith’s Soil Model Total Soil Resistance Rtotal = Rsi +Rdi Total Soil Resistance Rtotal = Rsi +Rdi Displacement ui Velocity vi Pile Segment i GRLWEAP - Santa Cruz, 201579 The Static Soil ModelThe Static Soil Model Displacement ui Velocity vi Pile Segment i Pile Displacement Rui Static Resistance Rui … ult. resistance qi … quake ksi = Rui /qi
  • 31. GRLWEAP - Santa Cruz, 201582 Recommended Toe Quakes, qtoeRecommended Toe Quakes, qtoe 0.1” or 2.5 mm for all soil types 0.04” or 1 mm for  hard rock qtoe Static Toe Res. qtoe Ru,toe Toe Displacement D/120 for very dense or  hard soils D/60 for soils which are  not very dense or v. hard Displacement pilesNon‐displacement piles D GRLWEAP - Santa Cruz, 201583 Toe Quake Effect on Blow CountToe Quake Effect on Blow Count S200 100m 610x12 95m Approximatelyy 50% Shaft Resistance Total No. of Blows: ∞ (qt =D/60); 27,490 (qt=D/120) 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 DepthofPileToePenetration-m Blow Count - Blows/m qt = D/60 qt = D/120
  • 32. GRLWEAP - Santa Cruz, 201584 The Dynamic Soil ModelThe Dynamic Soil Model Displacement ui Velocity vi Pile Segment i Rd = RuJsv v Smith‐viscous  damping factor, Jsv [s/m or s/ft] For RSA and  Vibratory Analysis Smith damping  factor, Js [s/m or s/ft] Rd = RsJs v Standard GRLWEAP - Santa Cruz, 201585 Recommended Smith damping factors (Js or Jsv) Recommended Smith damping factors (Js or Jsv) Shaft Clay: 0.65 s/m or 0.20 s/ft Sand: 0.16 s/m or 0.05 s/ft Silts: use an intermediate value Layered soils:  use a weighted average for bearing graph  Toe All soils: 0.50 s/m or 0.15 s/ft
  • 33. GRLWEAP - Santa Cruz, 201586 Shaft Damping on Blow CountShaft Damping on Blow Count S200 100m 610x12 95m Approximatelyy 50% Shaft Resistance Total No. of Blows: ∞ (Js=0.65 s/m); 27,490 (Js=0.16 s/m) 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 DepthofPileToePenetration-m Blow Count - Blows/m Js = 0.65 s/m Js = 0.16 s/m GRLWEAP - Santa Cruz, 201588 GRLWEAP’s Static Analysis MethodsGRLWEAP’s Static Analysis Methods Rs Rt Q Icon Input Basic Analysis ST Soil Type Effective Stress, Total Stress SA SPT N-value Effective Stress CPT R at cone tip and sleeve Schmertmann API φ, Su Effective Stress, Total Stress • GRLWEAP’s static analysis methods may be used for dynamic analysis preparation (resistance distribution, estimate of capacity for driveability). • For design, be sure to use a method based on local experience.
  • 34. GRLWEAP - Santa Cruz, 201589 Use of Static Analysis MethodsUse of Static Analysis Methods • Should always be done for finding reasonable pile type  and length • For driven piles static analysis is only a starting point,  since pile length is determined in the field (exceptions are  piles driven to depth, for example, because of high soil  setup) • For LRFD when finding pile length by static analysis  method use resistance factor for selected capacity  verification method  GRLWEAP - Santa Cruz, 201592 Resistance DistributionResistance Distribution 3. More Involved: I. ST Input: Soil Type II. SA Input: SPT Blow Count, Friction  Angle or Unconfined Compressive  Strength III. API (offshore wave version)       Input: Friction Angle or Undrained Shear Strength IV. CPT Input: Cone Record including Tip  Resistance and Sleeve Friction vs  Depth. Penetration All are good for a Bearing Graph II, III and IV OK for Driveability Analysis Local experience may provide better values
  • 35. GRLWEAP - Santa Cruz, 201594 Mass i Mass i-1 Mass i+1 Numerical TreatmentNumerical Treatment • Predict displacements: uni = uoi + voi ∆t  Fi, ci uni-1 uni uni+1 Ri-1 Ri Ri+1 • Calculate spring compression: ci = uni - uni-1 • Calculate spring forces: Fi = ki ci • Calculate resistance forces: Ri = Rsi + Rdi GRLWEAP - Santa Cruz, 201595 Force balance at a segmentForce balance at a segment Acceleration: ai = (Fi + Wi – Ri – Fi+1) / mi Velocity, vi, and Displacement, ui, from Integration Mass i Force from upper spring, Fi Force from lower spring, Fi+1 Resistance force, Ri Weight, Wi
  • 36. GRLWEAP - Santa Cruz, 201597 Set or Blow Count Calculation (a) Simplified: extrapolated toe displacement Set or Blow Count Calculation (a) Simplified: extrapolated toe displacement Static soil Resistance Pile Displacement Final Set Max. Displacement Quake Ru Extrapolated Calculated GRLWEAP - Santa Cruz, 2015100 Blow Count Calculation (b) Residual Stress Analysis (RSA) Blow Count Calculation (b) Residual Stress Analysis (RSA) Set  for 2 Blows Convergence: Consecutive Blows  have same  pile compression/sets
  • 37. GRLWEAP - Santa Cruz, 2015101 RSA Effect on Blow CountRSA Effect on Blow Count S500 100m 1220x25 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 DepthofPileToePenetration-m Blow Count - Blows/m Standard RSA 95m Total No. of Blows: 8907 (Standard); 6235 (RSA) 0 20 40 60 80 100 120 0 200 400 600 800 1000 B low C ount (bl/m) No RSA RSA GRLWEAP - Santa Cruz, 2015103 Static Equilibrium Ram velocity Dynamic analysis Program Flow – Bearing GraphProgram Flow – Bearing Graph Model hammer, driving system and pile • Pile stresses • Energy transfer • Pile velocitiesChoose first Ru Calculate Blow Count Distribute Ru Set Soil Constants Output Increase Ru? Increase Ru Input N Y
  • 38. GRLWEAP - Santa Cruz, 2015104 Bearing Graph: Variable Capacity, One depth SI-Units; Clay and Sand Example; D19-42; HP 12x53; Bearing Graph: Variable Capacity, One depth SI-Units; Clay and Sand Example; D19-42; HP 12x53; GRLWEAP - Santa Cruz, 2015107 Driveability AnalysisDriveability Analysis • Analyze a series of Bearing Graphs for different  depths for SRD and/or LTSR • Put the results in sequence so that we get predicted  blow count and stresses vs pile toe penetration • Note that, in many or most cases, shaft resistance is  lower during driving (soil setup) and end bearing is  about the same as long term • In the few cases of relaxation, the toe resistance is  actually higher during driving than long term
  • 39. GRLWEAP - Santa Cruz, 2015108 Analysis Program Flow – DriveabilityProgram Flow – Driveability Model Hammer & Driving System Choose first Depth to analyze Next G/L Pile Length and Model Calculate Ru for first gain/loss OutputIncrease Depth? Increase Depth Input Increase G/L? N N Y Y GRLWEAP - Santa Cruz, 2015109 Driveability Result During a driving interruption soil setup occurs
  • 40. GRLWEAP - Santa Cruz, 2015110 When Should we do the Analysis?When Should we do the Analysis? • Before pile driving begins – Equipment selection for safe and efficient installation – Preliminary driving criterion • After initial pile tests have been done – Refined Wave Equation analysis for improved driving  criterion – For different driving systems • In preparation of dynamic testing GRLWEAP - Santa Cruz, 2015111 SummarySummary • The wave equation analysis simulates what happens in  the pile when it is struck by a heavy hammer input. • It calculates a relationship between capacity and blow  count, or blow count vs. depth. • The analysis model represents hammer (3 types), driving  system (cushions, helmet), pile (concrete, steel, timber)  and soil (at the pile‐soil interface) • GRLWEAP provides a variety of input help features  (hammer and driving system data, static formulas among  others).
  • 41. GRLWEAP - Santa Cruz, 2015112 An example for a Dynamic Test Preparation An example for a Dynamic Test Preparation • Prepare dynamic test on a 400 mm dia.  pile with  Expander Body of 600 mm  diameter and 2000 mm length. • Sand and Gravel • Drop Weights 5 and 8 tons • Drop Height 1.2 m • Cushion 100 mm GRLWEAP - Santa Cruz, 2015113 Ananlysis of a Pile with Expander BodyAnanlysis of a Pile with Expander Body
  • 42. GRLWEAP - Santa Cruz, 2015114 Analysis results Hammers 1 m drop height, 9 inch cushioin Analysis results Hammers 1 m drop height, 9 inch cushioin 30-Apr-2015GRL Engineers, Inc. Expander Body: 8ton ram; 6" cushion GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushion 30-Apr-2015GRL Engineers, Inc. Expander Body: 8ton ram; 6" cushion GRLWEAP Version 2010Expander Body: 5ton ram; 6" cushionCompressiveStress(MPa) 0 6 12 18 24 30 TensionStress(MPa) 0 2 4 6 8 10 Blow Count (blows/.10m) UltimateCapacity(kN) 0 10 20 30 40 50 60 0 800 1600 2400 3200 4000 GRL 8 ton GRL 5 ton Stroke 0.91 0.91 m Ram Weight 71.20 44.50 kN Efficiency 0.800 0.800 Helmet Weight 0.00 0.00 kN Pile Cushion 173 173 kN/mm COR of P.C. 0.500 0.500 Skin Quake 2.500 mm 2.500 mm Toe Quake 5.080 mm 5.080 mm Skin Damping 0.164 sec/m 0.164 sec/m Toe Damping 0.500 sec/m 0.500 sec/m Pile Length Pile Penetration Pile Top Area 12.00 12.00 1256.63 Pile Model Skin Friction Distribution Res. Shaft = 20 % (Proportional) 12.00 12.00 1256.63 m m cm2 Pile Model Skin Friction Distribution Res. Shaft = 20 % (Proportional) GRLWEAP - Santa Cruz, 2015115 Thank you for your attention! QUESTIONS? Thank you for your attention! QUESTIONS?