Advertisement
Advertisement

More Related Content

Advertisement

Similar to How to build a recommender system?(20)

Advertisement

How to build a recommender system?

  1. Coen Stevens Lead Recommendation Engineer
  2. How to build a recommender system? Wakoopa use case
  3. Mission: Discover software & games
  4. Software tracker Windows Mac Linux
  5. Your profile
  6. Updates
  7. Software pages
  8. Recommendations
  9. Building a recommender system Approach and challenges
  10. Data what do we have? Usage (implicit) Ratings (explicit) vs. • • Noisy Accurate • • Only positive feedback Positive and negative feedback • • Easy to collect Hard to collect
  11. Data what do we use? • Active users (Tracker activity in the past month): ~9.000 • Actively used software items (in the past month): ~10.000 • We calculate recommendations for each OS together with Web applications separately
  12. Recommender system methods Collaborative recommendations: The user will be recommended items that people with similar tastes and preferences liked (used) in the past • Item-based collaborative filtering • User-based collaborative filtering (we only use for calculating user similarities to find people like you) • Combining both methods
  13. Item-Based Collaborative Filtering User software usage matrix Software items 220 90 180 22 280 12 42 80 Users 175 210 210 45 165 35 195 13 25 100 50 185 35 190 60 65 185
  14. User software usage matrix [0, 1] Software items 1 1 0 1 0 1 0 1 1 1 0 1 0 0 Users 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1
  15. How do we predict the probability that I would like to use GMail? Software items 1 1 0 1 0 1 0 1 1 1 0 1 0 0 ? Users 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1
  16. Calculate the similarities between Gmail and the other software items. Software items 1 1 0 1 0 1 0 1 1 1 0 1 0 0 Users 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 Cosine Similarity(Firefox, Gmail)
  17. Calculate the similarities between Gmail and the other software items. Software items 1 1 0 1 0 1 0 1 1 1 0 1 0 0 Users 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 Cosine Similarity(Firefox, Gmail)
  18. Calculate the similarities between Gmail and the other software items. Software items 1 1 0 1 0 1 0 1 1 1 0 1 0 0 Popularity correction, Users 1 1 0 1 0 1 0 we put less trust 1 0 1 1 1 1 0 in popular software 0 1 1 1 0 1 1 0 1 0 1 0 0 1 Cosine Similarity(Firefox, Gmail)
  19. Item-item correlation matrix 1 0.1 0.6 0.1 0.1 0.1 0.7 0.2 1 0.8 0.5 0.8 0.1 0.9 0.1 0.6 1 0.5 0.7 0.2 0.3 0.2 0.6 0.4 1 0.8 0.2 0.3 0.5 0.4 0.4 0.4 1 0.1 0.2 0.5 0.5 0.3 0.5 0.3 1 0.3 0.2 0.6 0.3 0.8 0.7 0.7 1
  20. Item-item correlation matrix Gmail similarities 0.6 1 0.1 0.6 0.1 0.1 0.1 0.7 0.8 0.2 1 0.8 0.5 0.8 0.1 0.9 0.4 0.1 0.6 1 0.5 0.7 0.2 0.3 0.4 0.2 0.6 0.4 1 0.8 0.2 0.3 0.3 0.5 0.4 0.4 0.4 1 0.1 0.2 0.3 0.5 0.5 0.3 0.5 0.3 1 0.3 0.2 0.6 0.3 0.8 0.7 0.7 1
  21. K-nearest neighbor approach Gmail similarities • Performance vs quality 0.6 • We take only the ‘K’ most similar items (say 4) 0.8 • Space complexity: O(m + Kn) 0.4 • 0.4 Computational complexity: O(m + n²) 0.3 0.3
  22. Calculate the predicted value for Gmail Gmail similarities User usage 1 0.6 1 0.8 1 0.4 0.4 1
  23. Calculate the predicted value for Gmail Gmail similarities User usage 0.9 0.6 Usage correction, 0.8 0.8 more usage results in a higher score [0,1] 0.6 0.4 0.4 0.2
  24. Calculate the predicted value for Gmail Gmail similarities User usage 0.9 0.6 0.8 0.8 0.6 0.4 0.4 0.2 (0.6 * 0.9) + (0.8 * 0.8) + (0.4 * 0.6) = 0.82 0.6 + 0.8 + 0.4 + 0.4
  25. Calculate the predicted value for Gmail • User feedback Gmail similarities User usage • Contacts usage 0.9 0.6 • Commercial vs Free 0.8 0.8 0.6 0.4 0.4 0.2 (0.6 * 0.9) + (0.8 * 0.8) + (0.4 * 0.6) = 0.82 0.6 + 0.8 + 0.4 + 0.4
  26. Calculate all unknown values and show the Top-N recommendations to each user Software items ? ? ? 1 1 1 1 ?1?? 1 1 1 ?1?1? Users 1 1 ?1111? 1 ?111?11 ?1?1??1
  27. Explainability Why did I get this recommendation? • Overlap between the item’s (K) neighbors and your usage
  28. User-Based Collaborative Filtering Finding people like you 1 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 Cosine Similarity(Coen, Menno) 0 1 1 1 0 1 1 0 1 0 1 0 0 1
  29. Applying inverse user frequency log(n/ni): ni is the number of users that uses item i and n is the total number of users in the database 0.1 0.2 0 0.4 0 0.4 0 0.1 0.2 0.6 0 0.8 0 0 0.1 0.2 0 0.4 0 0.4 0 0.1 0.2 0.6 0.4 0.8 0.4 0 Cosine Similarity(Coen, Menno) 0 0.2 0.6 0.4 0 0.4 0.2 0 0.2 0 0.4 0 0 0.2 The fact that you both use Textmate tells you more than when you both use firefox
  30. 0.1 0.2 0 0.4 0 0.4 0 0.1 0.2 0.6 0 0.8 0 0 0.1 0.2 0 0.4 0 0.4 0 0.1 0.2 0.6 0.4 0.8 0.4 0 Cosine Similarity(Coen, Menno) 0 0.2 0.6 0.4 0 0.4 0.2 0 0.2 0 0.4 0 0 0.2
  31. User-user correlation matrix 1 0.8 0.6 0.5 0.7 0.2 0.8 1 0.4 0.7 0.5 0.5 0.6 0.4 1 0.4 0.9 0.1 0.5 0.8 0.4 1 0.6 0.4 0.8 0.5 0.9 0.6 1 0.2 0.2 0.5 0.1 0.4 0.2 1
  32. Performance measure for success • Cross-validation: Train-Test split (80-20) • Precision and Recall: - precision = size(hit set) / size(total given recs) - recall = size(hit set) / size(test set) • Root mean squared error (RMSE)
  33. Implementation • Ruby Enterprise Edition (garbage collection) • MySQL database • Built our own c-libraries • Amazon EC2: - Low cost - Flexibility - Ease of use • Open source
  34. Future challenges • What is the best algorithm for Wakoopa? (or you) • Reducing space-time complexity (scalability): - Parallelization (Clojure) - Distributed computing (Hadoop)
  35. 1 evening, 3 speakers, 100 developers www.recked.org
Advertisement