SlideShare a Scribd company logo
1 of 29
The Making of The Perfect MOSFET
Alan Elbanhawy
Fairchild Semiconductor
PESC 2006 June 21, 2006
2 2
Outline
• MOSFET Components
• Silicon Losses
• Packaging Related losses
• Gate Driver Losses
• Integration and Design Optimization
• Conclusion
3 3
MOSFET Components
Silicon
Package
Gate Driver
• Parasitic Inductances
• Parasitic Resistances
• Skin Effect
• Thermal Resistance
• Footprint
• Price
• Conduction Losses
• Dynamic Losses
• Distributed Parameters
Effects, Rg
• Shoot Through
• Reverse Recovery Losses
• Price
• Rise and Fall Times
• Sink and Source Currents
• Source Resistance
• Parasitic Inductances
•Thermal Resistance
• Footprint
• Price
4 4
:=RonOpt Vinput
Rg FOM KDrive fsw
Iload Vout Vdrive
Optimum on Resistance
RDS(ON) as a function of load
current and input voltage for
the top MOSFET
Power dissipation as a function
of the on resistance RDS(ON) and the
load current
Conduction Losses
Optimum Range for
RDS(ON)
5 5
Distributed and segmented parameters model
C
L
1 2G a t e
D r i v e r
S y n c h r o n o u s R e c t i f i e r
C o n t r o l M O S F E T
R g 1
0
S 9
R g 9
0
S 1 0
0
C
G a t e D r iv e r
1 2
S 1S 2
R g 2
L
1 2
R g 1 0
H S
MOSFET Outlines
Gate
lead
R g C g d
C g s
Q
C g d
C g s
RRRRRRRRRR d r iv e r
C g dC g dC g dC g dC g dC g dC g dC g dC g d
C g sC g sC g sC g sC g sC g sC g sC g sC g s
D
2 14 36 58 710 9
6 6
Effect of distributed Rg-Cgs and die
current Density
Gate voltage and drain currents
at different Segments
Vgth
Uneven Power dissipation across the die during
turn on!
The first and last segment currents
for different combinations of Rg and
Cgs
7 7
Clearly tri = Rg*Cgs*Constant.
This equation shows that the
current rise time is directly
proportional to Rg*Cgs which
dictates that both parameters
must be minimized for better
performance
Effect of Rg on Current Rise Time
Current Rise time, tri
tri





LambertW −e





−
+ +Vp Gm Cgs Rg tr Gm Vgth tr Gm Iload
Vp Gm Cgs Rg
Vp Gm Cgs Rg tr Gm Iload+


:=
Gm





LambertW −e





−
+Vp Cgs Rg Vgth tr
Vp Cgs Rg
Vp Cgs Rg− Vp Gm


/( )
Current Fall time, tif
:=tif − +





÷÷ln
Vgth
Vp
Rg Cgs





÷÷ln
+Gm Vgth Gm Iload
Vp Gm
Rg Cgs
8 8
Effect of Rg on MOSFET Vds Rise and
Fall Times
VDS Rise time
VDS Fall time
9 9
Lab Verification, tri, trv
Rg = 0 Ohm, Current
Rise time
Rg=4.7 Ohm,
Current rise time
Vds Rise time
Vds Rise time
10 10
Shoot Through in Synchronous Buck Converter
1 2
M1
L1
1 2
1 2
M2
0
C
• Conduction Losses
• Dynamic Losses
• Distributed Parameters
Effects, Rg
• Shoot Through
• Reverse Recovery Losses
• Price
1 2
M1
L1
1 2
1 2
M2
0
C
11 11
SegmentInstantaneousPowerGate Threshold Voltage
Gate-SourceVoltage
Segments
Currents
Segments gate-
source voltage
Distributed Parameters Model Solution,
Voltages and Currents
12 12
Distributed Rg Influence on Shoot Through
Current
Drain Current
Gate-Source
Voltage
Gate threshold
Voltage
13 13
Gate threshold voltage
Vgth
Drain current
Gate to source
voltage
Distributed CGD Influence on Shoot Through
Current
14 14
Distributed CGS Influence on Shoot Through
Current
Gate threshold
Voltage
Gate-Source
Voltage
Drain Current
15 15
Lumped parameters Model with
Parasitics
C
L
1 2G a t e
D r i v e r
S y n c h r o n o u s R e c t i f i e r
C o n t r o l M O S F E T
Full parasitic
model
Added source and
gate inductances
only
Simple
model
16 16
Loop Inductance Effects on Shoot Through
Loop Inductance Influence on Shoot Through Current
-2.00E+01
0.00E+00
2.00E+01
4.00E+01
6.00E+01
8.00E+01
1.00E+02
1.20E+02
1.40E+02
1.60E+02
9.89E-06 9.90E-06 9.91E-06 9.92E-06 9.93E-06 9.94E-06 9.95E-06 9.96E-06 9.97E-06 9.98E-06
Time
DrainCurrent-Amp
0.2nH
0.4nH
1.0nH
2.0nH
4.0nH
6.0nH
8.0nH
10nH
NoInductor
17 17
Reverse Recovery Current
-4.00E+01
-3.50E+01
-3.00E+01
-2.50E+01
-2.00E+01
-1.50E+01
-1.00E+01
-5.00E+00
0.00E+00
5.00E+00
9.90E-06 9.91E-06 9.91E-06 9.92E-06 9.92E-06 9.93E-06 9.93E-06 9.94E-06
Time - Seconds
Current-Amp
Loop Inductance 0nH – 10nH
Loop Inductance Effects on Reverse Recovery
18 18
Parasitics, CurrentParasitics, Current
rise and fall timesrise and fall times
Parasitics, CurrentParasitics, Current
sharingsharing
Fall time as a function of the
Source inductance Ls and
Load Current IL
Vgth=1.5, gm=30
Source Inductance Effects
19 19
Low Drain
Current
High Drain
Current
Source Inductance Effects
trg











÷
÷
÷
÷
÷
÷
÷÷LambertW −
( )−gm Kd Ls Vgth e







÷
÷
÷÷
−
− +Kd gm
2
Ls gm Vgth IL
Kd gm
2
Ls
gm Kd Ls








:=
Kd gm
2
Ls Kd gm
2
Ls gm Vgth IL+ − + gm Kd


÷
÷
÷
÷
÷
÷
÷÷/ ( )
:=tfg −2 Ls a IL a Ls Vgth







÷
÷
÷÷
ln
++a Vgth
2
IL 2 Vgth a IL
a Vgth
2
PdHS :=
+IL2
( )+RdsonHS ( )+1 σ ( )−TmaxHS Tamb Rpackage ∆ 0.5 Vcc IL fs ( )+tr1 tf1
Rise time Fall time
Power Dissipation
20 20
Parasitic Resistance and Skin Effect
∆Ts Ts t
Ipk
i(t)
:=Id +Ipk ∆







∑
=n 1
∞






2 Ipk ( )sin n π ∆ ( )cos n ω t
n π
The Fourier series for a
square wave
for n=20 and n=200
Frequency Spectrum
-1
-0.5
0
0.5
1
1.5
2
2.5
3
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Harmonic
Amplitude
Square wave
synthesis
Square wave
Frequency
Spectrum
21 21
Package Effects, Parasitics and Skin Effects
Parasitic resistance as a function of frequency
BGA
49568.17374922.8
59179.030982.095504.0
FF
DS eeR
−−
−−=
09916.80
85494.9275894.94
F
DS eR
−
−=
22 22
Skin Effect and Power Loss for HS
MOSFET
Conduction loss (z-axes) as a
function of the fundamental
switching frequency f and the
silicon on-resistance for an
The percentage error (z-axes) as a
function of the switching frequency f
and the silicon on-resistance for a
BGA 5 x 5.5 mm Package
SO8 Package
:=Pc Il
2
∆ ( )Rdson DC
:=Pcf +Ipk
2
∆
2
( )Rdson DC







÷
÷
÷÷
∑
=n 1
∞






÷
÷
÷÷
2Ipk
2
( )sin nπ∆
2
( )Rdson f
n
2
π
2
:=ErrorPercent
100 ( )−Ipk
2
∆ ( )Rdson DC Pcf
Ipk
2
∆ ( )Rdson DC
23 23
Package Thermals
• θJC = 0.46 °C/W
• Heat sinking from the top of the
package
• Very low footprint and profile
Power Ball Grid Array BGA
package is an example of the
modern packages to address
all the requirements of high
frequency and high power
densities modern DC-DC
converters
24 24
Gate Driver Influence on Losses
Uneven
current
distribution
:=VgOpt
1
2
+
Id
2
bt Vo
Vin
Id
2
bb





−1
Vo
Vin
( )+Cint Cinb fs
Rg = 6
Rg = 4
Rg = 2
Rg = 6
Rg = 4
Rg = 2
Fall Time
Rise Time
Optimum gate
Drive voltage
25 25
Parasitic Drain Inductance EffectsParasitic Drain Inductance Effects
• Ls is PCB trace and package inductance, Cp is MOSFET Coss and stray capacitanceLs is PCB trace and package inductance, Cp is MOSFET Coss and stray capacitance
• For tr & tf >> tFor tr & tf >> tresres ::
• Overstress voltage =Overstress voltage =
• Power Dissipation =Power Dissipation =
For 20A, 10nH, 1nF and 1MHz:For 20A, 10nH, 1nF and 1MHz:
Overstress voltage = 60VoltOverstress voltage = 60Volt
Power Dissipation =4W = 4Power Dissipation =4W = 4
VdrainVdrain IindIind
Vin
L
1 2
C
0
I
1
2
L ID
2
fs
ID
L
C
Current as a function of L and time
26 26
MOSFET Driver Comparison
70
72
74
76
78
80
82
84
86
88
90
0 20 40 60 80 100 120 140
Load Current
Efficiency%
Driver #1
Driver #2
Driver #3
Why match MOSFETs and gate drivers?
• Use one VRM board with three different drivers
• All MOSFETs, Inductors and Filter capacitors are identical
in all three cases
• The very same PCB
• The same test setup and test condition on an ATE
How will the efficiency curves be different?
Gate Driver Influence on Losses
27 27
Current Density (A/m^2)
Top MOSFET On
Current Density (A/m^2)
Bottom MOSFETs On
Integration and Design Optimization
28 28
Conclusion
• The pursuit of the perfect MOSFET must be launched simultaneously on
three fronts, silicon, package and gate driver.
• The optimization of the MOSFET parameters requires an extremely careful
consideration of the individual parameter and its effect on all the loss
mechanisms in a given power MOSFET and all of these in conjunction with
each other and the effect of a given combination of these parameters on the
overall performance of the device in the intended application which in our
case is a synchronous buck converter
29 29
Thanks for your attentionThanks for your attention
Questions?Questions?

More Related Content

What's hot

Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 NewOriginal MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 NewAUTHELECTRONIC
 
73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDFDatasheet
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541マルツエレック株式会社 marutsuelec
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 NewOriginal Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 NewAUTHELECTRONIC
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V NewOriginal IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V Newauthelectroniccom
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IRAUTHELECTRONIC
 
Transistor mosfet to220 - psmn005
Transistor mosfet   to220 - psmn005Transistor mosfet   to220 - psmn005
Transistor mosfet to220 - psmn005Samuel Borges
 
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IROriginal P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IRAUTHELECTRONIC
 
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsAUTHELECTRONIC
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsauthelectroniccom
 

What's hot (19)

Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 NewOriginal MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
Original MOSFET N-CHANNEL R5205CND R5205 5205 5A 30V TO-252 New
 
73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
 
1.2 ron 2
1.2 ron 21.2 ron 2
1.2 ron 2
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 NewOriginal Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
Original Opto PC816 EL816 LTV816 LTV-816 816C 816 DIP-4 New
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V NewOriginal IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IROrriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
Orriginal P-Channel Mosfet IRFR9024NTRPBF FR9024N 9024 55V 11A TO-252 New IR
 
Transistor mosfet to220 - psmn005
Transistor mosfet   to220 - psmn005Transistor mosfet   to220 - psmn005
Transistor mosfet to220 - psmn005
 
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IROriginal P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
 
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability WorkshopDavid Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
David Clark: 2013 Sandia National Laboratoies Wind Plant Reliability Workshop
 
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Standard+BDS Model) in SPICE PARK
 
1.3 ron 3
1.3 ron 31.3 ron 3
1.3 ron 3
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 

Similar to The making of the Perfect MOSFET Final

Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppttariqqureshi33
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)imsong
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewAUTHELECTRONIC
 
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IROriginal N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IRAUTHELECTRONIC
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsAUTHELECTRONIC
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...AUTHELECTRONIC
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewAUTHELECTRONIC
 
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewOriginal N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewAUTHELECTRONIC
 
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010Steve Mappus
 
Netzer DS 37 16 Specsheet
Netzer DS 37 16 SpecsheetNetzer DS 37 16 Specsheet
Netzer DS 37 16 SpecsheetElectromate
 
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewOriginal N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewAUTHELECTRONIC
 
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New FairchildOriginal N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New FairchildAUTHELECTRONIC
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)aicdesign
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)aicdesign
 

Similar to The making of the Perfect MOSFET Final (20)

Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IROriginal N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
 
As15 f
As15 fAs15 f
As15 f
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
 
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 NewOriginal Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
Original Mosfet SM4024N SM4024NSU 4024 TO-252-3 New
 
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewOriginal N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
 
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010Synchronous Rectification for Forward Converters_SMappus_June 4 2010
Synchronous Rectification for Forward Converters_SMappus_June 4 2010
 
Netzer DS 37 16 Specsheet
Netzer DS 37 16 SpecsheetNetzer DS 37 16 Specsheet
Netzer DS 37 16 Specsheet
 
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewOriginal N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
 
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New FairchildOriginal N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
 
Lect2 up220 (100327)
Lect2 up220 (100327)Lect2 up220 (100327)
Lect2 up220 (100327)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Uc3845
Uc3845Uc3845
Uc3845
 

The making of the Perfect MOSFET Final

  • 1. The Making of The Perfect MOSFET Alan Elbanhawy Fairchild Semiconductor PESC 2006 June 21, 2006
  • 2. 2 2 Outline • MOSFET Components • Silicon Losses • Packaging Related losses • Gate Driver Losses • Integration and Design Optimization • Conclusion
  • 3. 3 3 MOSFET Components Silicon Package Gate Driver • Parasitic Inductances • Parasitic Resistances • Skin Effect • Thermal Resistance • Footprint • Price • Conduction Losses • Dynamic Losses • Distributed Parameters Effects, Rg • Shoot Through • Reverse Recovery Losses • Price • Rise and Fall Times • Sink and Source Currents • Source Resistance • Parasitic Inductances •Thermal Resistance • Footprint • Price
  • 4. 4 4 :=RonOpt Vinput Rg FOM KDrive fsw Iload Vout Vdrive Optimum on Resistance RDS(ON) as a function of load current and input voltage for the top MOSFET Power dissipation as a function of the on resistance RDS(ON) and the load current Conduction Losses Optimum Range for RDS(ON)
  • 5. 5 5 Distributed and segmented parameters model C L 1 2G a t e D r i v e r S y n c h r o n o u s R e c t i f i e r C o n t r o l M O S F E T R g 1 0 S 9 R g 9 0 S 1 0 0 C G a t e D r iv e r 1 2 S 1S 2 R g 2 L 1 2 R g 1 0 H S MOSFET Outlines Gate lead R g C g d C g s Q C g d C g s RRRRRRRRRR d r iv e r C g dC g dC g dC g dC g dC g dC g dC g dC g d C g sC g sC g sC g sC g sC g sC g sC g sC g s D 2 14 36 58 710 9
  • 6. 6 6 Effect of distributed Rg-Cgs and die current Density Gate voltage and drain currents at different Segments Vgth Uneven Power dissipation across the die during turn on! The first and last segment currents for different combinations of Rg and Cgs
  • 7. 7 7 Clearly tri = Rg*Cgs*Constant. This equation shows that the current rise time is directly proportional to Rg*Cgs which dictates that both parameters must be minimized for better performance Effect of Rg on Current Rise Time Current Rise time, tri tri      LambertW −e      − + +Vp Gm Cgs Rg tr Gm Vgth tr Gm Iload Vp Gm Cgs Rg Vp Gm Cgs Rg tr Gm Iload+   := Gm      LambertW −e      − +Vp Cgs Rg Vgth tr Vp Cgs Rg Vp Cgs Rg− Vp Gm   /( ) Current Fall time, tif :=tif − +      ÷÷ln Vgth Vp Rg Cgs      ÷÷ln +Gm Vgth Gm Iload Vp Gm Rg Cgs
  • 8. 8 8 Effect of Rg on MOSFET Vds Rise and Fall Times VDS Rise time VDS Fall time
  • 9. 9 9 Lab Verification, tri, trv Rg = 0 Ohm, Current Rise time Rg=4.7 Ohm, Current rise time Vds Rise time Vds Rise time
  • 10. 10 10 Shoot Through in Synchronous Buck Converter 1 2 M1 L1 1 2 1 2 M2 0 C • Conduction Losses • Dynamic Losses • Distributed Parameters Effects, Rg • Shoot Through • Reverse Recovery Losses • Price 1 2 M1 L1 1 2 1 2 M2 0 C
  • 11. 11 11 SegmentInstantaneousPowerGate Threshold Voltage Gate-SourceVoltage Segments Currents Segments gate- source voltage Distributed Parameters Model Solution, Voltages and Currents
  • 12. 12 12 Distributed Rg Influence on Shoot Through Current Drain Current Gate-Source Voltage Gate threshold Voltage
  • 13. 13 13 Gate threshold voltage Vgth Drain current Gate to source voltage Distributed CGD Influence on Shoot Through Current
  • 14. 14 14 Distributed CGS Influence on Shoot Through Current Gate threshold Voltage Gate-Source Voltage Drain Current
  • 15. 15 15 Lumped parameters Model with Parasitics C L 1 2G a t e D r i v e r S y n c h r o n o u s R e c t i f i e r C o n t r o l M O S F E T Full parasitic model Added source and gate inductances only Simple model
  • 16. 16 16 Loop Inductance Effects on Shoot Through Loop Inductance Influence on Shoot Through Current -2.00E+01 0.00E+00 2.00E+01 4.00E+01 6.00E+01 8.00E+01 1.00E+02 1.20E+02 1.40E+02 1.60E+02 9.89E-06 9.90E-06 9.91E-06 9.92E-06 9.93E-06 9.94E-06 9.95E-06 9.96E-06 9.97E-06 9.98E-06 Time DrainCurrent-Amp 0.2nH 0.4nH 1.0nH 2.0nH 4.0nH 6.0nH 8.0nH 10nH NoInductor
  • 17. 17 17 Reverse Recovery Current -4.00E+01 -3.50E+01 -3.00E+01 -2.50E+01 -2.00E+01 -1.50E+01 -1.00E+01 -5.00E+00 0.00E+00 5.00E+00 9.90E-06 9.91E-06 9.91E-06 9.92E-06 9.92E-06 9.93E-06 9.93E-06 9.94E-06 Time - Seconds Current-Amp Loop Inductance 0nH – 10nH Loop Inductance Effects on Reverse Recovery
  • 18. 18 18 Parasitics, CurrentParasitics, Current rise and fall timesrise and fall times Parasitics, CurrentParasitics, Current sharingsharing Fall time as a function of the Source inductance Ls and Load Current IL Vgth=1.5, gm=30 Source Inductance Effects
  • 19. 19 19 Low Drain Current High Drain Current Source Inductance Effects trg            ÷ ÷ ÷ ÷ ÷ ÷ ÷÷LambertW − ( )−gm Kd Ls Vgth e        ÷ ÷ ÷÷ − − +Kd gm 2 Ls gm Vgth IL Kd gm 2 Ls gm Kd Ls         := Kd gm 2 Ls Kd gm 2 Ls gm Vgth IL+ − + gm Kd   ÷ ÷ ÷ ÷ ÷ ÷ ÷÷/ ( ) :=tfg −2 Ls a IL a Ls Vgth        ÷ ÷ ÷÷ ln ++a Vgth 2 IL 2 Vgth a IL a Vgth 2 PdHS := +IL2 ( )+RdsonHS ( )+1 σ ( )−TmaxHS Tamb Rpackage ∆ 0.5 Vcc IL fs ( )+tr1 tf1 Rise time Fall time Power Dissipation
  • 20. 20 20 Parasitic Resistance and Skin Effect ∆Ts Ts t Ipk i(t) :=Id +Ipk ∆        ∑ =n 1 ∞       2 Ipk ( )sin n π ∆ ( )cos n ω t n π The Fourier series for a square wave for n=20 and n=200 Frequency Spectrum -1 -0.5 0 0.5 1 1.5 2 2.5 3 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 Harmonic Amplitude Square wave synthesis Square wave Frequency Spectrum
  • 21. 21 21 Package Effects, Parasitics and Skin Effects Parasitic resistance as a function of frequency BGA 49568.17374922.8 59179.030982.095504.0 FF DS eeR −− −−= 09916.80 85494.9275894.94 F DS eR − −=
  • 22. 22 22 Skin Effect and Power Loss for HS MOSFET Conduction loss (z-axes) as a function of the fundamental switching frequency f and the silicon on-resistance for an The percentage error (z-axes) as a function of the switching frequency f and the silicon on-resistance for a BGA 5 x 5.5 mm Package SO8 Package :=Pc Il 2 ∆ ( )Rdson DC :=Pcf +Ipk 2 ∆ 2 ( )Rdson DC        ÷ ÷ ÷÷ ∑ =n 1 ∞       ÷ ÷ ÷÷ 2Ipk 2 ( )sin nπ∆ 2 ( )Rdson f n 2 π 2 :=ErrorPercent 100 ( )−Ipk 2 ∆ ( )Rdson DC Pcf Ipk 2 ∆ ( )Rdson DC
  • 23. 23 23 Package Thermals • θJC = 0.46 °C/W • Heat sinking from the top of the package • Very low footprint and profile Power Ball Grid Array BGA package is an example of the modern packages to address all the requirements of high frequency and high power densities modern DC-DC converters
  • 24. 24 24 Gate Driver Influence on Losses Uneven current distribution :=VgOpt 1 2 + Id 2 bt Vo Vin Id 2 bb      −1 Vo Vin ( )+Cint Cinb fs Rg = 6 Rg = 4 Rg = 2 Rg = 6 Rg = 4 Rg = 2 Fall Time Rise Time Optimum gate Drive voltage
  • 25. 25 25 Parasitic Drain Inductance EffectsParasitic Drain Inductance Effects • Ls is PCB trace and package inductance, Cp is MOSFET Coss and stray capacitanceLs is PCB trace and package inductance, Cp is MOSFET Coss and stray capacitance • For tr & tf >> tFor tr & tf >> tresres :: • Overstress voltage =Overstress voltage = • Power Dissipation =Power Dissipation = For 20A, 10nH, 1nF and 1MHz:For 20A, 10nH, 1nF and 1MHz: Overstress voltage = 60VoltOverstress voltage = 60Volt Power Dissipation =4W = 4Power Dissipation =4W = 4 VdrainVdrain IindIind Vin L 1 2 C 0 I 1 2 L ID 2 fs ID L C Current as a function of L and time
  • 26. 26 26 MOSFET Driver Comparison 70 72 74 76 78 80 82 84 86 88 90 0 20 40 60 80 100 120 140 Load Current Efficiency% Driver #1 Driver #2 Driver #3 Why match MOSFETs and gate drivers? • Use one VRM board with three different drivers • All MOSFETs, Inductors and Filter capacitors are identical in all three cases • The very same PCB • The same test setup and test condition on an ATE How will the efficiency curves be different? Gate Driver Influence on Losses
  • 27. 27 27 Current Density (A/m^2) Top MOSFET On Current Density (A/m^2) Bottom MOSFETs On Integration and Design Optimization
  • 28. 28 28 Conclusion • The pursuit of the perfect MOSFET must be launched simultaneously on three fronts, silicon, package and gate driver. • The optimization of the MOSFET parameters requires an extremely careful consideration of the individual parameter and its effect on all the loss mechanisms in a given power MOSFET and all of these in conjunction with each other and the effect of a given combination of these parameters on the overall performance of the device in the intended application which in our case is a synchronous buck converter
  • 29. 29 29 Thanks for your attentionThanks for your attention Questions?Questions?