SlideShare a Scribd company logo
1 of 14
Download to read offline
MIT –Biology Science Outreach
1
DNA Microarray Technology.
What is it and how is it useful?
Mandana Sassanfar and Graham Walker
Department of Biology
Massachusetts Institute of Technology
Cambridge, MA
NOTE: The following material was developed for high school audiences familiar with the structure
of DNA and the central dogma of molecular biology.
THE AUTHORS:
Mandana Sassanfar received her Ph.D from Cornell University and is currently an Instructor in
biology and the science outreach coordinator for the Department of Biology at MIT.
GrahamWalker received his PhD from the University of Illinois. He is a Professor of Biology, an
American Cancer Society Research Professor, a Howard Hughes Medical Institute Professor and the
Howard Hughes Medical Institute Undergraduate Education Program Director at MIT.
The material presented here can be used alone or as a complement to a lecture given by Eric Lander,
Professor of Biology at MIT and director of the MIT/Whitehead Genome Center, at the Howard
Hughes Medical Institute in 2002.
The lecture by Professor Eric Lander “Human Genomics: A New Guide For Medicine” is
available on a DVD produced by the Howard Hughes Medical Institute as part of the 2002 HHMI
Holiday lecture series “Scanning Life’s Matrix ; genes, proteins, and small molecules” .
The concepts covered in chapter 20-29 of lecture 3 “Human Genomics: A New Guide For
Medicine” are particularly relevant to the interactive class activity described in part D.
A free copy of the DVD lecture can be obtained through HHMI's online catalog
(http://www.hhmi.org/biointeractive/order.html)
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
2
TABLE of CONTENT
A. What students must already know:
This part provides a list of concepts that students should be familiar with in order to
comprehend DNA microarray technology and its application.
B. DNA Microarray Technology:
This part provide a description and discussion of the DNA microarray technology, how to
prepare a DNA chip, and how to use it to follow the activity of many genes simultaneously in
a cell.
C. DNA microarray technology flow chart
This color flow chart shows the various steps required to compare gene expression between 2
populations of cells using DNA microarrays
D. Interactive Class Exercise on DNA Microarray and Medicine:
This is an interactive classroom activity in which students mimic genes on a DNA chip.
Students do not need to understand the details of the DNA microarray technology to do this
activity. Rather students must be able to observe a common pattern of gene expression for
various cancer patients and decide if a specific drug would be effective for the treatment of
various patients with different subtype of cancers.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
3
A. What students must already know.
• The structure of DNA and the definition of a gene.
• The central dogma of molecular biology: DNA is transcribed into mRNA which in turn is
translated into proteins which have enzymatic activity and make things happen in the cell.
• What information one can obtain from sequencing a gene:
The sequence of the protein it encodes
Can guess the function of the gene
Can look for the presence of mutations
Can compare the gene sequence and the protein it encodes in different animal species.
Can study the evolution of genes
• Gene expression: The sequence of a gene does not give information about it’s activity. A
gene must be transcribed into mRNA to be expressed (or turned ON). The level of
expression (or activity) of a gene can therefore be studied by measuring how much
corresponding mRNA is made (transcribed) from a particular gene.
• The sequence of a gene is complementary to the sequence of its mRNA. Therefore the
mRNA can base pair (or hybridize) to the DNA strand it was copied from (template strand).
Scientists study gene expression by measuring the amount of mRNA for different genes.
• Humans are diploid and have two sets of each gene, one from Mom and one from Dad.
The two copies can be identical or different . Mutations can be inherited or accumulate
during our lifetime.
• ALL of our cells contain the exact same DNA sequence. All cells arose from a single cell
(the egg). However different type of cells in the body express different sets of genes. For
example, a liver cell expresses some of the same genes expressed in lung cells or skin cells
but also expresses genes that no other cell type expresses (liver-specific genes). As a result
liver cells look different from other cells in the body and do things that no other cell can do.
• Reversetranscriptase is an enzyme found in retroviruses. It can make DNA from RNA.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
4
B. DNA MICROARRAY TECHNOLOGY
Usefulness of the DNA microarray technology;
• Can follow the activity of MANY genes at the same time.
• Can get a lot of results fast
• Can COMPARE the activity of many genes in diseased and healthy cells
• Can categorize diseases into subgroups
Drawback:
• Too much data all at once. Can take quite a while to analyze all the results.
• The results may be too complex to interpret
• The results are not always reproducible
• The results are not always quantitative enough
• The technology is still too expensive
How to set up for a Microarray experiment. (See low diagram on page 6)
There are three parts to the experiments:
I. Preparing a DNA chip (or buying one)
II. Carrying out the reaction (isolate mRNA, process the mRNA and hybridize to DNA chip)
III. Collecting and analyzing the results
I. Preparing a DNA chip
• You must know the sequence (or part of the sequence) of all the genes you want to
study.
• You must synthesize a piece of each gene as a short single strand DNA (oligonucleotide)
about 25 bases long. This 25-base sequence will be sufficient to hybridize specifically to
a complementary sequence of RNA or DNA.
• You must fix the short DNA sequences for each gene on a tiny spot on a glass slide
(usually the DNA fragments are synthesized directly on the slide or can be linked to the
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
5
slide after synthesis). You can fit 10,000 different genes (10,000 tiny spots) on a single
slide (DNA chip). Each spot represent one single gene and has billions of copies of the
same 25-base sequence.
II. Carrying out the reaction
• You first need to choose what cells or tissue you want to study and grow them under specific
conditions.
For example you may wonder:
1. How gene expression changes when cells are irradiated with UV light or exposed to a
toxic chemical?
2. What happens to the activity of various genes in yeast cells when the cells are shifted
from 25 ºC to 37 ºC?
3. What genes are only expressed in fish embryos and not in adult fish?
4. What genes have increased expression in cancer cells compared to normal cells?
• You isolate total mRNA from the cells you are studying (both normal and treated or
cancerous cells)
• You want to be able to count how many copies of each mRNA there is in the cell in order to
determine the activity of each gene. So you need to label the mRNA (so that you can detect
it and count how much of each mRNA sequence there is). The easiest way to do that is to
reverse transcribe the mRNA into cDNA and introduce modified fluorescent bases into the
DNA. In order to distinguish later between the mRNAs coming from the normal cells and
those coming from the treated or diseased cells you label the two cDNAs populations with
different fluorescent colors (such as green and red)
• You mix the two populations of fluorescently labeled cDNAs and hybridize them to the
same DNA chip in a special chamber. You then wash away all the unbound cDNA.
III. Collecting and analyzing the results
• Using a scanner hooked to a computer you measure how much of each labeled cDNA (green
and red) is bound to each spot on the slide. The more label on a spot the more active the
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
6
gene is. BUT remember! You are comparing two populations of cells. So what counts is
not how much total cDNA binds to each spot but how much of each color bind to the same
spot. The color intensities are subtracted from each other.
• By measuring the difference of intensity between the two colors for each spot you can
determine for example if a gene is more active or less active in a cancer cell compared to a
normal cell.
• You generate a grid that uses a color code to show the change in activity for each gene
• You try to figure out if there is a pattern in gene expression that is clearly visible, and
reproducible.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
7
C. DNA microarray technology flow chart
(downloaded from http://www.biologie.ens.fr/microarrays.html
DNA Microarray Methodology - Flash Animation by A Malcolm Campbell
http://www.bio.davidson.edu/courses/genomics/chip/chip.html
Anatomy of a Comparative Gene Expression Study by Jeremy Buhler
http://www.cs.wustl.edu/~jbuhler//research/array/
Additional reference:
“Chip Critics Countered” in The Scientist, August 25, 2003 pp 30-31.
RNA Extraction
PCR
Hybridization Read Out
Data analysis
ORF spotting
Reverse
transcription
of mRNAs
Yeast cultures
25 ºC 37 ºC
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
8
D. Interactive Class Exercise on DNA Microarray and Medicine
Note to teachers.
The exercise does not require students to know the details of the DNA microarray technology but
rather to understand what type of data one gets from DNA microarray experiments and how this
data can be useful in the diagnosis and treatment of human diseases.
Goal of this exercise:
To make students realize that the power of DNA microarray technology in medical applications
relies principally on observing a common change in gene expression pattern in patients with the
same type of diseases. Students will have to recognize common patterns of gene expression and
realize the usefulness of such observation. To simplify the exercise you can decrease the number of
genes studied.
You can also provide additional guidance to the students and ask them to reorder the genes in a
specific pattern to facilitate the observation.
More advanced students may think about the function of some of the genes whose activity are
required to prevent cancer or whose activity are required to develop cancer.
Brief overview:
Students will mimic individual genes on DNA chips. The number of genes on a chip will depend on
the class size. Each DNA chip will be used to test the gene expression profile for one cancer
patient, and should contain at least 10 genes to make it significant.
• If the gene is ON (or increased gene activity) the student will stand up (or raise their hand).
• If the gene is OFF (or decreased gene activity) the student will sit down.
In order for students to observe a specific pattern of gene expression associated with a disease, there
need to be at least 4 DNA chips, one for each cancer patient. Students representing genes on a
DNA chip will each receive a card that indicates the state of their gene (ON [black circle] or OFF
[white circle]) for individual patients. Students representing genes will line up (with a chair behind
them). The students will act out gene expression for the first patient, then the next and so on.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
9
The pattern of gene expression must be recorded. For this exercise students can be divided into
those representing genes and those recording and analyzing the data, or all the students can both
represent genes and do the analysis.
Example:
Student A has a card labeled GENE 1 indicating the state of GENE 1 in 5 different patients.
GENE 1
Patient # 1: OFF (SIT)
Patient # 2: OFF (SIT)
Patient # 3: ON (STAND)
Patient # 4: OFF (SIT)
Patient # 5: ON (STAND)
Students participating in the exercise and those observing should realize that
• Some genes are always ON, some are always OFF
• Some genes are either ON or OFF depending on the patient
• Some patients have the same or a very similar gene expression pattern
The examples shown below can be modified at will and you can come up with your own number of
genes and patterns of gene expression.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
10
EXAMPLE OF A RESULT WITH 10 STUDENTS (10 GENES) and 5 CANCER PATIENTS (5
DNA CHIPS)
GENE 1 2 3 4 5 6 7 8 9 10
Patient #1 Chip 1
Patient # 2 Chip 2
Patient # 3 Chip 3
Patient # 4 Chip 4
Patient # 5 Chip 5
QUESTIONS:
• Which genes are always expressed? What might be their function? How would you test
that?
• Which genes are never expressed? What might be their function?
• Of the 10 genes studied, is there any which might potentially play a direct role in cancer?
How would you test that?
• CAN YOU SEE SIMILARITIES BETWEEN PATIENTS?
NOTE: Some students may be very fast at identifying patterns. Others may need a more systematic
approach: In order to observe a clear gene expression pattern that links various cancer patients,
students need to group genes that are always ON or OFF together. Student should create a table that
lists, for each patient, which genes are ON and which genes are off in numerical order (see table
below). This process mimics, at a very simple level, what a computer program does when
processing simultaneously the results for thousand of genes and several dozen patients.
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
11
Patient # 1 2 3 4 5
Genes ON 2 2 1 2 1
4 3 3 3 4
5 4 4 4 6
8 8 5 8 7
10 6 10 10
7
10
Genes OFF 1 1 2 1 2
3 5 8 5 3
6 6 9 6 5
7 7 7 8
9 9 9 9
10
• Based on the results presented in the table you can GROUP BOTH PATIENTS AND
GENES to show the two main patterns of gene expression.
GENE 1 6 7 9 2 8 4 10 3 5
Patient # 1
Patient # 2
Patient # 4
Patient # 3
Patient # 5
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
12
1. Is the function of gene 4 potentially required for cancer? What additional experiment do you
need to do to test this?
2. What about gene 9?
3. Are the patterns of expression for genes 3, 5 and 10 relevant?
EXERCISE:
A patient with cancer A has the following gene expression pattern. (You can increase or decrease
the number of genes to fit your class size)
Gene # 1 2 3 4 5 6 7 8 9 10
This patient’s cancer responds very well to Gleevec, a drug recently approved by the FDA for the
treatment of chronic myeloid leukemia, a rare type of leukemia. The drug has lower side effects
and toxicity compared to standard cancer chemotherapy. Doctors are therefore wondering which
other type of cancers would respond well to treatment with Gleevec. Rather than randomly testing
the drug on other types of cancers, the doctors have decided to use DNA microarray experiments to
predict which cancers are more likely to be susceptible to the drug.
The doctors test the tumors of five cancer patients and find the following results (see next page).
1. Can you tell from these preliminary results which type of cancer would be most likely to respond
to Gleevec?
2. Are the results clear enough?
3. How would you improve the accuracy of your predictions?
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
13
RESULTS OF DNA MICROARRAY EXPERIMENTS
Gene # 1 2 3 4 5 6 7 8 9 10
Patient #1
Patient #2
Patient #3
Patient #4
Patient # 5
Gene # 1 2 3 4 5 6 7 8 9 10
Cancer A
• As a physician, would you conclude with confidence which patient may be responsive to
Gleevec?
• Which patients, if any, would you treat with Gleevec?
Copyright 2003 MIT Dept of Biology
MIT –Biology Science Outreach
14
USE THESE BLANK ARRAYS TO DESIGN YOUR OWN EXERCISE
Gene # 1 2 3 4 5 6 7 8 9 10
Patient #1
Patient #2
Patient #3
Patient #4
Patient # 5
Patient # 6
Copyright 2003 MIT Dept of Biology

More Related Content

What's hot

Human genome, genetic mapping, cloning, and cryonics
Human genome, genetic mapping, cloning, and cryonicsHuman genome, genetic mapping, cloning, and cryonics
Human genome, genetic mapping, cloning, and cryonicsEemlliuq Agalalan
 
DNA Microarray introdution and application
DNA Microarray introdution and applicationDNA Microarray introdution and application
DNA Microarray introdution and applicationNeeraj Sharma
 
Transcriptomics and metabolomics
Transcriptomics and metabolomicsTranscriptomics and metabolomics
Transcriptomics and metabolomicsSukhjinder Singh
 
Transcriptome Analysis & Applications
Transcriptome Analysis & ApplicationsTranscriptome Analysis & Applications
Transcriptome Analysis & Applications1010Genome Pte Ltd
 
Functional genomics, and tools
Functional genomics, and toolsFunctional genomics, and tools
Functional genomics, and toolsKAUSHAL SAHU
 
introduction to Genomics
introduction to Genomics introduction to Genomics
introduction to Genomics IqraSami3
 
Comparative transcriptomics
Comparative transcriptomicsComparative transcriptomics
Comparative transcriptomicsSayak Ghosh
 
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICS
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICSSTRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICS
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICSSHEETHUMOLKS
 
Recombinant DNA Technology
Recombinant DNA TechnologyRecombinant DNA Technology
Recombinant DNA TechnologyPrasenjit Mitra
 
DNA Microarray and its Methodology
DNA Microarray and its MethodologyDNA Microarray and its Methodology
DNA Microarray and its MethodologyAkanksha Bisht
 
Dna chips and microarrays
Dna chips and microarraysDna chips and microarrays
Dna chips and microarrayssidath sanjeewa
 
Applications of microarray
Applications of microarrayApplications of microarray
Applications of microarrayprateek kumar
 
MASSIVELY PARELLEL SIGNATURE SEQUENCING
MASSIVELY PARELLEL SIGNATURE SEQUENCINGMASSIVELY PARELLEL SIGNATURE SEQUENCING
MASSIVELY PARELLEL SIGNATURE SEQUENCINGAashish Patel
 

What's hot (20)

Human genome, genetic mapping, cloning, and cryonics
Human genome, genetic mapping, cloning, and cryonicsHuman genome, genetic mapping, cloning, and cryonics
Human genome, genetic mapping, cloning, and cryonics
 
DNA Microarray introdution and application
DNA Microarray introdution and applicationDNA Microarray introdution and application
DNA Microarray introdution and application
 
Transcriptomics and metabolomics
Transcriptomics and metabolomicsTranscriptomics and metabolomics
Transcriptomics and metabolomics
 
Transcriptome Analysis & Applications
Transcriptome Analysis & ApplicationsTranscriptome Analysis & Applications
Transcriptome Analysis & Applications
 
Types of genomics ppt
Types of genomics pptTypes of genomics ppt
Types of genomics ppt
 
Functional genomics, and tools
Functional genomics, and toolsFunctional genomics, and tools
Functional genomics, and tools
 
introduction to Genomics
introduction to Genomics introduction to Genomics
introduction to Genomics
 
Genome sequencing
Genome sequencingGenome sequencing
Genome sequencing
 
Comparative transcriptomics
Comparative transcriptomicsComparative transcriptomics
Comparative transcriptomics
 
Microarray technology
Microarray technologyMicroarray technology
Microarray technology
 
Thesis ppt
Thesis pptThesis ppt
Thesis ppt
 
Genomics types
Genomics typesGenomics types
Genomics types
 
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICS
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICSSTRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICS
STRUCTURAL GENOMICS, FUNCTIONAL GENOMICS, COMPARATIVE GENOMICS
 
Dna microarray mehran- u of toronto
Dna microarray  mehran- u of torontoDna microarray  mehran- u of toronto
Dna microarray mehran- u of toronto
 
Recombinant DNA Technology
Recombinant DNA TechnologyRecombinant DNA Technology
Recombinant DNA Technology
 
DNA Microarray and its Methodology
DNA Microarray and its MethodologyDNA Microarray and its Methodology
DNA Microarray and its Methodology
 
Microarray
MicroarrayMicroarray
Microarray
 
Dna chips and microarrays
Dna chips and microarraysDna chips and microarrays
Dna chips and microarrays
 
Applications of microarray
Applications of microarrayApplications of microarray
Applications of microarray
 
MASSIVELY PARELLEL SIGNATURE SEQUENCING
MASSIVELY PARELLEL SIGNATURE SEQUENCINGMASSIVELY PARELLEL SIGNATURE SEQUENCING
MASSIVELY PARELLEL SIGNATURE SEQUENCING
 

Viewers also liked

Ռադիոհեռարձակում, երկրորդ փուլ
Ռադիոհեռարձակում, երկրորդ փուլՌադիոհեռարձակում, երկրորդ փուլ
Ռադիոհեռարձակում, երկրորդ փուլNune Aghajanyan
 
Պուլիտցերյան մրցանակ
Պուլիտցերյան մրցանակՊուլիտցերյան մրցանակ
Պուլիտցերյան մրցանակNune Aghajanyan
 
Լատինական Ամերիկայի լրագրության պատմություն
Լատինական Ամերիկայի լրագրության պատմությունԼատինական Ամերիկայի լրագրության պատմություն
Լատինական Ամերիկայի լրագրության պատմությունNune Aghajanyan
 
Արաբական լրատվամիջոցների պատմությունը
Արաբական լրատվամիջոցների պատմությունըԱրաբական լրատվամիջոցների պատմությունը
Արաբական լրատվամիջոցների պատմությունըNune Aghajanyan
 
Время корпоративных венчурных фондов
Время корпоративных венчурных фондовВремя корпоративных венчурных фондов
Время корпоративных венчурных фондовDmitry Pokhlebkin
 
Suture1aim.net arabic text
Suture1aim.net arabic textSuture1aim.net arabic text
Suture1aim.net arabic textAbdo Elnahas
 
Dualitas gelombang partikel 1
Dualitas gelombang partikel 1Dualitas gelombang partikel 1
Dualitas gelombang partikel 1Theopilia Sagala
 
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)Prinsip prinsip etika lingkungan hidup_theopilia(LILI)
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)Theopilia Sagala
 

Viewers also liked (14)

Ռադիոհեռարձակում, երկրորդ փուլ
Ռադիոհեռարձակում, երկրորդ փուլՌադիոհեռարձակում, երկրորդ փուլ
Ռադիոհեռարձակում, երկրորդ փուլ
 
Պուլիտցերյան մրցանակ
Պուլիտցերյան մրցանակՊուլիտցերյան մրցանակ
Պուլիտցերյան մրցանակ
 
Լատինական Ամերիկայի լրագրության պատմություն
Լատինական Ամերիկայի լրագրության պատմությունԼատինական Ամերիկայի լրագրության պատմություն
Լատինական Ամերիկայի լրագրության պատմություն
 
Global_teo_opilia(lili)
Global_teo_opilia(lili)Global_teo_opilia(lili)
Global_teo_opilia(lili)
 
Արաբական լրատվամիջոցների պատմությունը
Արաբական լրատվամիջոցների պատմությունըԱրաբական լրատվամիջոցների պատմությունը
Արաբական լրատվամիջոցների պատմությունը
 
Host Nation Support
Host Nation SupportHost Nation Support
Host Nation Support
 
Smrtwknd new
Smrtwknd newSmrtwknd new
Smrtwknd new
 
Время корпоративных венчурных фондов
Время корпоративных венчурных фондовВремя корпоративных венчурных фондов
Время корпоративных венчурных фондов
 
Suture1aim.net arabic text
Suture1aim.net arabic textSuture1aim.net arabic text
Suture1aim.net arabic text
 
sinar -x
sinar -xsinar -x
sinar -x
 
Dualitas gelombang partikel 1
Dualitas gelombang partikel 1Dualitas gelombang partikel 1
Dualitas gelombang partikel 1
 
Ketdakpastian heisenberg
Ketdakpastian  heisenbergKetdakpastian  heisenberg
Ketdakpastian heisenberg
 
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)Prinsip prinsip etika lingkungan hidup_theopilia(LILI)
Prinsip prinsip etika lingkungan hidup_theopilia(LILI)
 
Ekosistem ppt
Ekosistem pptEkosistem ppt
Ekosistem ppt
 

Similar to Dn amicroarray

DNA microarray ppt
DNA microarray pptDNA microarray ppt
DNA microarray pptMohit Kohli
 
DNA microarray
DNA microarrayDNA microarray
DNA microarrayS Rasouli
 
Toxicogenomics: microarray
Toxicogenomics: microarrayToxicogenomics: microarray
Toxicogenomics: microarrayEden D'souza
 
Bioinformatics group presentation
Bioinformatics group presentationBioinformatics group presentation
Bioinformatics group presentationNaeem Ahmed
 
Bioinformatics group presentation
Bioinformatics group presentationBioinformatics group presentation
Bioinformatics group presentationNaeem Ahmed
 
Microarray technology.pptx
Microarray technology.pptxMicroarray technology.pptx
Microarray technology.pptxSUMAN92253
 
DNA micro array by kk sahu
DNA micro array by kk sahuDNA micro array by kk sahu
DNA micro array by kk sahuKAUSHAL SAHU
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarrayPRABAL SINGH
 
Chapter 20 ppt
Chapter 20 pptChapter 20 ppt
Chapter 20 pptrehman2009
 
DNA MICROARRAY TECHNOLOGY FOR PRINCIPLE OF DRUG DISCOVERY
DNA  MICROARRAY  TECHNOLOGY FOR  PRINCIPLE OF DRUG DISCOVERYDNA  MICROARRAY  TECHNOLOGY FOR  PRINCIPLE OF DRUG DISCOVERY
DNA MICROARRAY TECHNOLOGY FOR PRINCIPLE OF DRUG DISCOVERYDhanashri Prakash Sonavane
 
human genome project by varaprasad
human genome project by varaprasadhuman genome project by varaprasad
human genome project by varaprasadVaraprasad Padala
 
Microarray and dna chips for transcriptome study
Microarray and dna chips for transcriptome studyMicroarray and dna chips for transcriptome study
Microarray and dna chips for transcriptome studyBia Khan
 
Third Generation Sequencing
Third Generation Sequencing Third Generation Sequencing
Third Generation Sequencing priyanka raviraj
 

Similar to Dn amicroarray (20)

DNA Microarray
DNA MicroarrayDNA Microarray
DNA Microarray
 
DNA microarray ppt
DNA microarray pptDNA microarray ppt
DNA microarray ppt
 
DNA microarray
DNA microarrayDNA microarray
DNA microarray
 
RapportHicham
RapportHichamRapportHicham
RapportHicham
 
Toxicogenomics: microarray
Toxicogenomics: microarrayToxicogenomics: microarray
Toxicogenomics: microarray
 
Bioinformatics group presentation
Bioinformatics group presentationBioinformatics group presentation
Bioinformatics group presentation
 
Bioinformatics group presentation
Bioinformatics group presentationBioinformatics group presentation
Bioinformatics group presentation
 
Microarray technology.pptx
Microarray technology.pptxMicroarray technology.pptx
Microarray technology.pptx
 
DNA micro array by kk sahu
DNA micro array by kk sahuDNA micro array by kk sahu
DNA micro array by kk sahu
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarray
 
Chapter 20 ppt
Chapter 20 pptChapter 20 ppt
Chapter 20 ppt
 
BIOTECHNOLOGY PPT.pptx
BIOTECHNOLOGY PPT.pptxBIOTECHNOLOGY PPT.pptx
BIOTECHNOLOGY PPT.pptx
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
DNA MICROARRAY TECHNOLOGY FOR PRINCIPLE OF DRUG DISCOVERY
DNA  MICROARRAY  TECHNOLOGY FOR  PRINCIPLE OF DRUG DISCOVERYDNA  MICROARRAY  TECHNOLOGY FOR  PRINCIPLE OF DRUG DISCOVERY
DNA MICROARRAY TECHNOLOGY FOR PRINCIPLE OF DRUG DISCOVERY
 
human genome project by varaprasad
human genome project by varaprasadhuman genome project by varaprasad
human genome project by varaprasad
 
Microarray and dna chips for transcriptome study
Microarray and dna chips for transcriptome studyMicroarray and dna chips for transcriptome study
Microarray and dna chips for transcriptome study
 
Microarray mostafa
Microarray mostafaMicroarray mostafa
Microarray mostafa
 
microarrary
microarrarymicroarrary
microarrary
 
Third Generation Sequencing
Third Generation Sequencing Third Generation Sequencing
Third Generation Sequencing
 

Recently uploaded

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayZachary Labe
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10ROLANARIBATO3
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
 

Recently uploaded (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Welcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work DayWelcome to GFDL for Take Your Child To Work Day
Welcome to GFDL for Take Your Child To Work Day
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
 

Dn amicroarray

  • 1. MIT –Biology Science Outreach 1 DNA Microarray Technology. What is it and how is it useful? Mandana Sassanfar and Graham Walker Department of Biology Massachusetts Institute of Technology Cambridge, MA NOTE: The following material was developed for high school audiences familiar with the structure of DNA and the central dogma of molecular biology. THE AUTHORS: Mandana Sassanfar received her Ph.D from Cornell University and is currently an Instructor in biology and the science outreach coordinator for the Department of Biology at MIT. GrahamWalker received his PhD from the University of Illinois. He is a Professor of Biology, an American Cancer Society Research Professor, a Howard Hughes Medical Institute Professor and the Howard Hughes Medical Institute Undergraduate Education Program Director at MIT. The material presented here can be used alone or as a complement to a lecture given by Eric Lander, Professor of Biology at MIT and director of the MIT/Whitehead Genome Center, at the Howard Hughes Medical Institute in 2002. The lecture by Professor Eric Lander “Human Genomics: A New Guide For Medicine” is available on a DVD produced by the Howard Hughes Medical Institute as part of the 2002 HHMI Holiday lecture series “Scanning Life’s Matrix ; genes, proteins, and small molecules” . The concepts covered in chapter 20-29 of lecture 3 “Human Genomics: A New Guide For Medicine” are particularly relevant to the interactive class activity described in part D. A free copy of the DVD lecture can be obtained through HHMI's online catalog (http://www.hhmi.org/biointeractive/order.html) Copyright 2003 MIT Dept of Biology
  • 2. MIT –Biology Science Outreach 2 TABLE of CONTENT A. What students must already know: This part provides a list of concepts that students should be familiar with in order to comprehend DNA microarray technology and its application. B. DNA Microarray Technology: This part provide a description and discussion of the DNA microarray technology, how to prepare a DNA chip, and how to use it to follow the activity of many genes simultaneously in a cell. C. DNA microarray technology flow chart This color flow chart shows the various steps required to compare gene expression between 2 populations of cells using DNA microarrays D. Interactive Class Exercise on DNA Microarray and Medicine: This is an interactive classroom activity in which students mimic genes on a DNA chip. Students do not need to understand the details of the DNA microarray technology to do this activity. Rather students must be able to observe a common pattern of gene expression for various cancer patients and decide if a specific drug would be effective for the treatment of various patients with different subtype of cancers. Copyright 2003 MIT Dept of Biology
  • 3. MIT –Biology Science Outreach 3 A. What students must already know. • The structure of DNA and the definition of a gene. • The central dogma of molecular biology: DNA is transcribed into mRNA which in turn is translated into proteins which have enzymatic activity and make things happen in the cell. • What information one can obtain from sequencing a gene: The sequence of the protein it encodes Can guess the function of the gene Can look for the presence of mutations Can compare the gene sequence and the protein it encodes in different animal species. Can study the evolution of genes • Gene expression: The sequence of a gene does not give information about it’s activity. A gene must be transcribed into mRNA to be expressed (or turned ON). The level of expression (or activity) of a gene can therefore be studied by measuring how much corresponding mRNA is made (transcribed) from a particular gene. • The sequence of a gene is complementary to the sequence of its mRNA. Therefore the mRNA can base pair (or hybridize) to the DNA strand it was copied from (template strand). Scientists study gene expression by measuring the amount of mRNA for different genes. • Humans are diploid and have two sets of each gene, one from Mom and one from Dad. The two copies can be identical or different . Mutations can be inherited or accumulate during our lifetime. • ALL of our cells contain the exact same DNA sequence. All cells arose from a single cell (the egg). However different type of cells in the body express different sets of genes. For example, a liver cell expresses some of the same genes expressed in lung cells or skin cells but also expresses genes that no other cell type expresses (liver-specific genes). As a result liver cells look different from other cells in the body and do things that no other cell can do. • Reversetranscriptase is an enzyme found in retroviruses. It can make DNA from RNA. Copyright 2003 MIT Dept of Biology
  • 4. MIT –Biology Science Outreach 4 B. DNA MICROARRAY TECHNOLOGY Usefulness of the DNA microarray technology; • Can follow the activity of MANY genes at the same time. • Can get a lot of results fast • Can COMPARE the activity of many genes in diseased and healthy cells • Can categorize diseases into subgroups Drawback: • Too much data all at once. Can take quite a while to analyze all the results. • The results may be too complex to interpret • The results are not always reproducible • The results are not always quantitative enough • The technology is still too expensive How to set up for a Microarray experiment. (See low diagram on page 6) There are three parts to the experiments: I. Preparing a DNA chip (or buying one) II. Carrying out the reaction (isolate mRNA, process the mRNA and hybridize to DNA chip) III. Collecting and analyzing the results I. Preparing a DNA chip • You must know the sequence (or part of the sequence) of all the genes you want to study. • You must synthesize a piece of each gene as a short single strand DNA (oligonucleotide) about 25 bases long. This 25-base sequence will be sufficient to hybridize specifically to a complementary sequence of RNA or DNA. • You must fix the short DNA sequences for each gene on a tiny spot on a glass slide (usually the DNA fragments are synthesized directly on the slide or can be linked to the Copyright 2003 MIT Dept of Biology
  • 5. MIT –Biology Science Outreach 5 slide after synthesis). You can fit 10,000 different genes (10,000 tiny spots) on a single slide (DNA chip). Each spot represent one single gene and has billions of copies of the same 25-base sequence. II. Carrying out the reaction • You first need to choose what cells or tissue you want to study and grow them under specific conditions. For example you may wonder: 1. How gene expression changes when cells are irradiated with UV light or exposed to a toxic chemical? 2. What happens to the activity of various genes in yeast cells when the cells are shifted from 25 ºC to 37 ºC? 3. What genes are only expressed in fish embryos and not in adult fish? 4. What genes have increased expression in cancer cells compared to normal cells? • You isolate total mRNA from the cells you are studying (both normal and treated or cancerous cells) • You want to be able to count how many copies of each mRNA there is in the cell in order to determine the activity of each gene. So you need to label the mRNA (so that you can detect it and count how much of each mRNA sequence there is). The easiest way to do that is to reverse transcribe the mRNA into cDNA and introduce modified fluorescent bases into the DNA. In order to distinguish later between the mRNAs coming from the normal cells and those coming from the treated or diseased cells you label the two cDNAs populations with different fluorescent colors (such as green and red) • You mix the two populations of fluorescently labeled cDNAs and hybridize them to the same DNA chip in a special chamber. You then wash away all the unbound cDNA. III. Collecting and analyzing the results • Using a scanner hooked to a computer you measure how much of each labeled cDNA (green and red) is bound to each spot on the slide. The more label on a spot the more active the Copyright 2003 MIT Dept of Biology
  • 6. MIT –Biology Science Outreach 6 gene is. BUT remember! You are comparing two populations of cells. So what counts is not how much total cDNA binds to each spot but how much of each color bind to the same spot. The color intensities are subtracted from each other. • By measuring the difference of intensity between the two colors for each spot you can determine for example if a gene is more active or less active in a cancer cell compared to a normal cell. • You generate a grid that uses a color code to show the change in activity for each gene • You try to figure out if there is a pattern in gene expression that is clearly visible, and reproducible. Copyright 2003 MIT Dept of Biology
  • 7. MIT –Biology Science Outreach 7 C. DNA microarray technology flow chart (downloaded from http://www.biologie.ens.fr/microarrays.html DNA Microarray Methodology - Flash Animation by A Malcolm Campbell http://www.bio.davidson.edu/courses/genomics/chip/chip.html Anatomy of a Comparative Gene Expression Study by Jeremy Buhler http://www.cs.wustl.edu/~jbuhler//research/array/ Additional reference: “Chip Critics Countered” in The Scientist, August 25, 2003 pp 30-31. RNA Extraction PCR Hybridization Read Out Data analysis ORF spotting Reverse transcription of mRNAs Yeast cultures 25 ºC 37 ºC Copyright 2003 MIT Dept of Biology
  • 8. MIT –Biology Science Outreach 8 D. Interactive Class Exercise on DNA Microarray and Medicine Note to teachers. The exercise does not require students to know the details of the DNA microarray technology but rather to understand what type of data one gets from DNA microarray experiments and how this data can be useful in the diagnosis and treatment of human diseases. Goal of this exercise: To make students realize that the power of DNA microarray technology in medical applications relies principally on observing a common change in gene expression pattern in patients with the same type of diseases. Students will have to recognize common patterns of gene expression and realize the usefulness of such observation. To simplify the exercise you can decrease the number of genes studied. You can also provide additional guidance to the students and ask them to reorder the genes in a specific pattern to facilitate the observation. More advanced students may think about the function of some of the genes whose activity are required to prevent cancer or whose activity are required to develop cancer. Brief overview: Students will mimic individual genes on DNA chips. The number of genes on a chip will depend on the class size. Each DNA chip will be used to test the gene expression profile for one cancer patient, and should contain at least 10 genes to make it significant. • If the gene is ON (or increased gene activity) the student will stand up (or raise their hand). • If the gene is OFF (or decreased gene activity) the student will sit down. In order for students to observe a specific pattern of gene expression associated with a disease, there need to be at least 4 DNA chips, one for each cancer patient. Students representing genes on a DNA chip will each receive a card that indicates the state of their gene (ON [black circle] or OFF [white circle]) for individual patients. Students representing genes will line up (with a chair behind them). The students will act out gene expression for the first patient, then the next and so on. Copyright 2003 MIT Dept of Biology
  • 9. MIT –Biology Science Outreach 9 The pattern of gene expression must be recorded. For this exercise students can be divided into those representing genes and those recording and analyzing the data, or all the students can both represent genes and do the analysis. Example: Student A has a card labeled GENE 1 indicating the state of GENE 1 in 5 different patients. GENE 1 Patient # 1: OFF (SIT) Patient # 2: OFF (SIT) Patient # 3: ON (STAND) Patient # 4: OFF (SIT) Patient # 5: ON (STAND) Students participating in the exercise and those observing should realize that • Some genes are always ON, some are always OFF • Some genes are either ON or OFF depending on the patient • Some patients have the same or a very similar gene expression pattern The examples shown below can be modified at will and you can come up with your own number of genes and patterns of gene expression. Copyright 2003 MIT Dept of Biology
  • 10. MIT –Biology Science Outreach 10 EXAMPLE OF A RESULT WITH 10 STUDENTS (10 GENES) and 5 CANCER PATIENTS (5 DNA CHIPS) GENE 1 2 3 4 5 6 7 8 9 10 Patient #1 Chip 1 Patient # 2 Chip 2 Patient # 3 Chip 3 Patient # 4 Chip 4 Patient # 5 Chip 5 QUESTIONS: • Which genes are always expressed? What might be their function? How would you test that? • Which genes are never expressed? What might be their function? • Of the 10 genes studied, is there any which might potentially play a direct role in cancer? How would you test that? • CAN YOU SEE SIMILARITIES BETWEEN PATIENTS? NOTE: Some students may be very fast at identifying patterns. Others may need a more systematic approach: In order to observe a clear gene expression pattern that links various cancer patients, students need to group genes that are always ON or OFF together. Student should create a table that lists, for each patient, which genes are ON and which genes are off in numerical order (see table below). This process mimics, at a very simple level, what a computer program does when processing simultaneously the results for thousand of genes and several dozen patients. Copyright 2003 MIT Dept of Biology
  • 11. MIT –Biology Science Outreach 11 Patient # 1 2 3 4 5 Genes ON 2 2 1 2 1 4 3 3 3 4 5 4 4 4 6 8 8 5 8 7 10 6 10 10 7 10 Genes OFF 1 1 2 1 2 3 5 8 5 3 6 6 9 6 5 7 7 7 8 9 9 9 9 10 • Based on the results presented in the table you can GROUP BOTH PATIENTS AND GENES to show the two main patterns of gene expression. GENE 1 6 7 9 2 8 4 10 3 5 Patient # 1 Patient # 2 Patient # 4 Patient # 3 Patient # 5 Copyright 2003 MIT Dept of Biology
  • 12. MIT –Biology Science Outreach 12 1. Is the function of gene 4 potentially required for cancer? What additional experiment do you need to do to test this? 2. What about gene 9? 3. Are the patterns of expression for genes 3, 5 and 10 relevant? EXERCISE: A patient with cancer A has the following gene expression pattern. (You can increase or decrease the number of genes to fit your class size) Gene # 1 2 3 4 5 6 7 8 9 10 This patient’s cancer responds very well to Gleevec, a drug recently approved by the FDA for the treatment of chronic myeloid leukemia, a rare type of leukemia. The drug has lower side effects and toxicity compared to standard cancer chemotherapy. Doctors are therefore wondering which other type of cancers would respond well to treatment with Gleevec. Rather than randomly testing the drug on other types of cancers, the doctors have decided to use DNA microarray experiments to predict which cancers are more likely to be susceptible to the drug. The doctors test the tumors of five cancer patients and find the following results (see next page). 1. Can you tell from these preliminary results which type of cancer would be most likely to respond to Gleevec? 2. Are the results clear enough? 3. How would you improve the accuracy of your predictions? Copyright 2003 MIT Dept of Biology
  • 13. MIT –Biology Science Outreach 13 RESULTS OF DNA MICROARRAY EXPERIMENTS Gene # 1 2 3 4 5 6 7 8 9 10 Patient #1 Patient #2 Patient #3 Patient #4 Patient # 5 Gene # 1 2 3 4 5 6 7 8 9 10 Cancer A • As a physician, would you conclude with confidence which patient may be responsive to Gleevec? • Which patients, if any, would you treat with Gleevec? Copyright 2003 MIT Dept of Biology
  • 14. MIT –Biology Science Outreach 14 USE THESE BLANK ARRAYS TO DESIGN YOUR OWN EXERCISE Gene # 1 2 3 4 5 6 7 8 9 10 Patient #1 Patient #2 Patient #3 Patient #4 Patient # 5 Patient # 6 Copyright 2003 MIT Dept of Biology