SlideShare a Scribd company logo
1 of 17
Product specification December 1990
File under Integrated Circuits, IC06
INTEGRATED CIRCUITS
By- Sanju Sah
St. Xavier’s college, Maitighar
74HC/HCT4051
8-channel analog
multiplexer/demultiplexer
For a complete data sheet, please also download:
 The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
 The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
 The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
Philips Semiconductors Product specification
8-channel analog
multiplexer/demultiplexer
74HC/HCT4051
FEATURES
 Wide analog input voltage range:  5 V.
 Low “ON” resistance:
80  (typ.) at VCC  VEE = 4.5 V
70  (typ.) at VCC  VEE = 6.0 V
60  (typ.) at VCC  VEE = 9.0 V
 Logic level translation:
to enable 5 V logic to communicate with  5 V analog
signals
 Typical “break before make” built in
 Output capability: non-standard
 ICC category: MSI
GENERAL DESCRIPTION
The 74HC/HCT4051 are high-speed Si-gate CMOS
devices and are pin compatible with the “4051” of the
“4000B” series. They are specified in compliance with
JEDEC standard no. 7A.
The 74HC/HCT4051 are 8-channel analog
multiplexers/demultiplexers with three digital selectinputs
(S0 to S2), an active LOW enable input (E), eight
independent inputs/outputs (Y0 to Y7) and a common
input/output (Z).
With E LOW, one of the eight switches is selected (low
impedance ON-state) by S0 to S2. With E HIGH, all
switches are in the high impedance OFF-state,
independent of S0 to S2.
VCC and GND are the supply voltage pins for the digital
control inputs (S0 to S2, and E). The VCC to GND ranges
are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The
analog inputs/outputs (Y0 to Y7, and Z) can swing between
VCC as a positive limit and VEE as a negative limit.
VCC  VEE may not exceed 10.0 V.
For operation as a digital multiplexer/demultiplexer, VEE is
connected to GND (typically ground).
QUICK REFERENCE DATA
VEE = GND = 0 V; Tamb = 25 C; tr = tf = 6 ns
Notes
1. CPD is used to determine the dynamic power dissipation (PD in W):
CC
PD = CPD  VCC
2  fi +  (CL + CS  V 2  fo } where:
fi = input frequency in MHz
fo = output frequency in MHz
 { (CL + CS VCC
2  fo } = sum of outputs
CL = output load capacitance in pF
CS = max. switch capacitance in pF
VCC = supply voltage in V
2. For HC the condition is VI = GND to VCC
For HCT the condition is VI = GND to VCC  1.5 V
SYMBOL PARAMETER CONDITIONS
TYPICAL
UNIT
HC HCT
tPZH/ tPZL turn “ON” time
E to Vos
Sn to Vos
CL = 15 pF; RL =1 k;
VCC = 5 V 22
20
22
24
ns
ns
tPHZ/ tPLZ turn “OFF” time
E to Vos
Sn to Vos
18
19
16
20
ns
ns
CI input capacitance 3.5 3.5 pF
CPD power dissipation capacitance per switch notes 1 and 2 25 25 pF
CS max. switch capacitance
independent (Y)
common (Z)
5
25
5
25
pF
pF
December1990 2
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
ORDERING INFORMATION
See “74HC/HCT/HCU/HCMOS Logic Package Information”.
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
3 Z common input/output
6 E enable input (active LOW)
7 VEE negative supply voltage
8 GND ground (0 V)
11, 10, 9 S0 to S2 select inputs
13, 14, 15, 12, 1, 5, 2, 4 Y0 to Y7 independent inputs/outputs
16 VCC positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
December1990 3
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
Fig.4 Functional diagram.
APPLICATIONS
 Analog multiplexing and demultiplexing
 Digital multiplexing and demultiplexing
 Signalgating
FUNCTIONTABLE
Notes
1. H = HIGH voltage level
L = LOW voltage level
X = don’t care
INPUTS channel
ON
E S2 S1 S0
L L L L Y0  Z
L L L H Y1  Z
L L H L Y2  Z
L L H H Y3  Z
L H L L Y4  Z
L H L H Y5  Z
L H H L Y6  Z
L H H H Y7  Z
H X X X none
Fig.5 Schematic diagram (one switch).
December1990 4
Philips Semiconductors
December1990 5
Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to VEE = GND (ground=0 V)
Note to ratings
1. To avoid drawing VCC current out of terminal Z, when switch current flows in terminals Yn, the voltage drop across
the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no VCC current will flow out
of terminals Yn. In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may
not exceed VCC or VEE.
RECOMMENDED OPERATING CONDITIONS
SYMBOL PARAMETER MIN. MAX. UNIT CONDITIONS
VCC DC supply voltage 0.5 +11.0 V
IIK DC digital input diode current 20 mA for VI < 0.5 V or VI > VCC + 0.5 V
ISK DC switch diode current 20 mA for VS < 0.5 V or VS > VCC + 0.5 V
IS DC switch current 25 mA for 0.5 V < VS < VCC + 0.5 V
IEE DC VEE current 20 mA
ICC;IGND DC VCC or GND current 50 mA
Tstg storage temperature range 65 +150 C
Ptot power dissipation per package
plastic DIL 750 mW
for temperature range: 40 to +125 C
74HC/HCT
above +70 C: derate linearly with 12 mW/K
plastic mini-pack (SO) 500 mW above +70 C: derate linearly with 8 mW/K
PS power dissipation per switch 100 mW
SYMBOL PARAMETER
74HC 74HCT
UNIT CONDITIONS
min. typ. max. min. typ. max.
VCC DC supply voltage VCC  GND 2.0 5.0 10.0 4.5 5.0 5.5 V see Figs 6 and 7
VCC DC supply voltage VCC  VEE 2.0 5.0 10.0 2.0 5.0 10.0 V see Figs 6 and 7
VI DC input voltage range GND VCC GND VCC V
VS DC switch voltage range VEE VCC VEE VCC V
Tamb operating ambient temperature
range
40 +85 40 +85 C
see DC and AC
CHARACTERISTICS
Tamb operating ambient temperature
range
40 +125 40 +125 C
tr, tf input rise and fall times
6.0
1000
500
400
250
6.0 500 ns
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
VCC = 10.0 V
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
Fig.6 Guaranteed operating area as a function of
the supply voltages for 74HC4051.
Fig.7 Guaranteed operating area as afunction of
the supply voltages for 74HCT4051.
DC CHARACTERISTICS FOR 74HC/HCT
For 74HC: VCC  GND or VCC  VEE = 2.0, 4.5, 6.0 and 9.0 V
For 74HCT: VCC  GND = 4.5 and 5.5 V; VCC  VEE = 2.0, 4.5, 6.0 and 9.0 V
December1990 6
Notes to DC characteristics
1. At supply voltages (VCC  VEE) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear.
Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply
voltages.
2. For test circuit measuring RON see Fig.8.
SYMBOL PARAMETER
Tamb(C)
UNIT
TEST CONDITIONS
74HC/HCT
VCC
(V)
VEE
(V)
IS
(A)
Vis VI
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
RON ON resistance (peak) 
100
90
70

180
160
130

225
200
165

270
240
195




2.0
4.5
6.0
4.5
0
0
0
4.5
100
1000
1000
1000
VCC
to
VEE
VIH
or
VIL
RON ON resistance (rail) 150
80
70
60

140
120
105

175
150
130

210
180
160




2.0
4.5
6.0
4.5
0
0
0
4.5
100
1000
1000
1000
VEE VIH
or
VIL
RON ON resistance (rail) 150
90
80
65

160
140
120

200
175
150

240
210
180




2.0
4.5
6.0
4.5
0
0
0
4.5
100
1000
1000
1000
VCC VIH
or
VIL
RON maximum ON
resistance between
any two channels

9
8
6




2.0
4.5
6.0
4.5
0
0
0
4.5
VCC
to
VEE
VIH
or
VIL
Philips Semiconductors
December1990 7
Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
DC CHARACTERISTICS FOR 74HC
Voltages are referenced to GND (ground = 0 V)
SYMBOL PARAMETER
Tamb(C)
UNIT
TEST CONDITIONS
74HC
VCC
(V)
VEE
(V)
Vi OTHER
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
VIH HIGH level input
voltage
1.5
3.15
4.2
6.3
1.2
2.4
3.2
4.7
1.5
3.15
4.2
6.3
1.5
3.15
4.2
6.3
V 2.0
4.5
6.0
9.0
VIL LOW level input
voltage
0.8
2.1
2.8
4.3
0.5
1.35
1.8
2.7
0.5
1.35
1.8
2.7
0.5
1.35
1.8
2.7
V 2.0
4.5
6.0
9.0
II input leakage
current
0.1
0.2
1.0
2.0
1.0
2.0
A 6.0
10.0
0
0
VCC
or
GND
 IS analog switch
OFF-state current
per channel
0.1 1.0 1.0 A 10.0 0 VIH
or
VIL
|VS|=
VCCVEE
Fig.10
 IS analog switch
OFF-state current
all channels
0.4 4.0 4.0 A 10.0 0 VIH
or
VIL
|VS|=
VCC  VEE
Fig.10
IS analog switch
ON-state current
0.4 4.0 4.0 A 10.0 0 VIH
or
VIL
|VS|=
VCC  VEE
Fig.11
ICC quiescent supply
current
8.0
16.0
80.0
160.0
160.0
320.0
A 6.0
10.0
0
0
VCC
or
GND
Vis=VEE
or VCC;
Vos =VCC
orVEE
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF
SYMBOL PARAMETER
Tamb(C)
UNIT
TEST CONDITIONS
74HC
VCC
(V)
VEE
(V)
OTHER
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
tPHL/ tPLH propagation delay
Vis to Vos
14
5
4
4
60
12
10
8
75
15
13
10
90
18
15
12
ns 2.0
4.5
6.0
4.5
0
0
0
4.5
RL = ; CL = 50pF
(see Fig.17)
tPZH/ tPZL turn “ON” time
E to Vos
72
29
21
18
345
69
59
51
430
86
73
64
520
104
88
77
ns 2.0
4.5
6.0
4.5
0
0
0
4.5
RL =1 k;
CL = 50 pF
(seeFig.18,19and
20)
tPZH/ tPZL turn “ON” time
Sn to Vos
66
28
19
16
345
69
59
51
430
86
73
64
520
104
88
77
ns 2.0
4.5
6.0
4.5
0
0
0
4.5
RL =1 k;
CL = 50 pF
(seeFig.18,19and
20)
tPHZ/ tPLZ turn “OFF” time
E to Vos
58
31
17
18
290
58
49
42
365
73
62
53
435
87
74
72
ns 2.0
4.5
6.0
4.5
0
0
0
4.5
RL =1 k;
CL = 50 pF
(seeFig.18,19and
20)
tPHZ/ tPLZ turn “OFF” time
Sn to Vos
61
25
18
18
290
58
49
42
365
73
62
53
435
87
74
72
ns 2.0
4.5
6.0
4.5
0
0
0
4.5
RL =1 k;
CL = 50 pF
(seeFig.18,19and
20)
December1990 8
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
DC CHARACTERISTICS FOR 74HCT
Voltages are referenced to GND (ground = 0)
Note to HCT types
1. The value of additional quiescent supply current ( ICC) for a unit load of 1 is given here.
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.
SYMBOL PARAMETER
Tamb(C)
UNIT
TEST CONDITIONS
74HCT
VCC
(V)
VEE
(V)
Vi OTHER
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
VIH HIGH level
input voltage
2.0 1.6 2.0 2.0 V 4.5
to
5.5
VIL LOW level
input voltage
1.2 0.8 0.8 0.8 V 4.5
to
5.5
II input leakage
current
0.1 1.0 1.0 A 5.5 0 VCC
or
GND
 IS analog switch
OFF-state
current per
channel
0.1 1.0 1.0 A 10.0 0 VIH
or
VIL
|VS|=
VCC  VEE
(see Fig.10)
 IS analog switch
OFF-state
current all
channels
0.4 4.0 4.0 A 10.0 0 VIH
or
VIL
|VS|=
VCCVEE
(see Fig.10)
IS analog switch
ON-state
current
0.4 4.0 4.0 A 10.0 0 VIH
or
VIL
|VS| =
VCCVEE
(see Fig.11)
ICC quiescent
supply current
8.0
16.0
80.0
160.0
160.0
320.0
A 5.5
5.0
0
5.0
VCC
or
GND
Vis =VEE or
VCC;
Vos =VCC
orVEE
ICC additional
quiescent
supply current
per input pin
for unit load
coefficient is 1
(note1)
100 360 450 490 A 4.5
to
5.5
0 VCC
2.1
V
other inputs
at VCC or
GND
December1990 9
INPUT UNIT LOAD COEFFICIENT
Sn
E
0.50
0.50
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr = tf = 6 ns; CL = 50 pF
SYMBOL PARAMETER
Tamb (C)
UNIT
TEST CONDITIONS
74HCT
VCC
(V)
VEE
(V)
OTHER
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
tPHL/ tPLH propagation
delay Vis to Vos
5
4
12
8
15
10
18
12
ns 4.5
4.5
0
4.5
RL = ; CL = 50 pF
(see Fig.17)
tPZH/ tPZL turn “ON” time
E to Vos
26
16
55
39
69
49
83
59
ns 4.5
4.5
0
4.5
RL =1 k; CL = 50 pF
(see Fig.18, 19 and 20)
tPZH/ tPZL turn “ON” time
Sn to Vos
28
16
55
39
69
49
83
59
ns 4.5
4.5
0
4.5
RL =1 k; CL = 50 pF
(see Fig.18, 19 and 20)
tPHZ/ tPLZ turn “OFF”
time E to Vos
19
16
45
32
56
40
68
48
ns 4.5
4.5
0
4.5
RL =1 k; CL = 50 pF
(see Fig.18, 19 and 20)
tPHZ/ tPLZ turn “OFF”
time Sn to Vos
23
16
45
32
56
40
68
48
ns 4.5
4.5
0
4.5
RL =1 k; CL = 50 pF
(see Fig.18, 19 and 20)
Fig.8 Test circuit for measuring RON. Fig.9 Typical RON as a function of inputvoltage Vis
for Vis = 0 to VCC  VEE.
December1990 10
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
Fig.10 Test circuit for measuring OFF-state current.
Fig.11 Test circuit for measuring ON-state current.
December1990 11
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT
Recommended conditions and typical values
GND = 0 V; Tamb = 25 C
Notes to AC characteristics
1. Adjust input voltage Vis to 0 dBm level (0 dBm = 1 mW into 600 ).
2. Adjust input voltage Vis to 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 ).
General note
Vis is the input voltage at a Yn or Z terminal, whichever is assigned as an input. Vos
is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
SYMBOL PARAMETER typ. UNIT
VCC
(V)
VEE
(V)
Vis(pp)
(V)
CONDITIONS
sine-wave distortion
f = 1 kHz
0.04
0.02
%
%
2.25
4.5
2.25
4.5
4.0
8.0
RL = 10 k; CL = 50 pF
(see Fig.14)
sine-wave distortion
f = 10 kHz
0.12
0.06
%
%
2.25
4.5
2.25
4.5
4.0
8.0
RL = 10 k; CL = 50 pF
(see Fig.14)
switch “OFF” signal
feed-through
50
50
dB
dB
2.25
4.5
2.25
4.5
note1
RL = 600 ; CL = 50 pF
(see Figs 12 and 15)
V(pp)
crosstalk voltage between
control and any switch
(peak-to-peak value)
110
220
mV
mV
4.5
4.5
0
4.5
RL = 600 ; CL = 50 pF;
f = 1 MHz (E or Sn,
square-wave between
VCC and GND,
tr = tf = 6 ns)
(see Fig.16)
fmax
minimum frequency
response(3dB)
170
180
MHz
MHz
2.25
4.5
2.25
4.5
note2
RL = 50 ; CL = 10 pF
(see Fig.13 and 14)
CS maximum switch capacitance
independent (Y)
common (Z)
5
25
pF
pF
Test conditions:
VCC = 4.5 V; GND = 0 V;VEE = 4.5 V;
RL = 50 ; Rsource = 1 k
Fig.12 Typical switch “OFF” signal feed-through as a function of frequency.
December1990 12
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
Test conditions:
VCC = 4.5 V; GND = 0 V; VEE = 4.5 V;
RL = 50 ; Rsource = 1 k
Fig.13 Typical frequency response.
Fig.14 Test circuit for measuring sine-wave
distortion and minimum frequency response.
Fig.15 Test circuit for measuring switch “OFF”
signal feed-through.
The crosstalk is defined as follows (oscilloscope output):
Fig.16 Test circuit for measuring crosstalk between control and any switch.
December1990 13
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
AC WAVEFORMS
Fig.17 Waveforms showing the input (Vis) to output (Vos) propagation delays.
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.18 Waveforms showing the turn-ON and turn-OFF times.
December1990 14
Philips Semiconductors Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
TEST CIRCUIT AND WAVEFORMS
Conditions
TEST SWITCH Vis
tPZH VEE VCC
tPZL VCC VEE
tPHZ VEE VCC
tPLZ VCC VEE
others open pulse
FAMILY AMPLITUDE VM
tr;tf
fmax;
PULSE WIDTH
OTHER
74HC
74HCT
VCC
3.0 V
50%
1.3 V
 2 ns
 2 ns
6 ns
6 ns
CL = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
RT = termination resistance should be equal to the output impedance ZO of the pulse generator.
tr = tf = 6 ns; when measuring fmax, there is no constraint to tr, tf with 50% duty factor.
Fig.19 Test circuit for measuring AC performance.
Conditions
TEST SWITCH Vis
tPZH VEE VCC
tPZL VCC VEE
tPHZ VEE VCC
tPLZ VCC VEE
others open pulse
FAMILY AMPLITUDE VM
tr;tf
fmax;
PULSE WIDTH
OTHER
74HC
74HCT
VCC
3.0 V
50%
1.3 V
 2 ns
 2 ns
6 ns
6 ns
CL = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
RT = termination resistance should be equal to the output impedance ZO of the pulse generator.
tr = tf = 6 ns; when measuring fmax, there is no constraint to tr, tf with 50% duty factor.
Fig.20 Input pulse definitions.
December1990 15
Philips Semiconductors
December1990 16
Product specification
8-channel analog multiplexer/demultiplexer 74HC/HCT4051
PACKAGE OUTLINES
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

More Related Content

What's hot

Training TV Philips Chasis L01
Training TV Philips Chasis L01Training TV Philips Chasis L01
Training TV Philips Chasis L01Octavio
 
Lsf0108 q100 1664510
Lsf0108 q100 1664510Lsf0108 q100 1664510
Lsf0108 q100 1664510ssuser25f6f9
 
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New NXP
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New  NXPOriginal N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New  NXP
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New NXPAUTHELECTRONIC
 
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New Leadtrend
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New LeadtrendOriginal Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New Leadtrend
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New LeadtrendAUTHELECTRONIC
 
Philips 14 ll170123 chasis y6
Philips 14 ll170123 chasis y6Philips 14 ll170123 chasis y6
Philips 14 ll170123 chasis y6Gustavo Tovar
 
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...CBO GmbH
 
Lc03 diagrama
Lc03 diagrama Lc03 diagrama
Lc03 diagrama wilmer67
 
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewAUTHELECTRONIC
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheetAndy Medina
 
SPICE MODEL of BA00ASFP in SPICE PARK
SPICE MODEL of BA00ASFP in SPICE PARKSPICE MODEL of BA00ASFP in SPICE PARK
SPICE MODEL of BA00ASFP in SPICE PARKTsuyoshi Horigome
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...CBO GmbH
 
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)gacoroma
 
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...CBO GmbH
 
ANAVIEW's Smallest Class D OEM Amplifier Board
ANAVIEW's Smallest Class D OEM Amplifier BoardANAVIEW's Smallest Class D OEM Amplifier Board
ANAVIEW's Smallest Class D OEM Amplifier BoardHTCS LLC
 
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYS
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYSOriginal IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYS
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYSAUTHELECTRONIC
 
Dyna109 94 8750
Dyna109 94 8750Dyna109 94 8750
Dyna109 94 8750wilmer67
 

What's hot (19)

Training TV Philips Chasis L01
Training TV Philips Chasis L01Training TV Philips Chasis L01
Training TV Philips Chasis L01
 
Lsf0108 q100 1664510
Lsf0108 q100 1664510Lsf0108 q100 1664510
Lsf0108 q100 1664510
 
RT7257E Datasheet PDF
RT7257E Datasheet PDFRT7257E Datasheet PDF
RT7257E Datasheet PDF
 
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New NXP
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New  NXPOriginal N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New  NXP
Original N-channel Mosfet PHB108NQ03LT PHB108 NQ03LT 25V 75A TO-252 New NXP
 
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New Leadtrend
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New LeadtrendOriginal Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New Leadtrend
Original Transition-Mode PFC Controller IC LD7591GS 7591 SOP-8 New Leadtrend
 
Philips 14 ll170123 chasis y6
Philips 14 ll170123 chasis y6Philips 14 ll170123 chasis y6
Philips 14 ll170123 chasis y6
 
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
 
Lc03 diagrama
Lc03 diagrama Lc03 diagrama
Lc03 diagrama
 
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
 
Uc3845
Uc3845Uc3845
Uc3845
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheet
 
SPICE MODEL of BA00ASFP in SPICE PARK
SPICE MODEL of BA00ASFP in SPICE PARKSPICE MODEL of BA00ASFP in SPICE PARK
SPICE MODEL of BA00ASFP in SPICE PARK
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
 
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)
Sony hcd gpx33-gpx55_gpx77_gpx88_ver.1.0 (edita)
 
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
 
SPICE Model of TA7291P
SPICE Model of TA7291PSPICE Model of TA7291P
SPICE Model of TA7291P
 
ANAVIEW's Smallest Class D OEM Amplifier Board
ANAVIEW's Smallest Class D OEM Amplifier BoardANAVIEW's Smallest Class D OEM Amplifier Board
ANAVIEW's Smallest Class D OEM Amplifier Board
 
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYS
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYSOriginal IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYS
Original IGTB GP70N33TBM-A GP70N33 70N33 TO-220F New IXYS
 
Dyna109 94 8750
Dyna109 94 8750Dyna109 94 8750
Dyna109 94 8750
 

Similar to Integrated circuit (data sheet)

Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...AUTHELECTRONIC
 
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdf
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdfDatos_tecnicos_del_Circuito_integrado_TJA1050_3.pdf
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdfEradHernandez
 
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Juan Carlos Ruiz
 
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...AUTHELECTRONIC
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersGeorgage Zim
 
datasheet (6).pdf
datasheet (6).pdfdatasheet (6).pdf
datasheet (6).pdfDavidBuay3
 
4n25Original Opto 4N26 DIP-6 New
4n25Original Opto 4N26 DIP-6 New4n25Original Opto 4N26 DIP-6 New
4n25Original Opto 4N26 DIP-6 NewAUTHELECTRONIC
 

Similar to Integrated circuit (data sheet) (20)

74HC123.PDF
74HC123.PDF74HC123.PDF
74HC123.PDF
 
74 hc hct164
74 hc hct16474 hc hct164
74 hc hct164
 
74 hc hct164
74 hc hct16474 hc hct164
74 hc hct164
 
74 hc hct393
74 hc hct39374 hc hct393
74 hc hct393
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
 
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdf
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdfDatos_tecnicos_del_Circuito_integrado_TJA1050_3.pdf
Datos_tecnicos_del_Circuito_integrado_TJA1050_3.pdf
 
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
 
Datasheet
DatasheetDatasheet
Datasheet
 
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
 
74 hc153
74 hc15374 hc153
74 hc153
 
Hcf4017 be
Hcf4017 beHcf4017 be
Hcf4017 be
 
Ds1307 datasheet
Ds1307 datasheetDs1307 datasheet
Ds1307 datasheet
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage Converters
 
4511
45114511
4511
 
Datasheet
DatasheetDatasheet
Datasheet
 
datasheet (6).pdf
datasheet (6).pdfdatasheet (6).pdf
datasheet (6).pdf
 
Mc74 hc4051 d
Mc74 hc4051 dMc74 hc4051 d
Mc74 hc4051 d
 
abc song
abc songabc song
abc song
 
4n25Original Opto 4N26 DIP-6 New
4n25Original Opto 4N26 DIP-6 New4n25Original Opto 4N26 DIP-6 New
4n25Original Opto 4N26 DIP-6 New
 
74164
7416474164
74164
 

More from St. Xavier's college, maitighar,Kathmandu

More from St. Xavier's college, maitighar,Kathmandu (20)

Orders of class osteichthyes
Orders of class osteichthyesOrders of class osteichthyes
Orders of class osteichthyes
 
Mammals stomach and dentition
Mammals stomach and dentitionMammals stomach and dentition
Mammals stomach and dentition
 
Origin and Evolution of Mammals
Origin and Evolution of MammalsOrigin and Evolution of Mammals
Origin and Evolution of Mammals
 
Draco volans
Draco volansDraco volans
Draco volans
 
Digestive system of vertebrates
Digestive system of vertebratesDigestive system of vertebrates
Digestive system of vertebrates
 
Common peafowl
Common peafowlCommon peafowl
Common peafowl
 
Brain of vertebrates
Brain of vertebratesBrain of vertebrates
Brain of vertebrates
 
Integument
IntegumentIntegument
Integument
 
Water
WaterWater
Water
 
Translation
TranslationTranslation
Translation
 
The structure of dna and genome ogranization
The structure of dna and genome ogranization The structure of dna and genome ogranization
The structure of dna and genome ogranization
 
Plasmodium
PlasmodiumPlasmodium
Plasmodium
 
Comparative study of vertebrates
Comparative  study of vertebratesComparative  study of vertebrates
Comparative study of vertebrates
 
The nucleic acids
The nucleic acidsThe nucleic acids
The nucleic acids
 
Honey bee
Honey beeHoney bee
Honey bee
 
Genetic engineering of humans
Genetic engineering of humansGenetic engineering of humans
Genetic engineering of humans
 
Hazards of genetic engineering
Hazards of genetic engineeringHazards of genetic engineering
Hazards of genetic engineering
 
Azotobacter spp.
Azotobacter spp.Azotobacter spp.
Azotobacter spp.
 
Biological membrane
Biological membraneBiological membrane
Biological membrane
 
Atomic radius
Atomic radiusAtomic radius
Atomic radius
 

Recently uploaded

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesChandrakantDivate1
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessorAshwiniTodkar4
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 

Recently uploaded (20)

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 

Integrated circuit (data sheet)

  • 1. Product specification December 1990 File under Integrated Circuits, IC06 INTEGRATED CIRCUITS By- Sanju Sah St. Xavier’s college, Maitighar 74HC/HCT4051 8-channel analog multiplexer/demultiplexer For a complete data sheet, please also download:  The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
  • 2. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 FEATURES  Wide analog input voltage range:  5 V.  Low “ON” resistance: 80  (typ.) at VCC  VEE = 4.5 V 70  (typ.) at VCC  VEE = 6.0 V 60  (typ.) at VCC  VEE = 9.0 V  Logic level translation: to enable 5 V logic to communicate with  5 V analog signals  Typical “break before make” built in  Output capability: non-standard  ICC category: MSI GENERAL DESCRIPTION The 74HC/HCT4051 are high-speed Si-gate CMOS devices and are pin compatible with the “4051” of the “4000B” series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4051 are 8-channel analog multiplexers/demultiplexers with three digital selectinputs (S0 to S2), an active LOW enable input (E), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z). With E LOW, one of the eight switches is selected (low impedance ON-state) by S0 to S2. With E HIGH, all switches are in the high impedance OFF-state, independent of S0 to S2. VCC and GND are the supply voltage pins for the digital control inputs (S0 to S2, and E). The VCC to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y0 to Y7, and Z) can swing between VCC as a positive limit and VEE as a negative limit. VCC  VEE may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, VEE is connected to GND (typically ground). QUICK REFERENCE DATA VEE = GND = 0 V; Tamb = 25 C; tr = tf = 6 ns Notes 1. CPD is used to determine the dynamic power dissipation (PD in W): CC PD = CPD  VCC 2  fi +  (CL + CS  V 2  fo } where: fi = input frequency in MHz fo = output frequency in MHz  { (CL + CS VCC 2  fo } = sum of outputs CL = output load capacitance in pF CS = max. switch capacitance in pF VCC = supply voltage in V 2. For HC the condition is VI = GND to VCC For HCT the condition is VI = GND to VCC  1.5 V SYMBOL PARAMETER CONDITIONS TYPICAL UNIT HC HCT tPZH/ tPZL turn “ON” time E to Vos Sn to Vos CL = 15 pF; RL =1 k; VCC = 5 V 22 20 22 24 ns ns tPHZ/ tPLZ turn “OFF” time E to Vos Sn to Vos 18 19 16 20 ns ns CI input capacitance 3.5 3.5 pF CPD power dissipation capacitance per switch notes 1 and 2 25 25 pF CS max. switch capacitance independent (Y) common (Z) 5 25 5 25 pF pF December1990 2
  • 3. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 ORDERING INFORMATION See “74HC/HCT/HCU/HCMOS Logic Package Information”. PIN DESCRIPTION PIN NO. SYMBOL NAME AND FUNCTION 3 Z common input/output 6 E enable input (active LOW) 7 VEE negative supply voltage 8 GND ground (0 V) 11, 10, 9 S0 to S2 select inputs 13, 14, 15, 12, 1, 5, 2, 4 Y0 to Y7 independent inputs/outputs 16 VCC positive supply voltage Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol. December1990 3
  • 4. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 Fig.4 Functional diagram. APPLICATIONS  Analog multiplexing and demultiplexing  Digital multiplexing and demultiplexing  Signalgating FUNCTIONTABLE Notes 1. H = HIGH voltage level L = LOW voltage level X = don’t care INPUTS channel ON E S2 S1 S0 L L L L Y0  Z L L L H Y1  Z L L H L Y2  Z L L H H Y3  Z L H L L Y4  Z L H L H Y5  Z L H H L Y6  Z L H H H Y7  Z H X X X none Fig.5 Schematic diagram (one switch). December1990 4
  • 5. Philips Semiconductors December1990 5 Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to VEE = GND (ground=0 V) Note to ratings 1. To avoid drawing VCC current out of terminal Z, when switch current flows in terminals Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no VCC current will flow out of terminals Yn. In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed VCC or VEE. RECOMMENDED OPERATING CONDITIONS SYMBOL PARAMETER MIN. MAX. UNIT CONDITIONS VCC DC supply voltage 0.5 +11.0 V IIK DC digital input diode current 20 mA for VI < 0.5 V or VI > VCC + 0.5 V ISK DC switch diode current 20 mA for VS < 0.5 V or VS > VCC + 0.5 V IS DC switch current 25 mA for 0.5 V < VS < VCC + 0.5 V IEE DC VEE current 20 mA ICC;IGND DC VCC or GND current 50 mA Tstg storage temperature range 65 +150 C Ptot power dissipation per package plastic DIL 750 mW for temperature range: 40 to +125 C 74HC/HCT above +70 C: derate linearly with 12 mW/K plastic mini-pack (SO) 500 mW above +70 C: derate linearly with 8 mW/K PS power dissipation per switch 100 mW SYMBOL PARAMETER 74HC 74HCT UNIT CONDITIONS min. typ. max. min. typ. max. VCC DC supply voltage VCC  GND 2.0 5.0 10.0 4.5 5.0 5.5 V see Figs 6 and 7 VCC DC supply voltage VCC  VEE 2.0 5.0 10.0 2.0 5.0 10.0 V see Figs 6 and 7 VI DC input voltage range GND VCC GND VCC V VS DC switch voltage range VEE VCC VEE VCC V Tamb operating ambient temperature range 40 +85 40 +85 C see DC and AC CHARACTERISTICS Tamb operating ambient temperature range 40 +125 40 +125 C tr, tf input rise and fall times 6.0 1000 500 400 250 6.0 500 ns VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V VCC = 10.0 V
  • 6. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4051. Fig.7 Guaranteed operating area as afunction of the supply voltages for 74HCT4051. DC CHARACTERISTICS FOR 74HC/HCT For 74HC: VCC  GND or VCC  VEE = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: VCC  GND = 4.5 and 5.5 V; VCC  VEE = 2.0, 4.5, 6.0 and 9.0 V December1990 6 Notes to DC characteristics 1. At supply voltages (VCC  VEE) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages. 2. For test circuit measuring RON see Fig.8. SYMBOL PARAMETER Tamb(C) UNIT TEST CONDITIONS 74HC/HCT VCC (V) VEE (V) IS (A) Vis VI +25 40 to +85 40 to +125 min. typ. max. min. max. min. max. RON ON resistance (peak)  100 90 70  180 160 130  225 200 165  270 240 195     2.0 4.5 6.0 4.5 0 0 0 4.5 100 1000 1000 1000 VCC to VEE VIH or VIL RON ON resistance (rail) 150 80 70 60  140 120 105  175 150 130  210 180 160     2.0 4.5 6.0 4.5 0 0 0 4.5 100 1000 1000 1000 VEE VIH or VIL RON ON resistance (rail) 150 90 80 65  160 140 120  200 175 150  240 210 180     2.0 4.5 6.0 4.5 0 0 0 4.5 100 1000 1000 1000 VCC VIH or VIL RON maximum ON resistance between any two channels  9 8 6     2.0 4.5 6.0 4.5 0 0 0 4.5 VCC to VEE VIH or VIL
  • 7. Philips Semiconductors December1990 7 Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 DC CHARACTERISTICS FOR 74HC Voltages are referenced to GND (ground = 0 V) SYMBOL PARAMETER Tamb(C) UNIT TEST CONDITIONS 74HC VCC (V) VEE (V) Vi OTHER +25 40 to +85 40 to +125 min. typ. max. min. max. min. max. VIH HIGH level input voltage 1.5 3.15 4.2 6.3 1.2 2.4 3.2 4.7 1.5 3.15 4.2 6.3 1.5 3.15 4.2 6.3 V 2.0 4.5 6.0 9.0 VIL LOW level input voltage 0.8 2.1 2.8 4.3 0.5 1.35 1.8 2.7 0.5 1.35 1.8 2.7 0.5 1.35 1.8 2.7 V 2.0 4.5 6.0 9.0 II input leakage current 0.1 0.2 1.0 2.0 1.0 2.0 A 6.0 10.0 0 0 VCC or GND  IS analog switch OFF-state current per channel 0.1 1.0 1.0 A 10.0 0 VIH or VIL |VS|= VCCVEE Fig.10  IS analog switch OFF-state current all channels 0.4 4.0 4.0 A 10.0 0 VIH or VIL |VS|= VCC  VEE Fig.10 IS analog switch ON-state current 0.4 4.0 4.0 A 10.0 0 VIH or VIL |VS|= VCC  VEE Fig.11 ICC quiescent supply current 8.0 16.0 80.0 160.0 160.0 320.0 A 6.0 10.0 0 0 VCC or GND Vis=VEE or VCC; Vos =VCC orVEE
  • 8. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 AC CHARACTERISTICS FOR 74HC GND = 0 V; tr = tf = 6 ns; CL = 50 pF SYMBOL PARAMETER Tamb(C) UNIT TEST CONDITIONS 74HC VCC (V) VEE (V) OTHER +25 40 to +85 40 to +125 min. typ. max. min. max. min. max. tPHL/ tPLH propagation delay Vis to Vos 14 5 4 4 60 12 10 8 75 15 13 10 90 18 15 12 ns 2.0 4.5 6.0 4.5 0 0 0 4.5 RL = ; CL = 50pF (see Fig.17) tPZH/ tPZL turn “ON” time E to Vos 72 29 21 18 345 69 59 51 430 86 73 64 520 104 88 77 ns 2.0 4.5 6.0 4.5 0 0 0 4.5 RL =1 k; CL = 50 pF (seeFig.18,19and 20) tPZH/ tPZL turn “ON” time Sn to Vos 66 28 19 16 345 69 59 51 430 86 73 64 520 104 88 77 ns 2.0 4.5 6.0 4.5 0 0 0 4.5 RL =1 k; CL = 50 pF (seeFig.18,19and 20) tPHZ/ tPLZ turn “OFF” time E to Vos 58 31 17 18 290 58 49 42 365 73 62 53 435 87 74 72 ns 2.0 4.5 6.0 4.5 0 0 0 4.5 RL =1 k; CL = 50 pF (seeFig.18,19and 20) tPHZ/ tPLZ turn “OFF” time Sn to Vos 61 25 18 18 290 58 49 42 365 73 62 53 435 87 74 72 ns 2.0 4.5 6.0 4.5 0 0 0 4.5 RL =1 k; CL = 50 pF (seeFig.18,19and 20) December1990 8
  • 9. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 DC CHARACTERISTICS FOR 74HCT Voltages are referenced to GND (ground = 0) Note to HCT types 1. The value of additional quiescent supply current ( ICC) for a unit load of 1 is given here. To determine ICC per input, multiply this value by the unit load coefficient shown in the table below. SYMBOL PARAMETER Tamb(C) UNIT TEST CONDITIONS 74HCT VCC (V) VEE (V) Vi OTHER +25 40 to +85 40 to +125 min. typ. max. min. max. min. max. VIH HIGH level input voltage 2.0 1.6 2.0 2.0 V 4.5 to 5.5 VIL LOW level input voltage 1.2 0.8 0.8 0.8 V 4.5 to 5.5 II input leakage current 0.1 1.0 1.0 A 5.5 0 VCC or GND  IS analog switch OFF-state current per channel 0.1 1.0 1.0 A 10.0 0 VIH or VIL |VS|= VCC  VEE (see Fig.10)  IS analog switch OFF-state current all channels 0.4 4.0 4.0 A 10.0 0 VIH or VIL |VS|= VCCVEE (see Fig.10) IS analog switch ON-state current 0.4 4.0 4.0 A 10.0 0 VIH or VIL |VS| = VCCVEE (see Fig.11) ICC quiescent supply current 8.0 16.0 80.0 160.0 160.0 320.0 A 5.5 5.0 0 5.0 VCC or GND Vis =VEE or VCC; Vos =VCC orVEE ICC additional quiescent supply current per input pin for unit load coefficient is 1 (note1) 100 360 450 490 A 4.5 to 5.5 0 VCC 2.1 V other inputs at VCC or GND December1990 9 INPUT UNIT LOAD COEFFICIENT Sn E 0.50 0.50
  • 10. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 AC CHARACTERISTICS FOR 74HCT GND = 0 V; tr = tf = 6 ns; CL = 50 pF SYMBOL PARAMETER Tamb (C) UNIT TEST CONDITIONS 74HCT VCC (V) VEE (V) OTHER +25 40 to +85 40 to +125 min. typ. max. min. max. min. max. tPHL/ tPLH propagation delay Vis to Vos 5 4 12 8 15 10 18 12 ns 4.5 4.5 0 4.5 RL = ; CL = 50 pF (see Fig.17) tPZH/ tPZL turn “ON” time E to Vos 26 16 55 39 69 49 83 59 ns 4.5 4.5 0 4.5 RL =1 k; CL = 50 pF (see Fig.18, 19 and 20) tPZH/ tPZL turn “ON” time Sn to Vos 28 16 55 39 69 49 83 59 ns 4.5 4.5 0 4.5 RL =1 k; CL = 50 pF (see Fig.18, 19 and 20) tPHZ/ tPLZ turn “OFF” time E to Vos 19 16 45 32 56 40 68 48 ns 4.5 4.5 0 4.5 RL =1 k; CL = 50 pF (see Fig.18, 19 and 20) tPHZ/ tPLZ turn “OFF” time Sn to Vos 23 16 45 32 56 40 68 48 ns 4.5 4.5 0 4.5 RL =1 k; CL = 50 pF (see Fig.18, 19 and 20) Fig.8 Test circuit for measuring RON. Fig.9 Typical RON as a function of inputvoltage Vis for Vis = 0 to VCC  VEE. December1990 10
  • 11. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 Fig.10 Test circuit for measuring OFF-state current. Fig.11 Test circuit for measuring ON-state current. December1990 11
  • 12. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT Recommended conditions and typical values GND = 0 V; Tamb = 25 C Notes to AC characteristics 1. Adjust input voltage Vis to 0 dBm level (0 dBm = 1 mW into 600 ). 2. Adjust input voltage Vis to 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 ). General note Vis is the input voltage at a Yn or Z terminal, whichever is assigned as an input. Vos is the output voltage at a Yn or Z terminal, whichever is assigned as an output. SYMBOL PARAMETER typ. UNIT VCC (V) VEE (V) Vis(pp) (V) CONDITIONS sine-wave distortion f = 1 kHz 0.04 0.02 % % 2.25 4.5 2.25 4.5 4.0 8.0 RL = 10 k; CL = 50 pF (see Fig.14) sine-wave distortion f = 10 kHz 0.12 0.06 % % 2.25 4.5 2.25 4.5 4.0 8.0 RL = 10 k; CL = 50 pF (see Fig.14) switch “OFF” signal feed-through 50 50 dB dB 2.25 4.5 2.25 4.5 note1 RL = 600 ; CL = 50 pF (see Figs 12 and 15) V(pp) crosstalk voltage between control and any switch (peak-to-peak value) 110 220 mV mV 4.5 4.5 0 4.5 RL = 600 ; CL = 50 pF; f = 1 MHz (E or Sn, square-wave between VCC and GND, tr = tf = 6 ns) (see Fig.16) fmax minimum frequency response(3dB) 170 180 MHz MHz 2.25 4.5 2.25 4.5 note2 RL = 50 ; CL = 10 pF (see Fig.13 and 14) CS maximum switch capacitance independent (Y) common (Z) 5 25 pF pF Test conditions: VCC = 4.5 V; GND = 0 V;VEE = 4.5 V; RL = 50 ; Rsource = 1 k Fig.12 Typical switch “OFF” signal feed-through as a function of frequency. December1990 12
  • 13. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 Test conditions: VCC = 4.5 V; GND = 0 V; VEE = 4.5 V; RL = 50 ; Rsource = 1 k Fig.13 Typical frequency response. Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response. Fig.15 Test circuit for measuring switch “OFF” signal feed-through. The crosstalk is defined as follows (oscilloscope output): Fig.16 Test circuit for measuring crosstalk between control and any switch. December1990 13
  • 14. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 AC WAVEFORMS Fig.17 Waveforms showing the input (Vis) to output (Vos) propagation delays. (1) HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V. Fig.18 Waveforms showing the turn-ON and turn-OFF times. December1990 14
  • 15. Philips Semiconductors Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 TEST CIRCUIT AND WAVEFORMS Conditions TEST SWITCH Vis tPZH VEE VCC tPZL VCC VEE tPHZ VEE VCC tPLZ VCC VEE others open pulse FAMILY AMPLITUDE VM tr;tf fmax; PULSE WIDTH OTHER 74HC 74HCT VCC 3.0 V 50% 1.3 V  2 ns  2 ns 6 ns 6 ns CL = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). RT = termination resistance should be equal to the output impedance ZO of the pulse generator. tr = tf = 6 ns; when measuring fmax, there is no constraint to tr, tf with 50% duty factor. Fig.19 Test circuit for measuring AC performance. Conditions TEST SWITCH Vis tPZH VEE VCC tPZL VCC VEE tPHZ VEE VCC tPLZ VCC VEE others open pulse FAMILY AMPLITUDE VM tr;tf fmax; PULSE WIDTH OTHER 74HC 74HCT VCC 3.0 V 50% 1.3 V  2 ns  2 ns 6 ns 6 ns CL = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values). RT = termination resistance should be equal to the output impedance ZO of the pulse generator. tr = tf = 6 ns; when measuring fmax, there is no constraint to tr, tf with 50% duty factor. Fig.20 Input pulse definitions. December1990 15
  • 16. Philips Semiconductors December1990 16 Product specification 8-channel analog multiplexer/demultiplexer 74HC/HCT4051 PACKAGE OUTLINES See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
  • 17. This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.