SlideShare a Scribd company logo
1 of 11
Download to read offline
Reprint:
JURNALILMU-ILMUPERAIRANDANPERIKANANINDONESIA
ISSN 0854-3194
Juni 2004, Jilid 11, Nomor 1
Halaman 29 – 38
Studi Dinamika Ekosistem Perairan Di Teluk Lampung:
Pemodelan Gabungan Hidrodinamika-Ekosistem
(A Study on the dynamic of Aquatic Ecosystem in Lampung Bay:
A Coupled Hydrodynamic-Ecosystem Modeling)
Alan Frendy Koropitan, Safwan Hadi, Ivonne M. Radjawane dan Ario Damar
Alamat Penyunting dan Tata Usaha: Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan,
Institut Pertanian Bogor - Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Wing C, Lantai 4 - Telepon (0251)
622912, Fax. (0251) 622932. E-mail : jippi@centrin.net.id
Berdasarkan Keputusan Direktur Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional No. 22/DIKTI/Kep /2002 tanggal 8
Mei 2002 tentang Hasil Akreditasi Jurnal Ilmiah Direktorat Jenderal Pendidikan Tinggi Tahun 2002, Jurnal Ilmu-ilmu Perairan
dan Perikanan Indonesia (JIPPI) diakui sebagai jurnal nasional terakreditasi.
29
STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG:
PEMODELAN GABUNGAN HIDRODINAMIKA-EKOSISTEM
(A Study on the dynamic of Aquatic Ecosystem in Lampung Bay:
A Coupled Hydrodynamic-Ecosystem Modeling)
Alan Frendy Koropitan1
, Safwan Hadi2
, Ivonne M. Radjawane2
dan Ario Damar3
ABSTRAK
Penelitian ini bertujuan untuk mengkaji dinamika ekosistem perairan di Teluk Lampung dengan
menggunakan gabungan model hidrodinamika-ekosistem dengan pendekatan numerik. Secara umum, hasil
simulasi pola arus residu M2 cenderung masuk dari mulut teluk sebelah barat, sebagian terus memasuki sam-
pai kepala teluk dan sebagian keluar kembali dari mulut teluk bagian timur. Selain itu, terlihat pula adanya
suatu eddy yang mengalir berlawanan arah jarum jam di sekitar kepala teluk. Pola penyebaran masing-ma-
sing kompartimen ekosistem hasil model memiliki kesamaan dengan hasil pengamatan di lapangan, serta
konsisten dengan pola arus residu M2. Pengaruh suplai dari sungai, interaksi antara proses biologis seperti
produktifitas primer, sekunder (pemangsaan), kematian alami plankton, serta proses dekomposisi oleh bakteri
belum begitu berperan dalam neraca dan standing stock ekosistem di Teluk Lampung. Peranan suplai dari
laut lebih dominan dibanding dengan proses-proses biokimiawi yang berinteraksi di dalam teluk. Hasil perhi-
tungan tingkat efisiensi aliran energi dari proses dekomposisi dan produksi urine zooplankton ke produktifitas
primer mengalami kehilangan sebesar 30.48 %, sementara dari produktifitas primer ke produktifitas sekunder
(pemangsaan) mengalami penambahan 17.24 %.
Kata kunci: dinamika ekosistem, Teluk Lampung, gabungan model hidrodinamika-ekosistem, arus residu M2.
ABSTRACT
The aim of this research was to study in the dynamic of aquatic ecosystem in Lampung Bay by using
a coupled hydrodynamic-ecosystem model with numerical approach. Generally, the simulated flow pattern of
M2 residual current tends to flow into the western mouth of the bay from which part of them flow toward the
head of the bay while the other parts flow out through the eastern mouth of the bay. The simulation also indi-
cates the existence of an eddy with counterclockwise motion around the head of the bay. The simulation of
the distribution pattern of each ecosystem compartment is consistent with the field distribution pattern and
with M2 residual current pattern. The rivers run off, primary production, secondary production (grazing),
natural mortality of plankton as well as the decomposition by bacteria are not important to the budget and
standing stock in Lampung Bay ecosystem. The influence of ocean supply is more important than biochemi-
cal processes in the bay. The calculated rate of efficiency of heat flow from both the decomposition process
and urine production by zooplankton to the primary production has missed 30.48 %, while from the primary
production to the secondary production (grazing) has added 17.24 %.
Key words: ecosystem dynamic, Lampung Bay, coupled hy drodynamic-ecosystem model, M2 residual current.
PENDAHULUAN
Penelitian-penelitian tentang ekosistem
perairan laut dengan menggunakan model nu-
merik semakin berkembang pesat dalam kurun
10 tahun terakhir ini, antara lain: Kawamiya et
al (1995), Kishi and Uchiyama (1995), Moll
(1998), Chen et al (1999), Yanagi (1999), Neu-
mann (2000), Edwards et al (2000) serta Spitz
et al (2003). Bahkan di Indonesia, walaupun
masih dalam taraf validasi model serta terbatas
pada 2-dimensi (secara horizontal di permuka-
an), telah diterapkan pada beberapa perairan te-
luk dan pesisir, seperti yang dilakukan oleh Yo-
nik (2000), Sugianto (2001), Pranowo (2002),
dan Koropitan et al (2002). Khusus untuk Te-
luk Lampung, penggunaan model numerik un-
tuk dinamika ekosistem belum pernah dilaku-
kan. Sampai saat ini, penggunaan model nume-
rik untuk mempelajari Teluk Lampung, umum-
1
Departemen Ilmu dan Teknologi Kelautan, Fakultas Perikanan
dan Ilmu Kelautan, Institut Pertanian Bogor (FPIK, IPB), Bo -
gor. E-mail: alanfrendy@yahoo.com.
2
Departemen Geofisika dan Meteorologi, Institut Teknologi
Bandung (ITB), Bandung.
3
Departemen Manajemen Sumberdaya Perairan, Fakultas Peri-
kanan dan Ilmu Kelautan, Institut Pertanian Bogor (FPIK,
IPB), Bogor.
30 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38
nya masih terfokus pada permasalahan sirkulasi
air seperti yang diuraikan dalam penelitian-pe-
nelitian sebelumnya, yaitu Mihardja et al (1995),
Koropitan (2002) dan Koropitan et al (2003).
Penelitian tentang ekosistem di Teluk
Lampung, telah dilakukan oleh beberapa peneli-
ti antara lain Wiryawan et al (1999), Sunarto
(2001) dan Damar (2003). Secara umum, pe-
nelitian tersebut menguraikan deskripsi Teluk
Lampung dan sekitarnya, baik sumberdaya ha-
yati dan non-hayati di pesisir, hubungan cahaya
dan nutrien terhadap produktifitas primer, bah-
kan Damar (2003) menguraikan secara lengkap
dinamika ekosistem di Teluk Lampung berda-
sarkan pengamatan 2 bulanan sepanjang tahun
2000 dengan lokasi pengambilan contoh yang
tersebar di 14 stasiun pada lapisan permukaan
dan lapisan dekat dasar.
Walaupun demikian, sampai saat ini pe-
ngaruh sirkulasi arus terhadap ekosistem di Te-
luk Lampung belum terjawab secara tuntas.
Permasalahan ini sangat jarang diteliti karena
membutuhkan banyak data dan waktu yang sa-
ngat panjang, sehingga tinjauan permasalahan
ekosistem sering dibatasi pada pengamatan saat
itu. Data sesaat yang dimaksudkan adalah tidak
melihat selama siklus pasang surut, sehingga
walaupun banyak data yang diamati, tetap be-
lum menjawab pengaruh sirkulasi arus terhadap
ekosistem yang ada. Mengapa hal ini begitu
penting, karena pengaruh sirkulasi arus akan
memperjelas kemampuan Teluk Lampung da-
lam menerima masukan suatu bahan (nutrien a-
tau polutan). Seperti yang telah diuraikan oleh
Damar (2003) bahwa suplai nutrien dari dua su-
ngai yang bermuara di Kota Bandar Lampung
dan aktifitas industri di Tarahan telah turut mem-
pengaruhi ekosistem Teluk Lampung. Selain i-
tu, ada juga suplai nutrien dan klorofil-a ke per-
airan Teluk Lampung dari Selat Sunda, seperti
yang diamati oleh Hendiarti et al (2002). De-
ngan demikian, timbul pertanyaan menyangkut
pengaruh sirkulasi arus ini, yaitu seberapa jauh
pengaruh adveksi arus, pasang surut, suplai dari
sungai dan pertukaran di mulut teluk terhadap
dinamika ekosistem di Teluk Lampung?
Dalam menjawab pertanyaan di atas, ma-
ka penelitian ini bertujuan untuk mengkaji dina-
mika ekosistem perairan Teluk Lampung de-
ngan menggunakan gabungan model hidrodina-
mika-ekosistem dengan pendekatan numerik.
Dinamika ekosistem yang dimaksud dalam pe-
nelitian ini meliputi neraca (budget) dari ma-
sing-masing kompartimen ekosistem dan struk-
tur ekosistemnya.
MODEL NUMERIK
Penelitian ini terbatas pada simulasi nu-
merik yang didasari pada metode beda hingga
dan proses perhitungannya menggunakan ban-
tuan bahasa pemrograman Fortran 77. Persa-
maan model yang digunakan adalah seperti
yang diuraikan berikut ini.
Model Hidrodinamika dan
Perhitungan Arus Residu
Model hidrodinamika yang digunakan
dalam penelitian ini adalah model 2-dimensi
yang diintegrasikan terhadap kedalaman, de-
ngan menggunakan Princeton Ocean Model
(POM) yang dikembangkan oleh Blumberg and
Mellor (1999). Model ini dikembangkan seki-
tar tahun 1977 dan telah mengalami beberapa
revisi, dan untuk penelitian ini digunakan POM
versi 1998. Daerah model, asumsi dan syarat
batas model hidrodinamika diuraikan secara
lengkap dalam Koropitan (2002).
Arus residu atau kecepatan transpor rata-
rata didefinisikan sebagai berikut (Ramming
dan Kowalik, 1980):
0
0
( )
( )
T
res T
H vdt
V
H dt
η
η
+
=
+
∫
∫
sedangkan V adalah komponen kecepatan
( x atau y ), T adalah periode suatu kompo-
nen pasut, H adalah kedalaman perairan,
η adalahelevasi dan t adalah waktu. Kom-
ponen kecepatan ( x atau y ) dan elevasi di-
peroleh dari hasil perhitungan model hidro-
dinamika 2-dimensi yang diintegrasikan ter-
hadap kedalaman. Simulasi arus residu 2-
dimensi yang diintegrasikan terhadap keda-
laman di Teluk Lampung adalah menggu-
nakan komponen M2 yang mendominasi kom -
ponen pasut di Teluk Lampung (Mihardja et
al, 1995). Istilah selanjutnya untuk hasil si-
mulasi ini adalah arus residu M2.
Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 31
Model Ekosistem
Persamaan transpor untuk model ekosis-
tem 2-dimensi horisontal adalah hasil modifi-
kasi model yang dikembangkan oleh Yanagi
(1999). Kompartimen ekosistem yang terlibat
adalah Fitoplankton (dalam hal ini Klorofil-a)-
F, Zooplankton-Z, Detritus-D (merupakan orga-
nisme fitoplankton dan zooplankton yang mati),
serta nutrien yang berupa bahan anorganik ter-
larut nitrat-N dan fosfat-P. Skema hubungan an-
tar kompartimen ekosistem dan lambang yang
digunakan dalam persamaan disajikan pada
Gambar 1. Penjabaran hubungan tersebut da-
lam persamaan transpor disajikan pada persa-
maan-persamaan berikut:
( ) ( ) 1 2 3 F
h h
W FF F F F F
u v K K A F A F A F
t x y x x y y H
∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂
( ) ( ) 3 4 5 6h h
Z Z Z Z Z
u v K K A Z A Z A Z A Z
t x y x x y y
∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂
( ) ( ) 1 6 7h h
N N N N N
u v K K A F A Z A D
t x y x x y y
∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂
( ) ( ) 1 6 7h h
P P P P P
u v K K A F A Z A D
t x y x x y y
∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂
( ) ( ) 2 4 5 7 D
h h
W DD D D D D
u v K K A F A Z A Z A D
t x y x x y y H
∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + + + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂
sedangkan hK merupakan koefisien difusi hori-
zontal (50 m2
/detik ), t merupakan perubahan ter-
hadap waktu, x dan y perubahan terhadap ru-
ang arah-x (timur-barat) dan arah- y (utara-se-
latan), u dan v adalah kecepatan rata -rata arah-
x dan arah- y , H adalah kedalaman perairan
dari dasar sampai elevasi permukaan air, FW
merupakan kecepatan penenggelaman fitoplank-
ton dan DW adalah kecepatan penenggelaman
detritus. Uraian persamaan-persamaan tentang
laju pertumbuhan fitoplankton (A1), mortalitas
fitoplankton (A2), pemangsaan zoo-plankton ter-
hadap fitoplankton (A3), mortalitas zooplankton
(A4), produksi kotoran zooplankton (A5), pro-
duksi urine zooplankton (A6) dan proses dekom-
posisi detritus oleh bakteri (A7) diuraikan oleh
Yanagi (1999).
Persamaan transpor ini diselesaikan seca-
ra numerik dengan menggunakan prinsip beda
hingga, khususnya metode QUICK (Quadratic
Upstream Interpolation for Convective Kinema-
tics) (Kowalik and Murty, 1993 dan James,
1993). Proses diskretisasi disesuaikan dengan
sistem grid pada model hidrodinamika (Koropi-
tan, 2002), yaitu Arakawa-C.
Nilai-nilai koefisien yang diterapkan da-
lam penelitian ini berdasarkan Yanagi (1999),
kecuali intensitas cahaya optimum untuk per-
tumbuhan fitoplankton (128 404 Watt m-2
hari –1
)
yang didasari pada penelitian Sunarto (2001).
Intensitas cahaya rata-rata sehari diperoleh dari
data BMG Lampung (Unpublish data, 2001)
yang diamati selama Januari 2001 di Stasiun Me -
teorologi Lapangan Udara Branti, Bandar Lam-
pung. Konversi satuan adalah menggunakan
rasio red-field 40 : 7.2 : 1 untuk masing-masing
unsur C : N : P (C-karbon, N-nitrogen dan P-
fosfor). Selanjutnya, untuk Klorofil-a menggu-
nakan perbandingan 1 : 30 untuk Klorofil-a :
Karbon (Chapra, 1997) sedangkan Zooplankton
menggunakan hasil penelitian empirik Lizuka
and Uye (1986) in Yanagi (1999), yaitu 1 berat
kering individu zooplankton setara dengan 1 µg
C. Perbandingan antara berat kering dan berat
basah Zooplankton menggunakan perbandingan
empirik 1 : 10 (Chapra, 1997).
Syarat batas untuk daerah model adalah:
( ), , , , 0F Z D N P =
untuk syarat batas tertutup (daratan) dan
0
K K
C
t x
∂ ∂
± =
∂ ∂
untuk syarat batas terbuka (laut) yaitu syarat
batas radiasi Orlanski (Kowalik and Murty,
1993), sedangkan K merupakan konsentrasi
untuk masing-masing kompartimen ekosistem.
32 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38
Gambar 1. Skema Hubungan Antar Komparti-
men Model Ekosistem (Yanagi, 1999)
Data Lapangan
Data yang dipergunakan dalam penelitian
iniadalah data hasil pengamatan 9 Januari 2001
di Teluk Lampung yang dilakukan oleh Damar
(2003). Data tersebut berupa kompartimen e-
kosistem, yang terdiri atas: konsentrasi Kloro-
fil-a, zooplankton, nitrat dan fosfat yang terse-
bar di permukaan air, supla i nutrien (nitrat dan
fosfat) dari sungai Muara Karang dan Lunik,
serta data penunjang lingkungan yang terdiri a-
tas: salinitas dan temperatur. Peta geografis da-
ri stasiun pengambilan contoh diperlihatkan pa-
da Gambar 2. Nilai awal yang digunakan da-
lam simulasi ini adalah nilai konsentrasi terke-
cil yang teramati selama pengamatan tersebut.
Untuk keperluan verifikasi model, dila-
kukan proses interpolasi dengan metode Krig-
ing linier terhadap data lapangan, yang diolah
dan ditampilkan dengan menggunakan perang-
kat lunak Surfer 7,0. Hasil tampilan ini berbeda
dengan yang ditampilkan oleh Damar (2003) .
Gambar 2. Peta Geografis Stasiun Pengambilan Contoh di Teluk Lampung (Damar, 2003) dan Daerah
Model Komputasi (Daerah Kotak).
Rancangan Simulasi Model Gabungan
Hidrodinamika dan Ekosistem
Untuk kepentingan verifikasi hasil perhi-
tungan model dan data lapangan, maka penggu-
naan gabungan model hidrodinamika-ekosistem
dihitung secara bersamaan, dan hasil model un-
tuk masing-masing kompartimen ekosistem di-
cuplik sesuai dengan waktu pengambilan con-
toh di lapangan. Dalam mengkaji neraca (bud-
Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 33
get) ekosistem serta standing stock di Teluk
Lampung, maka dilakukan perhitungan secara
terpisah. Pertama adalah menghitung arus resi-
du, kemudian data arus residu yang diperoleh
menjadi komponen advektif dalam model eko-
sistem. Simulasi model ekosistem dilakukan
sampai mencapai kondisi tunak, sehingga hasil
yang diperoleh dapat mewakili kondisi neraca
ekosistem selama 1 hari.
Asumsi-asumsi yang Digunakan dalam
Model
Model hidrodinamika 2-dimensi dengan
perata-rataan terhadap kedalaman merupakan
penyederhanaan dari model 3-dimensi yang di-
integrasikan terhadap kedalaman. Dengan de-
mikian arus yang dihasilkan adalah suatu kece-
patan arus yang sama dari dasar sampai permu-
kaan, atau gradien kecepatan arus dikolom air
tidak ada. Dengan demikian model ini menga-
baikan proses turbulensi secara vertikal di ko-
lom air. Mengingat debit air dari sungai-sungai
bermuara di Teluk Lampung begitu kecil (Da-
mar, 2003) maka pengaruh masukan debit air
sungai tidak dilibatkan dalam perhitungan mo-
del hidrodinamika. Proses perhitungan neraca
kompartimen ekosistem di Teluk Lampung ter-
batas pada daerah permukaan sampai kedalam-
an 2 meter, dengan asumsi konsentrasi semua
kompartimen ekosistem menyebar merata.
Pengaruh salinitas, temperatur dan inten-
sitas cahaya dalam pertumbuhan fitoplankton
menggunakan nilai yang konstan, yaitu nilai ra-
ta-rata yang teramati di lapangan. Sumber nu-
trien yang terukur dalam pengamatan lapangan
hanya pada mulut Sungai Kota Karang dan
Way Lunik di Bandar Lampung. Sumber nu-
trien lainnya seperti daerah Industri Tarahan –
Panjang dan Sungai Ratai tidak terukur dalam
pengambilan contoh. Dengan demikian, berda-
sarkan pola sebaran yang terlihat pada data la-
pangan, maka diterapkan sumber nitrat di Ta-
rahan – Panjang pada simulasi model sama (a-
sumsi) nilainya dengan sumber nitrat di Sungai
Way Lunik. Sumber fosfat tidak digunakan,
karena tidak terlihat pada pola penyebaran data
lapangan. Sumber nitrat dan fosfat di Sungai
Ratai diabaikan dalam simulasi ini, mengingat
konsentrasinya masih dibawah konsentrasi yang
teramati di sumber Sungai Way Lunik dan Kota
Karang. Selain itu, daerah Teluk Ratai dan se-
kitarnya merupakan daerah tertutup bagi kegiat-
an masyarakat karena merupakan daerah latihan
TNI-AL.
HASIL DAN PEMBAHASAN
Arus Residu M2 di Teluk Lampung
Suatu arus pasang surut yang dibangkit-
kan oleh komponen pasut tertentu, bila dirata-
ratakan selama suatu periode komponen terse-
but, tentunya diharapkan akan memperoleh nilai
nol. Dalam kenyataannya, arus rata-rata terse-
but masih menghasilkan nilai yang dikenal de-
ngan arus residu. Ramming and Kowalik (1980)
menyatakan bahwa arus residu merupakan arus
non-pasut, dimana sirkulasinya terbentuk ketika
suku non-linier yang berhubungan dengan ge-
sekan dasar dan komponen adveksi digunakan
dalam persamaan (seperti kenyataan di alam).
Meskipun arus residu relatif kecil, tapi dapat
mempengaruhi pertukaran massa air dan gerak-
an partikel melayang dalam air. Yanagi (1999)
mengutarakan bahwa arus residu lebih memain-
kan peranan penting di perairan pantai, dalam
transpor material, dibanding arus pasang surut
untuk kurun waktu yang panjang.
Hasil simulasi arus residu untuk arus
yang dibangkitkan oleh pasut M2 di perlihatkan
pada Gambar 3. Secara umum arus residu M2
cenderung masuk dari mulut teluk sebelah ba-
rat, sebagian terus memasuki sampai kepala te-
luk dan sebagian keluar kembali dari mulut te-
luk bagian timur. Arus yang dibangkitkan oleh
pasut M2 ini tidak semuanya keluar pada mulut
teluk sebelah timur, namun ada sedikit aliran
yang keluar dan masuk di bagian tengah mulut
teluk. Pola arus residu M2 di sekitar kepala te-
luk membentuk suatu eddy yang berlawanan ja-
rum jam. Fenomena ini mengindikasikan bah-
wa material yang terbawa dari daratan melalui
kedua sungai yang ada di Bandar Lampung se-
bagian besarnya hanya tersebar di sekitar kepala
teluk. Namun material yang dibuang pada dae-
rah industri Tarahan – Panjang, akan cenderung
bergerak keluar teluk karena lokasinya di sebe-
lah selatan pola arus residu M2 yang memben-
tuk eddy.
Model Ekosistem Perairan
Hasil pengukuran lapangan untuk penye-
baran klorofil-a, zooplankton, nitrat dan fosfat
dipermukaan air, diperlihatkan pada Gambar 4,
sedangkan hasil model pada Gambar 5.
34 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38
Gambar 3. Hasil Simulasi Pola Arus Residu de-
ngan Gaya Pembangkit Pasut M2.
Pola Penyebaran KompartimenEkosistem
Perairan di Teluk Lampung
Secara umum pola penyebaran hasil mo-
del memiliki kesamaan dengan hasil pengamat-
an di lapangan. Pola penyebaran klorofil-a, zoo-
plankton, nitrat dan fosfat hasil pengamatan di
lapangan pada tanggal 9 Januari 2001 mem-
perlihatkan hasil yang konsisten dengan pola
arus residu M2. Secara umum terlihat bahwa
terjadi pemusatan konsentrasi di sekitar kepala
teluk yang diduga akibat adanya arus residu M2
yang membentuk eddy di perairan tersebut, se-
hingga material yang tersebar menjauhi kepala
teluk yang sedikit. Berlainan dengan material
yang dibuang pada daerah industri Tarahan –
Panjang, langsung tersebar mengikuti pola arus
(a) (b)
(c) (d)
Gambar 4. Hasil Pengukuran Lapangan di Permukaan Air untuk: (a) Klorofil-a, (b) Zooplankton, (c)
Nitrat, dan (d) Fosfat.
Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 35
residu M2, hal ini nyata terlihat pada penyebar-
an Klorofil-a dan nitrat baik hasil simulasi mau-
pun model. Dengan demikian, peranan arus re-
sidu M2 sangat dominan dalam menyebarkan
suatu material di perairan Teluk Lampung. Hal
ini telah diamati dalam penelitian sebelumnya
dengan menggunakan pemodelan arus residu M2
3-dimensi oleh Koropitan et al (2003).
(a) (b)
(c) (d)
Gambar 5. Hasil Simulasi Model di Permukaan Air untuk: (a) Klorofil-a, (b) Zooplankton, (c) Nitrat,
dan (d) Fosfat.
Hasil simulasi yang diperoleh melalui ga-
bungan model hidrodinamika-ekosistem memi-
liki pola penyebaran yang konsisten dengan po-
la penyebaran data lapangan. Hal ini terlihat je-
las dalam pola penyebaran klorofil-a, hasil peng-
amatan lapangan dan model. Namun, pola pe-
nyebaran zooplankton hasil model memperli-
hatkan hasil yang agak berbeda dengan hasil
pengamatan lapangan. Kemungkinan ini diaki-
batkan oleh keterbatasan dalam memodelkan pe -
nyebaran zooplankton mengingat sifatnya yang
terkadang mampu melawan arus untuk mencari
tempat yang banyak makanan. Dengan demiki-
an agak sulit menerapkan model adveksi dan di-
fusi pada konsentrasi zooplankton, khususnya
pemilihan nilai koefisien difusi yang tepat. Ha-
sil simulasi masih memiliki nilai dibawah peng-
amatan lapangan. Penyebaran nitrat, baik hasil
model dan pengamatan lapangan memperlihat-
kan adanya pemusatan konsentrasi di kepala te-
luk dan pesisir daerah industri Tarahan–Pan-
jang. Demikian pula dengan penyebaran fosfat,
memperlihatkan pola penyebaran yang mirip an-
tara hasil model dan pengamatan lapangan. Pa-
da pengamatan lapangan terlihat pula pemusat-
an konsentrasi nitrat dan fosfat di sekitar Teluk
36 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38
Ratai, dengan konsentrasi yang tidak sebesar di
kepala teluk. Hal ini kemungkinan akibat su-
plai yang berasal dari Sungai Ratai. Secara u-
mum, walaupun memiliki pola penyebaran yang
mirip dengan data lapangan, namun hasil simu-
lasi klorofil-a, zooplankton, nitrat dan fosfat
masih memiliki nilai dibawah pengamatan la-
pangan. Hasil ini disebabkan oleh tidak repre-
sentatifnya sumber nutrien yang dilibatkan da-
lam simulasi.
Dinamika Ekosistem Perairan
Teluk Lampung
Sesuatu hal yang sulit untuk menentukan
dinamika ekosistem di Teluk Lampung, dengan
melibatkan interaksi proses-proses fisik, kimia-
wi dan biologis, melalui pengamatan lapangan.
Hal ini akan membutuhkan biaya yang tinggi
serta waktu yang lama, selain itu pula daerah
Teluk Lampung cukup luas, sehingga akan me-
nyulitkan dalam pengambilan contoh. Melalui
gabungan model hidrodinamika-ekosistem ini,
diharapkan dapat memberikan gambaran umum
tentang neraca (budget) dan struktur ekosistem
dari masing-masing kompartimen ekosistem di
Teluk Lampung.
Neraca KompartimenEkosistem
di Teluk Lampung
Seperti diperlihatkan pada Tabel 1 penga-
ruh arus residu M2 memperlihatkan bahwa su-
plai nitrat dan fosfat yang berasal dari sungai
sangat kecil nilainya dibanding yang berasal da-
ri laut. Selain itu, peranan suplai dari sungai be-
lum begitu berarti terhadap penambahan nutrien
di Teluk Lampung secara keseluruhan, tetapi
hanya berpengaruh pada sekitar daerah kepala
teluk, sesuai dengan uraian sebelumnya. Hal i-
ni juga diuraikan oleh Damar (2003) bahwa pe-
ngaruh suplai nutrien dari sungai hanya berkisar
pada daerah kepala Teluk. Selanjutnya, hasil
perhitungan model yang memperlihatkan ada-
nya suplai nutrien yang signifikan dari Selat
Sunda, juga teramati oleh Hendiarti et al (2002),
dengan menggunakan citra satelit. Demikian
pula peranan suplai nutrien dari daerah industri
Tarahan–Panjang, hanya terbatas disekitar pesi-
sir daerah tersebut.
Struktur Ekosistem di Teluk Lampung
Pembahasan struktur ekosistem ini dida-
sari oleh standing stock kompartimen ekosistem
di Teluk Lampung. Standing stock komparti-
men ekosistem di Teluk Lampung diperlihatkan
pada Gambar 6. Secara umum, pengaruh inter-
aksi antara proses biologis seperti produktifitas
primer, pemangsaan (sekunder), kematian alami
fitoplankton dan zooplankton serta proses de-
komposisi oleh bakteri belum begitu berperan
dalam standing stock ekosistem di Teluk Lam-
pung. Peranan suplai dari laut masih lebih do-
minan, seperti yang telah diuraikan sebelum-
nya.
Tabel 1. Neraca (budget) Kompartemen yang
Dipengaruhi oleh Arus Residu M2.
Sumber
Kompar-
timen Sungai
Laut
(batas)
Pesisir
Tarahan
dan
Panjang
Keluar Netto
Nitrat
(kg mol)
0.79 13 154.40 0.79 6 048.00 7 107.19
Fosfat
(kg mol)
0.76 79 531.20 - 34 636.04 44 895.92
Klorofil-a
(Kg C)
- 7 101.63 - 1 013.92 6 087.71
Zooplankton
(Kg C)
- 65 087.28 - 12 605.37 52 481.91
Perhitungan rasio produktifitas primer
dengan penjumlahan hasil proses dekomposisi
dan produksi urine zooplankton adalah 69.52%,
atau aliran energinya mengalami kehilangan se-
besar 30.38 %. Hal ini erat kaitannya dengan e-
fektifitas pemanfaatan nutrien oleh fitoplank-
ton. Penjelasan yang mungkin untuk kasus ini
adalah akibat penggunaan nilai intensitas caha-
ya rata-rata selama bulan januari 2001 dalam
proses simulasi, dimana memiliki nilai yang le-
bih tinggi (sekitar 27.3%) dari nilai intensitas
cahaya optimum untuk produktifitas primer.
Dengan demikian, kondisi intensitas cahaya
yang relatif lebih tinggi ini mengakibatkan pe-
manfaatan nutrien yang tidak optimum. Selain
itu, penerapan dalam simulasi ini diasumsikan
hanya pada lapisan 0 - 2 m sehingga tingkat op-
timum pemanfaatan cahaya dalam produktifitas
primer pada kedalaman dibawah 2 meter tidak
terhitung. Dalam persamaan suku proses bioki-
miawi yang sama namun untuk kasus 3-dimensi
di Laut Cina Selatan, Guo et al (1999) memper-
oleh hasil simulasi yang mencapai 114.83% a-
tau aliran energinya mengalami penambahan
sebesar 14.83%. Nilai ini sangat memungkin-
Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 37
kan, karena dalam simulasi tersebut dihitung
pemanfaatan nutrien oleh fitoplankton sampai
ke dasar perairan, yaitu kedalaman yang inten-
sitas mataharinya sangat optimum untuk proses
fotosintesis.
Gambar 6. Standing stock Kompartimen Eko-
sistem Akibat Arus Residu M2 da-
lam Satu Hari (kg C atau kg mol).
Hasil simulasi ini memperoleh pula ting-
kat efisiensi produktifitas primer ke produktifi-
tas sekunder (pemangsaan) yang sangat tinggi
dan melebihi produktifitas primer yang ada, de-
ngan nilai rasio 117.24%, atau aliran energinya
mengalami penambahan sebesar 17.24%. Fe-
nomena ini menggambarkan bahwa aktifitas pe-
mangsaan oleh zooplankton lebih dominan di-
banding pertumbuhan fitoplankton. Keberlan-
jutan biomassa fitoplankton dalam Teluk Lam-
pung sangat ditunjang oleh masukan dari Selat
Sunda. Kasus pada Teluk Lampung ini sangat
bertolak belakang dengan Teluk Pelabuhan Ra-
tu yang nilai rasionya sangat rendah yaitu 0.62%
(Koropitan et al 2002). Kondisi di Teluk Pela-
buhan Ratu berbeda, yaitu suplai klorofil-a dari
luar teluk lebih sedikit.
KESIMPULAN DAN SARAN
Kesimpulan
Hasil pemodelan ekosistem perairan di
Teluk Lampung memperlihatkan pola yang cu-
kup konsisten dengan hasil pengukuran lapang-
an, kecuali penyebaran Zooplankton. Penye-
baran masing-masing kompartimen ekosistem
mengikuti pola arus residu M2.
Peranan proses-proses biokimiawi dan
suplai dari sungai di Kota Bandar Lampung be-
lum begitu berpengaruh terhadap ekosistem
perairan di Teluk Lampung. Suplai dari Selat
Sunda merupakan faktor penting dalam ekosis-
tem di Teluk Lampung. Tingkat pemanfaatan
nutrien oleh fitoplankton dalam proses fotosin-
tesis belum optimum, serta aktifitas pemangsa-
an oleh zooplankton lebih dominan dibanding
laju pertumbuhan fitoplankton.
Saran
Model yang digunakan dalam penelitian
ini masih memiliki beberapa kelemahan, se-
hingga diharapkan dalam penelitian mendatang
akan dikembangkan model yang lebih lengkap
peubahnya, yang meliputi: (a) model gabungan
hidrodinamika-ekosistem 3 dimensi, untuk
mengkaji neraca dan standing stock ekosistem
sampai pada dasar perairan, (b) menggunakan
pendekatan prognostic (model baroklinik) da-
lam model hidrodinamika 3-dimensi, sehingga
pengaruh suhu dan salinitas berubah terhadap
waktu, dan (c) mengembangkan persamaan em-
piris proses remineralisasi di dasar perairan un-
tuk digunakan dalam model ekosistem.
UCAPAN TERIMA KASIH
Ucapan terima kasih ditujukan kepada
pemberi dana Beasiswa Program Pascasarjana
(BPPS), DIKTI-DEPDIKNAS, serta Program
Magister Oseanografi dan Sains Atmosfer, Pro-
gram Pascasarjana - Institut Teknologi Ban-
dung, yang mendukung terlaksananya peneliti-
an ini.
PUSTAKA
Blumberg, A. F. and G. L. Mellor. 1999. POM98. http://
www.aos.princeton.edu/WWWPUBLIC/htdocs.p
om.
Chapra, 1997. Surface water quality modelling. Mc
Graw-Hill. Singapore.
38 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38
Chen, C., R. Ji, and L. Zheng. 1999. Influences of physic-
cal processes on the ecosystem in Jiaozhou Bay: A
coupled physical and biological model experiment.
Journal of Geoph. Research, 104(C12): 29925- 29949.
Damar, A. 2003. Effects of enrichment on nutrient dy-
namics, phytoplankton dynamics and productivity
in Indonesian tropical waters: a comparison bet-
ween Jakarta Bay, Lampung Bay and Semangka
Bay. Faculty of Mathematics and Natural Sciences,
Christian Albrechts University, Kiel, Germany.
Edwards, C., H. P. Batchelder and T. M. Powell. 2000.
Modeling Microzooplankton and Macrozooplank-
ton dynamics within a coastal upwelling system.
Journal of Plankton Research, 22(9): 1619-1648.
Guo, X., T. Yanagi and D. Hu 1999. Ecological modeling
in the East China Sea (Manuscript).
Hendiarti, N., H. Siegel and T. Ohde. 2002. Distinction of
different water masses in and around the Sunda
Strait: satellite observations and in-situ measure-
ments. Proceedings Vol. II. Pan Ocean Remote
Sensing Conference: Remote Sensing and Ocean
Science for Marine Resources Exploration and En-
vironment, Bali, Indonesia. pp. 681 – 686.
James, A. 1993. An Introduction to water quality mo-
delling. John Wiley & Sons. England.
Kawamiya, M., M. J. Kishi, Y. Yamanaka, and N. Sugino-
hara. 1995. An ecological-physical coupled model
applied to Station Papa. Journal of Oceanography,
(51): 635-664.
Kishi, M. J., and M. Uchiyama. 1995. A Three-dimen-
sional numerical model for a mariculture nitrogen
cycle: case study in Shizugawa Bay, Japan. Fish. O-
ceanogr, 4(4): 303-316.
Koropitan, A. F. 2002. Simulasi pola arus di Teluk
Lampung. Jurnal Ilmu-ilmu perairan dan perikanan
Indonesia, IX(2): 11-17.
Koropitan, A. F., R. Kaswadji, I. M. Radjawane, and S.
Hadi. 2002. Aquatic ecosystem modeling in Pela-
buhan Ratu Bay. Proceedings Vol. II. Pan Ocean
Remote Sensing Conference: Remote Sensing and
Ocean Science for Marine Resources Exploration
and Environment, Bali, Indonesia. pp. 662-668.
Koropitan, A. F., S. Hadi, and I. M. Radjawane. 2003.
Three-dimensional simulation of tidal current in
Lampung Bay: diagnostic numerical experiment.
Bahan presentasi yang disampaikan pada International
Symposium on Remote Sensing and Ocean Sciences
in South East Asia di Universitas Udayana, Bali pada
tanggal 2 September 2003.
Mihardja, D. K., I. M. Radjawane dan M. Ali. 1995. Studi
penyebaran air panas di Tarahan, Lampung. La-
poran Penelitian. PT. Wiratman & Associates. Jakarta.
Moll, A. 1998. Regional distribution of primary pro-
duction in the North Sea simulated by a three di-
mensional model. J. Mar. Syst., (16): 151-170.
Neuman, T. 2000. Towards a 3D-ecosystem model of
the Baltic Sea. J. Mar. Syst., (25): 405-419.
Pranowo, W. S. 2002. Model numerik sebaran senyawa
Nitrogen di perairan pantai Kedung, Jepara. Tesis
Magister. Bidang Khusus Oseanografi, Program Studi
Oseanografi and Sains Atmosfer, Program Pascasarja-
na, Institut Teknologi Bandung.
Sptiz, Y. H., P. A. Newberger, and J. S. Allen. 2003. Eco-
system response to upwelling off the Oregon coast:
Behavior of three nitrogen-based models. Journal of
Geoph. Research, 108(C3): 7-1 - 7-22.
Sugianto, D. N. 2001. Model ekosistem 2-dimensi di
perairan pantai Banjir Kanal Timur, Semarang.
Tesis Magister. Bidang Khusus Oseanografi, Program
Studi Oseanografi and Sains Atmosfer, Program Pas-
casarjana, Institut Teknologi Bandung.
Sunarto. 2001. Pola hubungan intensitas cahaya dan
nutrien dengan Produktifitas Primer Fitoplankton
di Teluk Hurun, Lampung. Tesis Magister. Program
Studi Ilmu Perairan. Program Pascasarjana, Institut
Pertanian Bogor.
Wiryawan, B., B. Marsden, H.A. Susanto, A.K. Mahi, M.
Ahmad dan H. Poespitasari. 1999. Atlas sumberdaya
wilayah Pesisir Lampung. Proyek Pesisir Lampung
kerja sama antara Pemda Lampung, Proyek Pesisir
Lampung PKSPL-IPB, University of Rhode Island dan
USAID Jakarta.
Yanagi, T. 1999. Coastal oceanography. Terra Scientific
Publishing Company, Tokyo.
Yonik, M. Y. 2000. Model dua-dimensi penyebaran a-
monium, Nitrit, and Nitrat di Perairan Pantai Se-
marang dengan persamaan kinetik orde satu Tho-
mann. Tesis Magister. Bidang Khusus Teknik Penge-
lolaan Lingkungan, Program Magister Teknik Ling-
kungan, Institut Teknologi Bandung.

More Related Content

What's hot

Survey Hidrografi (Ganes permata)
Survey Hidrografi (Ganes permata)Survey Hidrografi (Ganes permata)
Survey Hidrografi (Ganes permata)afifsalim12
 
Makalah hidrografi (nabilla esa chotimah)
Makalah hidrografi (nabilla esa chotimah)Makalah hidrografi (nabilla esa chotimah)
Makalah hidrografi (nabilla esa chotimah)afifsalim12
 
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...Repository Ipb
 
Pengukuran Hidrografi (Dimas bayu)
Pengukuran Hidrografi (Dimas bayu)Pengukuran Hidrografi (Dimas bayu)
Pengukuran Hidrografi (Dimas bayu)afifsalim12
 
10 sumberdaya-alam-air
10 sumberdaya-alam-air10 sumberdaya-alam-air
10 sumberdaya-alam-airKoran Bekas
 
Model aliran air tanah untuk memprediksi penyebaran
Model aliran air tanah untuk memprediksi penyebaran Model aliran air tanah untuk memprediksi penyebaran
Model aliran air tanah untuk memprediksi penyebaran Azmi Zouma
 
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...Luhur Moekti Prayogo
 
Kajian pengendalian laju erosi dengan cekdam
Kajian pengendalian laju erosi dengan cekdamKajian pengendalian laju erosi dengan cekdam
Kajian pengendalian laju erosi dengan cekdamYosep Setiawan
 
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...Repository Ipb
 
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...Mujiyanto -
 
Pengukuran Hidrografi (Alam sugeng)
Pengukuran Hidrografi (Alam sugeng)Pengukuran Hidrografi (Alam sugeng)
Pengukuran Hidrografi (Alam sugeng)afifsalim12
 

What's hot (15)

Survey Hidrografi (Ganes permata)
Survey Hidrografi (Ganes permata)Survey Hidrografi (Ganes permata)
Survey Hidrografi (Ganes permata)
 
Metanalisis
MetanalisisMetanalisis
Metanalisis
 
Makalah hidrografi (nabilla esa chotimah)
Makalah hidrografi (nabilla esa chotimah)Makalah hidrografi (nabilla esa chotimah)
Makalah hidrografi (nabilla esa chotimah)
 
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...
KAJIAN KAPASITAS ASIMILASI BEBAN PENCEMARAN ORGANIK DAN ANORGANIK DI PERAIRAN...
 
etdfyhjhk
etdfyhjhketdfyhjhk
etdfyhjhk
 
Pengukuran Hidrografi (Dimas bayu)
Pengukuran Hidrografi (Dimas bayu)Pengukuran Hidrografi (Dimas bayu)
Pengukuran Hidrografi (Dimas bayu)
 
Rkkps
RkkpsRkkps
Rkkps
 
10 sumberdaya-alam-air
10 sumberdaya-alam-air10 sumberdaya-alam-air
10 sumberdaya-alam-air
 
EKOHIDROLOGI.docx
EKOHIDROLOGI.docxEKOHIDROLOGI.docx
EKOHIDROLOGI.docx
 
Model aliran air tanah untuk memprediksi penyebaran
Model aliran air tanah untuk memprediksi penyebaran Model aliran air tanah untuk memprediksi penyebaran
Model aliran air tanah untuk memprediksi penyebaran
 
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...
Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) di Pulau Gili Raja...
 
Kajian pengendalian laju erosi dengan cekdam
Kajian pengendalian laju erosi dengan cekdamKajian pengendalian laju erosi dengan cekdam
Kajian pengendalian laju erosi dengan cekdam
 
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...
KARAKTERISTIK KIMIAWI DAN KESUBURAN PERAIRAN TELUK PELABUHAN RATU PADA MUSIM ...
 
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...
Status usaha perikanan tangkap di calon zona rehabilitasi terumbu karang di t...
 
Pengukuran Hidrografi (Alam sugeng)
Pengukuran Hidrografi (Alam sugeng)Pengukuran Hidrografi (Alam sugeng)
Pengukuran Hidrografi (Alam sugeng)
 

Similar to DINAMIKA EKOSISTEM TELUK LAMPUNG

Meteorologi
Meteorologi Meteorologi
Meteorologi pcwna
 
Pengantar oseanografi
Pengantar oseanografiPengantar oseanografi
Pengantar oseanografinaufalulhaq2
 
Ekosistem sungai 2
Ekosistem sungai 2Ekosistem sungai 2
Ekosistem sungai 2PT. SASA
 
Ekosistem sungai 1
Ekosistem sungai 1Ekosistem sungai 1
Ekosistem sungai 1PT. SASA
 
Jurnal ekologi perairan
Jurnal ekologi perairanJurnal ekologi perairan
Jurnal ekologi perairanPT. SASA
 
Monitoring t ingkat mari njeglek
Monitoring t ingkat mari njeglekMonitoring t ingkat mari njeglek
Monitoring t ingkat mari njeglekGoparipung Bambang
 
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota Bandung
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota BandungMateri Hidrogeologi_Pembinaan Pengguna Air Tanah Kota Bandung
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota BandungDasapta Erwin Irawan
 
Pikp modul04 sub sistem perairan tawar
Pikp modul04 sub sistem perairan tawarPikp modul04 sub sistem perairan tawar
Pikp modul04 sub sistem perairan tawarYosie Andre Victora
 
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDA
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDABIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDA
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDARepository Ipb
 
Dampak pembangkit listrik tenaga air terhadap lingkungan copy
Dampak pembangkit listrik tenaga air terhadap lingkungan   copyDampak pembangkit listrik tenaga air terhadap lingkungan   copy
Dampak pembangkit listrik tenaga air terhadap lingkungan copyandika anjas
 
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...robert peranginangin
 
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya Air
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya AirKajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya Air
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya AirWillem Sidharno
 
95010301 sutiono teorisungai
95010301 sutiono teorisungai95010301 sutiono teorisungai
95010301 sutiono teorisungaiJack Lubis
 
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...dwihartatizaldi
 
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docx
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docxDISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docx
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docxIrfanMsb
 

Similar to DINAMIKA EKOSISTEM TELUK LAMPUNG (20)

FENOMENA DAS MAHAKAM
FENOMENA DAS MAHAKAMFENOMENA DAS MAHAKAM
FENOMENA DAS MAHAKAM
 
Pendahuluan lap msdp
Pendahuluan lap msdpPendahuluan lap msdp
Pendahuluan lap msdp
 
Meteorologi
Meteorologi Meteorologi
Meteorologi
 
Pengantar oseanografi
Pengantar oseanografiPengantar oseanografi
Pengantar oseanografi
 
Ekosistem sungai 2
Ekosistem sungai 2Ekosistem sungai 2
Ekosistem sungai 2
 
Ekosistem sungai 1
Ekosistem sungai 1Ekosistem sungai 1
Ekosistem sungai 1
 
Jurnal ekologi perairan
Jurnal ekologi perairanJurnal ekologi perairan
Jurnal ekologi perairan
 
Monitoring t ingkat mari njeglek
Monitoring t ingkat mari njeglekMonitoring t ingkat mari njeglek
Monitoring t ingkat mari njeglek
 
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota Bandung
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota BandungMateri Hidrogeologi_Pembinaan Pengguna Air Tanah Kota Bandung
Materi Hidrogeologi_Pembinaan Pengguna Air Tanah Kota Bandung
 
Pikp modul04 sub sistem perairan tawar
Pikp modul04 sub sistem perairan tawarPikp modul04 sub sistem perairan tawar
Pikp modul04 sub sistem perairan tawar
 
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDA
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDABIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDA
BIO-ECOLOGI KERANG LAMIS (Meretrix meretrix) DI PERAIRAN MARUNDA
 
Dampak pembangkit listrik tenaga air terhadap lingkungan copy
Dampak pembangkit listrik tenaga air terhadap lingkungan   copyDampak pembangkit listrik tenaga air terhadap lingkungan   copy
Dampak pembangkit listrik tenaga air terhadap lingkungan copy
 
Perencanaan hidrology
Perencanaan hidrologyPerencanaan hidrology
Perencanaan hidrology
 
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...
Model spasial temporal dampak kenaikan muka air laut terhadap permukiman pend...
 
skripsi
skripsiskripsi
skripsi
 
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya Air
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya AirKajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya Air
Kajian Mitigasi dampak perubahan iklim pada Sektor Sumber Daya Air
 
95010301 sutiono teorisungai
95010301 sutiono teorisungai95010301 sutiono teorisungai
95010301 sutiono teorisungai
 
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...
Pengembangan Kemandirian Energi Pedesaan Berwawasan Lingkungan Melalui Rancan...
 
Presentasi Rosma
Presentasi RosmaPresentasi Rosma
Presentasi Rosma
 
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docx
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docxDISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docx
DISTRIBUSI KANDUNGAN CO2 TERLARUT DI PERAIRAN.docx
 

More from Repository Ipb

Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Repository Ipb
 
Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Repository Ipb
 
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...Repository Ipb
 
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...Repository Ipb
 
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...Repository Ipb
 
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...Repository Ipb
 
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...Repository Ipb
 
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUM
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUMTHERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUM
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUMRepository Ipb
 
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIK
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIKSTUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIK
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIKRepository Ipb
 
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIA
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIATHERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIA
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIARepository Ipb
 
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...Repository Ipb
 
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...Repository Ipb
 
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...Repository Ipb
 
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIF
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIFBRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIF
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIFRepository Ipb
 
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...Repository Ipb
 
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...Repository Ipb
 
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...Repository Ipb
 
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...Repository Ipb
 
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...Repository Ipb
 

More from Repository Ipb (20)

Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373
 
Peta ipb
Peta ipbPeta ipb
Peta ipb
 
Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373Proceedings icaia 2015_yandra_367-373
Proceedings icaia 2015_yandra_367-373
 
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...
SUPERABSORBEN HASIL PENCANGKOKAN DAN PENAUTAN SILANG FRAKSI ONGGOK DENGAN AKR...
 
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
 
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
TEKNOLOGI SEPARASI BAHAN AKTIF TEMULA W AK MENGGUNAKAN BIOPOLIMER TERMODIFIKA...
 
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...
PEMBUATAN ARANG DARI SAMPAH ORGANIK DENGAN CARA KARBONISASI MENGGUNAKAN REAKT...
 
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...
IDENTIFIKASI SENYAWABIOAKTIFANTIFEEDANT DARIASAPCAIRHASILPIROLISISSAMPAHORGAN...
 
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUM
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUMTHERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUM
THERMAL EFFECT ON APATITE CRYSTAL SYNTHESIZED FROM EGGSHELL’S CALCIUM
 
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIK
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIKSTUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIK
STUDI PRODUKSI PEKTIN ASETAT SEBAGAI BAHAN BAKU LEMBARAN BIOPLASTIK
 
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIA
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIATHERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIA
THERMOGAVIMETRIC-DIFFERENTIAL ANALYSIS PADA MINERAL TULANG MANUSIA
 
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...
SINTESIS POLIOL SEBAGAI BAHAN DASAR PEMBENTUK POLIURETAN BERBASIS MINY AK JAR...
 
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...
EKSTRAK SAPOGENIN AKAR KUNING SEBAGAI HEPATOPROTEKTOR PADA MENCIT YANG DIINDU...
 
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...
PENGARUH EKSTRAK BANGLE (Zingiber cassumunar Roxb.) TERHADAP AKTIVITAS ENZIM ...
 
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIF
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIFBRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIF
BRlKET AMPAS SAGU SEBAGAI BAHAN BAKAR ALTERNATIF
 
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...
STUDI IN VIVO KHASIAT ANTIINFLAMASI EKSTRAK HERBA SURUHAN (PEPEROMIA PELLUCID...
 
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...
POTENSI MINYAK ATSIRI DAUN Cinnamomum multiflorum SEBAGAI INSEKTISIDA NAB A T...
 
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...
ISOLASI DAN IDENTIFIKASI GOLONGAN FLAVONOID DAUN DANDANG GENDIS (Clinacanthus...
 
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...
Metode Spektrofotometri UV-Vis Untuk Penentuan Barium dalam Tanah Liat dengan...
 
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...
HIGH PERFORMANCE LIQUID CHROMATOGRAPHY PROFilE OF TEMPUYUNG Sonchus arvensis ...
 

Recently uploaded

CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7IwanSumantri7
 
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMM
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMMLaporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMM
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMMmulyadia43
 
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajat
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajatLatihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajat
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajatArfiGraphy
 
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfREFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfirwanabidin08
 
442539315-ppt-modul-6-pend-seni-pptx.pptx
442539315-ppt-modul-6-pend-seni-pptx.pptx442539315-ppt-modul-6-pend-seni-pptx.pptx
442539315-ppt-modul-6-pend-seni-pptx.pptxHendryJulistiyanto
 
421783639-ppt-overdosis-dan-keracunan-pptx.pptx
421783639-ppt-overdosis-dan-keracunan-pptx.pptx421783639-ppt-overdosis-dan-keracunan-pptx.pptx
421783639-ppt-overdosis-dan-keracunan-pptx.pptxGiftaJewela
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BAbdiera
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxJamhuriIshak
 
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxPERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxRizkyPratiwi19
 
Dinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapDinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapsefrida3
 
Perumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxPerumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxadimulianta1
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxRezaWahyuni6
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxIrfanAudah1
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1udin100
 
Aksi nyata disiplin positif Hj. Hasnani (1).pdf
Aksi nyata disiplin positif Hj. Hasnani (1).pdfAksi nyata disiplin positif Hj. Hasnani (1).pdf
Aksi nyata disiplin positif Hj. Hasnani (1).pdfDimanWr1
 
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfbibizaenab
 
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfTUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfElaAditya
 
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docx
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docxTugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docx
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docxmawan5982
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxazhari524
 
tugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDtugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDmawan5982
 

Recently uploaded (20)

CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7
 
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMM
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMMLaporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMM
Laporan Guru Piket untuk Pengisian RHK Guru Pengelolaan KInerja Guru di PMM
 
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajat
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajatLatihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajat
Latihan Soal bahasa Indonesia untuk anak sekolah sekelas SMP atau pun sederajat
 
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdfREFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
REFLEKSI MANDIRI_Prakarsa Perubahan BAGJA Modul 1.3.pdf
 
442539315-ppt-modul-6-pend-seni-pptx.pptx
442539315-ppt-modul-6-pend-seni-pptx.pptx442539315-ppt-modul-6-pend-seni-pptx.pptx
442539315-ppt-modul-6-pend-seni-pptx.pptx
 
421783639-ppt-overdosis-dan-keracunan-pptx.pptx
421783639-ppt-overdosis-dan-keracunan-pptx.pptx421783639-ppt-overdosis-dan-keracunan-pptx.pptx
421783639-ppt-overdosis-dan-keracunan-pptx.pptx
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
 
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptxPERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
PERAN PERAWAT DALAM PEMERIKSAAN PENUNJANG.pptx
 
Dinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genapDinamika Hidrosfer geografi kelas X genap
Dinamika Hidrosfer geografi kelas X genap
 
Perumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptxPerumusan Visi dan Prakarsa Perubahan.pptx
Perumusan Visi dan Prakarsa Perubahan.pptx
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptx
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1
 
Aksi nyata disiplin positif Hj. Hasnani (1).pdf
Aksi nyata disiplin positif Hj. Hasnani (1).pdfAksi nyata disiplin positif Hj. Hasnani (1).pdf
Aksi nyata disiplin positif Hj. Hasnani (1).pdf
 
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdfBab 6 Kreatif Mengungap Rasa dan Realitas.pdf
Bab 6 Kreatif Mengungap Rasa dan Realitas.pdf
 
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdfTUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
TUGAS GURU PENGGERAK Aksi Nyata Modul 1.1.pdf
 
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docx
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docxTugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docx
Tugas 1 ABK di SD prodi pendidikan guru sekolah dasar.docx
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptx
 
tugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDtugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SD
 

DINAMIKA EKOSISTEM TELUK LAMPUNG

  • 1. Reprint: JURNALILMU-ILMUPERAIRANDANPERIKANANINDONESIA ISSN 0854-3194 Juni 2004, Jilid 11, Nomor 1 Halaman 29 – 38 Studi Dinamika Ekosistem Perairan Di Teluk Lampung: Pemodelan Gabungan Hidrodinamika-Ekosistem (A Study on the dynamic of Aquatic Ecosystem in Lampung Bay: A Coupled Hydrodynamic-Ecosystem Modeling) Alan Frendy Koropitan, Safwan Hadi, Ivonne M. Radjawane dan Ario Damar Alamat Penyunting dan Tata Usaha: Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor - Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Wing C, Lantai 4 - Telepon (0251) 622912, Fax. (0251) 622932. E-mail : jippi@centrin.net.id Berdasarkan Keputusan Direktur Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional No. 22/DIKTI/Kep /2002 tanggal 8 Mei 2002 tentang Hasil Akreditasi Jurnal Ilmiah Direktorat Jenderal Pendidikan Tinggi Tahun 2002, Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia (JIPPI) diakui sebagai jurnal nasional terakreditasi.
  • 2. 29 STUDI DINAMIKA EKOSISTEM PERAIRAN DI TELUK LAMPUNG: PEMODELAN GABUNGAN HIDRODINAMIKA-EKOSISTEM (A Study on the dynamic of Aquatic Ecosystem in Lampung Bay: A Coupled Hydrodynamic-Ecosystem Modeling) Alan Frendy Koropitan1 , Safwan Hadi2 , Ivonne M. Radjawane2 dan Ario Damar3 ABSTRAK Penelitian ini bertujuan untuk mengkaji dinamika ekosistem perairan di Teluk Lampung dengan menggunakan gabungan model hidrodinamika-ekosistem dengan pendekatan numerik. Secara umum, hasil simulasi pola arus residu M2 cenderung masuk dari mulut teluk sebelah barat, sebagian terus memasuki sam- pai kepala teluk dan sebagian keluar kembali dari mulut teluk bagian timur. Selain itu, terlihat pula adanya suatu eddy yang mengalir berlawanan arah jarum jam di sekitar kepala teluk. Pola penyebaran masing-ma- sing kompartimen ekosistem hasil model memiliki kesamaan dengan hasil pengamatan di lapangan, serta konsisten dengan pola arus residu M2. Pengaruh suplai dari sungai, interaksi antara proses biologis seperti produktifitas primer, sekunder (pemangsaan), kematian alami plankton, serta proses dekomposisi oleh bakteri belum begitu berperan dalam neraca dan standing stock ekosistem di Teluk Lampung. Peranan suplai dari laut lebih dominan dibanding dengan proses-proses biokimiawi yang berinteraksi di dalam teluk. Hasil perhi- tungan tingkat efisiensi aliran energi dari proses dekomposisi dan produksi urine zooplankton ke produktifitas primer mengalami kehilangan sebesar 30.48 %, sementara dari produktifitas primer ke produktifitas sekunder (pemangsaan) mengalami penambahan 17.24 %. Kata kunci: dinamika ekosistem, Teluk Lampung, gabungan model hidrodinamika-ekosistem, arus residu M2. ABSTRACT The aim of this research was to study in the dynamic of aquatic ecosystem in Lampung Bay by using a coupled hydrodynamic-ecosystem model with numerical approach. Generally, the simulated flow pattern of M2 residual current tends to flow into the western mouth of the bay from which part of them flow toward the head of the bay while the other parts flow out through the eastern mouth of the bay. The simulation also indi- cates the existence of an eddy with counterclockwise motion around the head of the bay. The simulation of the distribution pattern of each ecosystem compartment is consistent with the field distribution pattern and with M2 residual current pattern. The rivers run off, primary production, secondary production (grazing), natural mortality of plankton as well as the decomposition by bacteria are not important to the budget and standing stock in Lampung Bay ecosystem. The influence of ocean supply is more important than biochemi- cal processes in the bay. The calculated rate of efficiency of heat flow from both the decomposition process and urine production by zooplankton to the primary production has missed 30.48 %, while from the primary production to the secondary production (grazing) has added 17.24 %. Key words: ecosystem dynamic, Lampung Bay, coupled hy drodynamic-ecosystem model, M2 residual current. PENDAHULUAN Penelitian-penelitian tentang ekosistem perairan laut dengan menggunakan model nu- merik semakin berkembang pesat dalam kurun 10 tahun terakhir ini, antara lain: Kawamiya et al (1995), Kishi and Uchiyama (1995), Moll (1998), Chen et al (1999), Yanagi (1999), Neu- mann (2000), Edwards et al (2000) serta Spitz et al (2003). Bahkan di Indonesia, walaupun masih dalam taraf validasi model serta terbatas pada 2-dimensi (secara horizontal di permuka- an), telah diterapkan pada beberapa perairan te- luk dan pesisir, seperti yang dilakukan oleh Yo- nik (2000), Sugianto (2001), Pranowo (2002), dan Koropitan et al (2002). Khusus untuk Te- luk Lampung, penggunaan model numerik un- tuk dinamika ekosistem belum pernah dilaku- kan. Sampai saat ini, penggunaan model nume- rik untuk mempelajari Teluk Lampung, umum- 1 Departemen Ilmu dan Teknologi Kelautan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor (FPIK, IPB), Bo - gor. E-mail: alanfrendy@yahoo.com. 2 Departemen Geofisika dan Meteorologi, Institut Teknologi Bandung (ITB), Bandung. 3 Departemen Manajemen Sumberdaya Perairan, Fakultas Peri- kanan dan Ilmu Kelautan, Institut Pertanian Bogor (FPIK, IPB), Bogor.
  • 3. 30 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38 nya masih terfokus pada permasalahan sirkulasi air seperti yang diuraikan dalam penelitian-pe- nelitian sebelumnya, yaitu Mihardja et al (1995), Koropitan (2002) dan Koropitan et al (2003). Penelitian tentang ekosistem di Teluk Lampung, telah dilakukan oleh beberapa peneli- ti antara lain Wiryawan et al (1999), Sunarto (2001) dan Damar (2003). Secara umum, pe- nelitian tersebut menguraikan deskripsi Teluk Lampung dan sekitarnya, baik sumberdaya ha- yati dan non-hayati di pesisir, hubungan cahaya dan nutrien terhadap produktifitas primer, bah- kan Damar (2003) menguraikan secara lengkap dinamika ekosistem di Teluk Lampung berda- sarkan pengamatan 2 bulanan sepanjang tahun 2000 dengan lokasi pengambilan contoh yang tersebar di 14 stasiun pada lapisan permukaan dan lapisan dekat dasar. Walaupun demikian, sampai saat ini pe- ngaruh sirkulasi arus terhadap ekosistem di Te- luk Lampung belum terjawab secara tuntas. Permasalahan ini sangat jarang diteliti karena membutuhkan banyak data dan waktu yang sa- ngat panjang, sehingga tinjauan permasalahan ekosistem sering dibatasi pada pengamatan saat itu. Data sesaat yang dimaksudkan adalah tidak melihat selama siklus pasang surut, sehingga walaupun banyak data yang diamati, tetap be- lum menjawab pengaruh sirkulasi arus terhadap ekosistem yang ada. Mengapa hal ini begitu penting, karena pengaruh sirkulasi arus akan memperjelas kemampuan Teluk Lampung da- lam menerima masukan suatu bahan (nutrien a- tau polutan). Seperti yang telah diuraikan oleh Damar (2003) bahwa suplai nutrien dari dua su- ngai yang bermuara di Kota Bandar Lampung dan aktifitas industri di Tarahan telah turut mem- pengaruhi ekosistem Teluk Lampung. Selain i- tu, ada juga suplai nutrien dan klorofil-a ke per- airan Teluk Lampung dari Selat Sunda, seperti yang diamati oleh Hendiarti et al (2002). De- ngan demikian, timbul pertanyaan menyangkut pengaruh sirkulasi arus ini, yaitu seberapa jauh pengaruh adveksi arus, pasang surut, suplai dari sungai dan pertukaran di mulut teluk terhadap dinamika ekosistem di Teluk Lampung? Dalam menjawab pertanyaan di atas, ma- ka penelitian ini bertujuan untuk mengkaji dina- mika ekosistem perairan Teluk Lampung de- ngan menggunakan gabungan model hidrodina- mika-ekosistem dengan pendekatan numerik. Dinamika ekosistem yang dimaksud dalam pe- nelitian ini meliputi neraca (budget) dari ma- sing-masing kompartimen ekosistem dan struk- tur ekosistemnya. MODEL NUMERIK Penelitian ini terbatas pada simulasi nu- merik yang didasari pada metode beda hingga dan proses perhitungannya menggunakan ban- tuan bahasa pemrograman Fortran 77. Persa- maan model yang digunakan adalah seperti yang diuraikan berikut ini. Model Hidrodinamika dan Perhitungan Arus Residu Model hidrodinamika yang digunakan dalam penelitian ini adalah model 2-dimensi yang diintegrasikan terhadap kedalaman, de- ngan menggunakan Princeton Ocean Model (POM) yang dikembangkan oleh Blumberg and Mellor (1999). Model ini dikembangkan seki- tar tahun 1977 dan telah mengalami beberapa revisi, dan untuk penelitian ini digunakan POM versi 1998. Daerah model, asumsi dan syarat batas model hidrodinamika diuraikan secara lengkap dalam Koropitan (2002). Arus residu atau kecepatan transpor rata- rata didefinisikan sebagai berikut (Ramming dan Kowalik, 1980): 0 0 ( ) ( ) T res T H vdt V H dt η η + = + ∫ ∫ sedangkan V adalah komponen kecepatan ( x atau y ), T adalah periode suatu kompo- nen pasut, H adalah kedalaman perairan, η adalahelevasi dan t adalah waktu. Kom- ponen kecepatan ( x atau y ) dan elevasi di- peroleh dari hasil perhitungan model hidro- dinamika 2-dimensi yang diintegrasikan ter- hadap kedalaman. Simulasi arus residu 2- dimensi yang diintegrasikan terhadap keda- laman di Teluk Lampung adalah menggu- nakan komponen M2 yang mendominasi kom - ponen pasut di Teluk Lampung (Mihardja et al, 1995). Istilah selanjutnya untuk hasil si- mulasi ini adalah arus residu M2.
  • 4. Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 31 Model Ekosistem Persamaan transpor untuk model ekosis- tem 2-dimensi horisontal adalah hasil modifi- kasi model yang dikembangkan oleh Yanagi (1999). Kompartimen ekosistem yang terlibat adalah Fitoplankton (dalam hal ini Klorofil-a)- F, Zooplankton-Z, Detritus-D (merupakan orga- nisme fitoplankton dan zooplankton yang mati), serta nutrien yang berupa bahan anorganik ter- larut nitrat-N dan fosfat-P. Skema hubungan an- tar kompartimen ekosistem dan lambang yang digunakan dalam persamaan disajikan pada Gambar 1. Penjabaran hubungan tersebut da- lam persamaan transpor disajikan pada persa- maan-persamaan berikut: ( ) ( ) 1 2 3 F h h W FF F F F F u v K K A F A F A F t x y x x y y H ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) 3 4 5 6h h Z Z Z Z Z u v K K A Z A Z A Z A Z t x y x x y y ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) 1 6 7h h N N N N N u v K K A F A Z A D t x y x x y y ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) 1 6 7h h P P P P P u v K K A F A Z A D t x y x x y y ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) 2 4 5 7 D h h W DD D D D D u v K K A F A Z A Z A D t x y x x y y H ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + + + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ sedangkan hK merupakan koefisien difusi hori- zontal (50 m2 /detik ), t merupakan perubahan ter- hadap waktu, x dan y perubahan terhadap ru- ang arah-x (timur-barat) dan arah- y (utara-se- latan), u dan v adalah kecepatan rata -rata arah- x dan arah- y , H adalah kedalaman perairan dari dasar sampai elevasi permukaan air, FW merupakan kecepatan penenggelaman fitoplank- ton dan DW adalah kecepatan penenggelaman detritus. Uraian persamaan-persamaan tentang laju pertumbuhan fitoplankton (A1), mortalitas fitoplankton (A2), pemangsaan zoo-plankton ter- hadap fitoplankton (A3), mortalitas zooplankton (A4), produksi kotoran zooplankton (A5), pro- duksi urine zooplankton (A6) dan proses dekom- posisi detritus oleh bakteri (A7) diuraikan oleh Yanagi (1999). Persamaan transpor ini diselesaikan seca- ra numerik dengan menggunakan prinsip beda hingga, khususnya metode QUICK (Quadratic Upstream Interpolation for Convective Kinema- tics) (Kowalik and Murty, 1993 dan James, 1993). Proses diskretisasi disesuaikan dengan sistem grid pada model hidrodinamika (Koropi- tan, 2002), yaitu Arakawa-C. Nilai-nilai koefisien yang diterapkan da- lam penelitian ini berdasarkan Yanagi (1999), kecuali intensitas cahaya optimum untuk per- tumbuhan fitoplankton (128 404 Watt m-2 hari –1 ) yang didasari pada penelitian Sunarto (2001). Intensitas cahaya rata-rata sehari diperoleh dari data BMG Lampung (Unpublish data, 2001) yang diamati selama Januari 2001 di Stasiun Me - teorologi Lapangan Udara Branti, Bandar Lam- pung. Konversi satuan adalah menggunakan rasio red-field 40 : 7.2 : 1 untuk masing-masing unsur C : N : P (C-karbon, N-nitrogen dan P- fosfor). Selanjutnya, untuk Klorofil-a menggu- nakan perbandingan 1 : 30 untuk Klorofil-a : Karbon (Chapra, 1997) sedangkan Zooplankton menggunakan hasil penelitian empirik Lizuka and Uye (1986) in Yanagi (1999), yaitu 1 berat kering individu zooplankton setara dengan 1 µg C. Perbandingan antara berat kering dan berat basah Zooplankton menggunakan perbandingan empirik 1 : 10 (Chapra, 1997). Syarat batas untuk daerah model adalah: ( ), , , , 0F Z D N P = untuk syarat batas tertutup (daratan) dan 0 K K C t x ∂ ∂ ± = ∂ ∂ untuk syarat batas terbuka (laut) yaitu syarat batas radiasi Orlanski (Kowalik and Murty, 1993), sedangkan K merupakan konsentrasi untuk masing-masing kompartimen ekosistem.
  • 5. 32 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38 Gambar 1. Skema Hubungan Antar Komparti- men Model Ekosistem (Yanagi, 1999) Data Lapangan Data yang dipergunakan dalam penelitian iniadalah data hasil pengamatan 9 Januari 2001 di Teluk Lampung yang dilakukan oleh Damar (2003). Data tersebut berupa kompartimen e- kosistem, yang terdiri atas: konsentrasi Kloro- fil-a, zooplankton, nitrat dan fosfat yang terse- bar di permukaan air, supla i nutrien (nitrat dan fosfat) dari sungai Muara Karang dan Lunik, serta data penunjang lingkungan yang terdiri a- tas: salinitas dan temperatur. Peta geografis da- ri stasiun pengambilan contoh diperlihatkan pa- da Gambar 2. Nilai awal yang digunakan da- lam simulasi ini adalah nilai konsentrasi terke- cil yang teramati selama pengamatan tersebut. Untuk keperluan verifikasi model, dila- kukan proses interpolasi dengan metode Krig- ing linier terhadap data lapangan, yang diolah dan ditampilkan dengan menggunakan perang- kat lunak Surfer 7,0. Hasil tampilan ini berbeda dengan yang ditampilkan oleh Damar (2003) . Gambar 2. Peta Geografis Stasiun Pengambilan Contoh di Teluk Lampung (Damar, 2003) dan Daerah Model Komputasi (Daerah Kotak). Rancangan Simulasi Model Gabungan Hidrodinamika dan Ekosistem Untuk kepentingan verifikasi hasil perhi- tungan model dan data lapangan, maka penggu- naan gabungan model hidrodinamika-ekosistem dihitung secara bersamaan, dan hasil model un- tuk masing-masing kompartimen ekosistem di- cuplik sesuai dengan waktu pengambilan con- toh di lapangan. Dalam mengkaji neraca (bud-
  • 6. Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 33 get) ekosistem serta standing stock di Teluk Lampung, maka dilakukan perhitungan secara terpisah. Pertama adalah menghitung arus resi- du, kemudian data arus residu yang diperoleh menjadi komponen advektif dalam model eko- sistem. Simulasi model ekosistem dilakukan sampai mencapai kondisi tunak, sehingga hasil yang diperoleh dapat mewakili kondisi neraca ekosistem selama 1 hari. Asumsi-asumsi yang Digunakan dalam Model Model hidrodinamika 2-dimensi dengan perata-rataan terhadap kedalaman merupakan penyederhanaan dari model 3-dimensi yang di- integrasikan terhadap kedalaman. Dengan de- mikian arus yang dihasilkan adalah suatu kece- patan arus yang sama dari dasar sampai permu- kaan, atau gradien kecepatan arus dikolom air tidak ada. Dengan demikian model ini menga- baikan proses turbulensi secara vertikal di ko- lom air. Mengingat debit air dari sungai-sungai bermuara di Teluk Lampung begitu kecil (Da- mar, 2003) maka pengaruh masukan debit air sungai tidak dilibatkan dalam perhitungan mo- del hidrodinamika. Proses perhitungan neraca kompartimen ekosistem di Teluk Lampung ter- batas pada daerah permukaan sampai kedalam- an 2 meter, dengan asumsi konsentrasi semua kompartimen ekosistem menyebar merata. Pengaruh salinitas, temperatur dan inten- sitas cahaya dalam pertumbuhan fitoplankton menggunakan nilai yang konstan, yaitu nilai ra- ta-rata yang teramati di lapangan. Sumber nu- trien yang terukur dalam pengamatan lapangan hanya pada mulut Sungai Kota Karang dan Way Lunik di Bandar Lampung. Sumber nu- trien lainnya seperti daerah Industri Tarahan – Panjang dan Sungai Ratai tidak terukur dalam pengambilan contoh. Dengan demikian, berda- sarkan pola sebaran yang terlihat pada data la- pangan, maka diterapkan sumber nitrat di Ta- rahan – Panjang pada simulasi model sama (a- sumsi) nilainya dengan sumber nitrat di Sungai Way Lunik. Sumber fosfat tidak digunakan, karena tidak terlihat pada pola penyebaran data lapangan. Sumber nitrat dan fosfat di Sungai Ratai diabaikan dalam simulasi ini, mengingat konsentrasinya masih dibawah konsentrasi yang teramati di sumber Sungai Way Lunik dan Kota Karang. Selain itu, daerah Teluk Ratai dan se- kitarnya merupakan daerah tertutup bagi kegiat- an masyarakat karena merupakan daerah latihan TNI-AL. HASIL DAN PEMBAHASAN Arus Residu M2 di Teluk Lampung Suatu arus pasang surut yang dibangkit- kan oleh komponen pasut tertentu, bila dirata- ratakan selama suatu periode komponen terse- but, tentunya diharapkan akan memperoleh nilai nol. Dalam kenyataannya, arus rata-rata terse- but masih menghasilkan nilai yang dikenal de- ngan arus residu. Ramming and Kowalik (1980) menyatakan bahwa arus residu merupakan arus non-pasut, dimana sirkulasinya terbentuk ketika suku non-linier yang berhubungan dengan ge- sekan dasar dan komponen adveksi digunakan dalam persamaan (seperti kenyataan di alam). Meskipun arus residu relatif kecil, tapi dapat mempengaruhi pertukaran massa air dan gerak- an partikel melayang dalam air. Yanagi (1999) mengutarakan bahwa arus residu lebih memain- kan peranan penting di perairan pantai, dalam transpor material, dibanding arus pasang surut untuk kurun waktu yang panjang. Hasil simulasi arus residu untuk arus yang dibangkitkan oleh pasut M2 di perlihatkan pada Gambar 3. Secara umum arus residu M2 cenderung masuk dari mulut teluk sebelah ba- rat, sebagian terus memasuki sampai kepala te- luk dan sebagian keluar kembali dari mulut te- luk bagian timur. Arus yang dibangkitkan oleh pasut M2 ini tidak semuanya keluar pada mulut teluk sebelah timur, namun ada sedikit aliran yang keluar dan masuk di bagian tengah mulut teluk. Pola arus residu M2 di sekitar kepala te- luk membentuk suatu eddy yang berlawanan ja- rum jam. Fenomena ini mengindikasikan bah- wa material yang terbawa dari daratan melalui kedua sungai yang ada di Bandar Lampung se- bagian besarnya hanya tersebar di sekitar kepala teluk. Namun material yang dibuang pada dae- rah industri Tarahan – Panjang, akan cenderung bergerak keluar teluk karena lokasinya di sebe- lah selatan pola arus residu M2 yang memben- tuk eddy. Model Ekosistem Perairan Hasil pengukuran lapangan untuk penye- baran klorofil-a, zooplankton, nitrat dan fosfat dipermukaan air, diperlihatkan pada Gambar 4, sedangkan hasil model pada Gambar 5.
  • 7. 34 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38 Gambar 3. Hasil Simulasi Pola Arus Residu de- ngan Gaya Pembangkit Pasut M2. Pola Penyebaran KompartimenEkosistem Perairan di Teluk Lampung Secara umum pola penyebaran hasil mo- del memiliki kesamaan dengan hasil pengamat- an di lapangan. Pola penyebaran klorofil-a, zoo- plankton, nitrat dan fosfat hasil pengamatan di lapangan pada tanggal 9 Januari 2001 mem- perlihatkan hasil yang konsisten dengan pola arus residu M2. Secara umum terlihat bahwa terjadi pemusatan konsentrasi di sekitar kepala teluk yang diduga akibat adanya arus residu M2 yang membentuk eddy di perairan tersebut, se- hingga material yang tersebar menjauhi kepala teluk yang sedikit. Berlainan dengan material yang dibuang pada daerah industri Tarahan – Panjang, langsung tersebar mengikuti pola arus (a) (b) (c) (d) Gambar 4. Hasil Pengukuran Lapangan di Permukaan Air untuk: (a) Klorofil-a, (b) Zooplankton, (c) Nitrat, dan (d) Fosfat.
  • 8. Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 35 residu M2, hal ini nyata terlihat pada penyebar- an Klorofil-a dan nitrat baik hasil simulasi mau- pun model. Dengan demikian, peranan arus re- sidu M2 sangat dominan dalam menyebarkan suatu material di perairan Teluk Lampung. Hal ini telah diamati dalam penelitian sebelumnya dengan menggunakan pemodelan arus residu M2 3-dimensi oleh Koropitan et al (2003). (a) (b) (c) (d) Gambar 5. Hasil Simulasi Model di Permukaan Air untuk: (a) Klorofil-a, (b) Zooplankton, (c) Nitrat, dan (d) Fosfat. Hasil simulasi yang diperoleh melalui ga- bungan model hidrodinamika-ekosistem memi- liki pola penyebaran yang konsisten dengan po- la penyebaran data lapangan. Hal ini terlihat je- las dalam pola penyebaran klorofil-a, hasil peng- amatan lapangan dan model. Namun, pola pe- nyebaran zooplankton hasil model memperli- hatkan hasil yang agak berbeda dengan hasil pengamatan lapangan. Kemungkinan ini diaki- batkan oleh keterbatasan dalam memodelkan pe - nyebaran zooplankton mengingat sifatnya yang terkadang mampu melawan arus untuk mencari tempat yang banyak makanan. Dengan demiki- an agak sulit menerapkan model adveksi dan di- fusi pada konsentrasi zooplankton, khususnya pemilihan nilai koefisien difusi yang tepat. Ha- sil simulasi masih memiliki nilai dibawah peng- amatan lapangan. Penyebaran nitrat, baik hasil model dan pengamatan lapangan memperlihat- kan adanya pemusatan konsentrasi di kepala te- luk dan pesisir daerah industri Tarahan–Pan- jang. Demikian pula dengan penyebaran fosfat, memperlihatkan pola penyebaran yang mirip an- tara hasil model dan pengamatan lapangan. Pa- da pengamatan lapangan terlihat pula pemusat- an konsentrasi nitrat dan fosfat di sekitar Teluk
  • 9. 36 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38 Ratai, dengan konsentrasi yang tidak sebesar di kepala teluk. Hal ini kemungkinan akibat su- plai yang berasal dari Sungai Ratai. Secara u- mum, walaupun memiliki pola penyebaran yang mirip dengan data lapangan, namun hasil simu- lasi klorofil-a, zooplankton, nitrat dan fosfat masih memiliki nilai dibawah pengamatan la- pangan. Hasil ini disebabkan oleh tidak repre- sentatifnya sumber nutrien yang dilibatkan da- lam simulasi. Dinamika Ekosistem Perairan Teluk Lampung Sesuatu hal yang sulit untuk menentukan dinamika ekosistem di Teluk Lampung, dengan melibatkan interaksi proses-proses fisik, kimia- wi dan biologis, melalui pengamatan lapangan. Hal ini akan membutuhkan biaya yang tinggi serta waktu yang lama, selain itu pula daerah Teluk Lampung cukup luas, sehingga akan me- nyulitkan dalam pengambilan contoh. Melalui gabungan model hidrodinamika-ekosistem ini, diharapkan dapat memberikan gambaran umum tentang neraca (budget) dan struktur ekosistem dari masing-masing kompartimen ekosistem di Teluk Lampung. Neraca KompartimenEkosistem di Teluk Lampung Seperti diperlihatkan pada Tabel 1 penga- ruh arus residu M2 memperlihatkan bahwa su- plai nitrat dan fosfat yang berasal dari sungai sangat kecil nilainya dibanding yang berasal da- ri laut. Selain itu, peranan suplai dari sungai be- lum begitu berarti terhadap penambahan nutrien di Teluk Lampung secara keseluruhan, tetapi hanya berpengaruh pada sekitar daerah kepala teluk, sesuai dengan uraian sebelumnya. Hal i- ni juga diuraikan oleh Damar (2003) bahwa pe- ngaruh suplai nutrien dari sungai hanya berkisar pada daerah kepala Teluk. Selanjutnya, hasil perhitungan model yang memperlihatkan ada- nya suplai nutrien yang signifikan dari Selat Sunda, juga teramati oleh Hendiarti et al (2002), dengan menggunakan citra satelit. Demikian pula peranan suplai nutrien dari daerah industri Tarahan–Panjang, hanya terbatas disekitar pesi- sir daerah tersebut. Struktur Ekosistem di Teluk Lampung Pembahasan struktur ekosistem ini dida- sari oleh standing stock kompartimen ekosistem di Teluk Lampung. Standing stock komparti- men ekosistem di Teluk Lampung diperlihatkan pada Gambar 6. Secara umum, pengaruh inter- aksi antara proses biologis seperti produktifitas primer, pemangsaan (sekunder), kematian alami fitoplankton dan zooplankton serta proses de- komposisi oleh bakteri belum begitu berperan dalam standing stock ekosistem di Teluk Lam- pung. Peranan suplai dari laut masih lebih do- minan, seperti yang telah diuraikan sebelum- nya. Tabel 1. Neraca (budget) Kompartemen yang Dipengaruhi oleh Arus Residu M2. Sumber Kompar- timen Sungai Laut (batas) Pesisir Tarahan dan Panjang Keluar Netto Nitrat (kg mol) 0.79 13 154.40 0.79 6 048.00 7 107.19 Fosfat (kg mol) 0.76 79 531.20 - 34 636.04 44 895.92 Klorofil-a (Kg C) - 7 101.63 - 1 013.92 6 087.71 Zooplankton (Kg C) - 65 087.28 - 12 605.37 52 481.91 Perhitungan rasio produktifitas primer dengan penjumlahan hasil proses dekomposisi dan produksi urine zooplankton adalah 69.52%, atau aliran energinya mengalami kehilangan se- besar 30.38 %. Hal ini erat kaitannya dengan e- fektifitas pemanfaatan nutrien oleh fitoplank- ton. Penjelasan yang mungkin untuk kasus ini adalah akibat penggunaan nilai intensitas caha- ya rata-rata selama bulan januari 2001 dalam proses simulasi, dimana memiliki nilai yang le- bih tinggi (sekitar 27.3%) dari nilai intensitas cahaya optimum untuk produktifitas primer. Dengan demikian, kondisi intensitas cahaya yang relatif lebih tinggi ini mengakibatkan pe- manfaatan nutrien yang tidak optimum. Selain itu, penerapan dalam simulasi ini diasumsikan hanya pada lapisan 0 - 2 m sehingga tingkat op- timum pemanfaatan cahaya dalam produktifitas primer pada kedalaman dibawah 2 meter tidak terhitung. Dalam persamaan suku proses bioki- miawi yang sama namun untuk kasus 3-dimensi di Laut Cina Selatan, Guo et al (1999) memper- oleh hasil simulasi yang mencapai 114.83% a- tau aliran energinya mengalami penambahan sebesar 14.83%. Nilai ini sangat memungkin-
  • 10. Koropitan, A. F., S. Hadi, I. M. Radjawane dan A. Damar, Studi Dinamika Ekosistem Perairan . . . 37 kan, karena dalam simulasi tersebut dihitung pemanfaatan nutrien oleh fitoplankton sampai ke dasar perairan, yaitu kedalaman yang inten- sitas mataharinya sangat optimum untuk proses fotosintesis. Gambar 6. Standing stock Kompartimen Eko- sistem Akibat Arus Residu M2 da- lam Satu Hari (kg C atau kg mol). Hasil simulasi ini memperoleh pula ting- kat efisiensi produktifitas primer ke produktifi- tas sekunder (pemangsaan) yang sangat tinggi dan melebihi produktifitas primer yang ada, de- ngan nilai rasio 117.24%, atau aliran energinya mengalami penambahan sebesar 17.24%. Fe- nomena ini menggambarkan bahwa aktifitas pe- mangsaan oleh zooplankton lebih dominan di- banding pertumbuhan fitoplankton. Keberlan- jutan biomassa fitoplankton dalam Teluk Lam- pung sangat ditunjang oleh masukan dari Selat Sunda. Kasus pada Teluk Lampung ini sangat bertolak belakang dengan Teluk Pelabuhan Ra- tu yang nilai rasionya sangat rendah yaitu 0.62% (Koropitan et al 2002). Kondisi di Teluk Pela- buhan Ratu berbeda, yaitu suplai klorofil-a dari luar teluk lebih sedikit. KESIMPULAN DAN SARAN Kesimpulan Hasil pemodelan ekosistem perairan di Teluk Lampung memperlihatkan pola yang cu- kup konsisten dengan hasil pengukuran lapang- an, kecuali penyebaran Zooplankton. Penye- baran masing-masing kompartimen ekosistem mengikuti pola arus residu M2. Peranan proses-proses biokimiawi dan suplai dari sungai di Kota Bandar Lampung be- lum begitu berpengaruh terhadap ekosistem perairan di Teluk Lampung. Suplai dari Selat Sunda merupakan faktor penting dalam ekosis- tem di Teluk Lampung. Tingkat pemanfaatan nutrien oleh fitoplankton dalam proses fotosin- tesis belum optimum, serta aktifitas pemangsa- an oleh zooplankton lebih dominan dibanding laju pertumbuhan fitoplankton. Saran Model yang digunakan dalam penelitian ini masih memiliki beberapa kelemahan, se- hingga diharapkan dalam penelitian mendatang akan dikembangkan model yang lebih lengkap peubahnya, yang meliputi: (a) model gabungan hidrodinamika-ekosistem 3 dimensi, untuk mengkaji neraca dan standing stock ekosistem sampai pada dasar perairan, (b) menggunakan pendekatan prognostic (model baroklinik) da- lam model hidrodinamika 3-dimensi, sehingga pengaruh suhu dan salinitas berubah terhadap waktu, dan (c) mengembangkan persamaan em- piris proses remineralisasi di dasar perairan un- tuk digunakan dalam model ekosistem. UCAPAN TERIMA KASIH Ucapan terima kasih ditujukan kepada pemberi dana Beasiswa Program Pascasarjana (BPPS), DIKTI-DEPDIKNAS, serta Program Magister Oseanografi dan Sains Atmosfer, Pro- gram Pascasarjana - Institut Teknologi Ban- dung, yang mendukung terlaksananya peneliti- an ini. PUSTAKA Blumberg, A. F. and G. L. Mellor. 1999. POM98. http:// www.aos.princeton.edu/WWWPUBLIC/htdocs.p om. Chapra, 1997. Surface water quality modelling. Mc Graw-Hill. Singapore.
  • 11. 38 Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, Juni 2004, Jilid 11, Nomor 1: 29-38 Chen, C., R. Ji, and L. Zheng. 1999. Influences of physic- cal processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geoph. Research, 104(C12): 29925- 29949. Damar, A. 2003. Effects of enrichment on nutrient dy- namics, phytoplankton dynamics and productivity in Indonesian tropical waters: a comparison bet- ween Jakarta Bay, Lampung Bay and Semangka Bay. Faculty of Mathematics and Natural Sciences, Christian Albrechts University, Kiel, Germany. Edwards, C., H. P. Batchelder and T. M. Powell. 2000. Modeling Microzooplankton and Macrozooplank- ton dynamics within a coastal upwelling system. Journal of Plankton Research, 22(9): 1619-1648. Guo, X., T. Yanagi and D. Hu 1999. Ecological modeling in the East China Sea (Manuscript). Hendiarti, N., H. Siegel and T. Ohde. 2002. Distinction of different water masses in and around the Sunda Strait: satellite observations and in-situ measure- ments. Proceedings Vol. II. Pan Ocean Remote Sensing Conference: Remote Sensing and Ocean Science for Marine Resources Exploration and En- vironment, Bali, Indonesia. pp. 681 – 686. James, A. 1993. An Introduction to water quality mo- delling. John Wiley & Sons. England. Kawamiya, M., M. J. Kishi, Y. Yamanaka, and N. Sugino- hara. 1995. An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, (51): 635-664. Kishi, M. J., and M. Uchiyama. 1995. A Three-dimen- sional numerical model for a mariculture nitrogen cycle: case study in Shizugawa Bay, Japan. Fish. O- ceanogr, 4(4): 303-316. Koropitan, A. F. 2002. Simulasi pola arus di Teluk Lampung. Jurnal Ilmu-ilmu perairan dan perikanan Indonesia, IX(2): 11-17. Koropitan, A. F., R. Kaswadji, I. M. Radjawane, and S. Hadi. 2002. Aquatic ecosystem modeling in Pela- buhan Ratu Bay. Proceedings Vol. II. Pan Ocean Remote Sensing Conference: Remote Sensing and Ocean Science for Marine Resources Exploration and Environment, Bali, Indonesia. pp. 662-668. Koropitan, A. F., S. Hadi, and I. M. Radjawane. 2003. Three-dimensional simulation of tidal current in Lampung Bay: diagnostic numerical experiment. Bahan presentasi yang disampaikan pada International Symposium on Remote Sensing and Ocean Sciences in South East Asia di Universitas Udayana, Bali pada tanggal 2 September 2003. Mihardja, D. K., I. M. Radjawane dan M. Ali. 1995. Studi penyebaran air panas di Tarahan, Lampung. La- poran Penelitian. PT. Wiratman & Associates. Jakarta. Moll, A. 1998. Regional distribution of primary pro- duction in the North Sea simulated by a three di- mensional model. J. Mar. Syst., (16): 151-170. Neuman, T. 2000. Towards a 3D-ecosystem model of the Baltic Sea. J. Mar. Syst., (25): 405-419. Pranowo, W. S. 2002. Model numerik sebaran senyawa Nitrogen di perairan pantai Kedung, Jepara. Tesis Magister. Bidang Khusus Oseanografi, Program Studi Oseanografi and Sains Atmosfer, Program Pascasarja- na, Institut Teknologi Bandung. Sptiz, Y. H., P. A. Newberger, and J. S. Allen. 2003. Eco- system response to upwelling off the Oregon coast: Behavior of three nitrogen-based models. Journal of Geoph. Research, 108(C3): 7-1 - 7-22. Sugianto, D. N. 2001. Model ekosistem 2-dimensi di perairan pantai Banjir Kanal Timur, Semarang. Tesis Magister. Bidang Khusus Oseanografi, Program Studi Oseanografi and Sains Atmosfer, Program Pas- casarjana, Institut Teknologi Bandung. Sunarto. 2001. Pola hubungan intensitas cahaya dan nutrien dengan Produktifitas Primer Fitoplankton di Teluk Hurun, Lampung. Tesis Magister. Program Studi Ilmu Perairan. Program Pascasarjana, Institut Pertanian Bogor. Wiryawan, B., B. Marsden, H.A. Susanto, A.K. Mahi, M. Ahmad dan H. Poespitasari. 1999. Atlas sumberdaya wilayah Pesisir Lampung. Proyek Pesisir Lampung kerja sama antara Pemda Lampung, Proyek Pesisir Lampung PKSPL-IPB, University of Rhode Island dan USAID Jakarta. Yanagi, T. 1999. Coastal oceanography. Terra Scientific Publishing Company, Tokyo. Yonik, M. Y. 2000. Model dua-dimensi penyebaran a- monium, Nitrit, and Nitrat di Perairan Pantai Se- marang dengan persamaan kinetik orde satu Tho- mann. Tesis Magister. Bidang Khusus Teknik Penge- lolaan Lingkungan, Program Magister Teknik Ling- kungan, Institut Teknologi Bandung.