SlideShare a Scribd company logo
1 of 15
KV
WORKED EXAMPLES
{for energy conversion}
Keith Vaugh BEng (AERO) MEng
The flow system used to test a centrifugal pump at a
nominal speed of 1750 rpm is shown in the figure. The
liquid water at 27 °C and the suction and discharge pipe
diameters are 150 mm. Data measured during the test
are given in the table. The electric motor is supplied at
460 V, 3-phase, and has a power factor of 0.875 and a
constant efficiency of 90%. Calculate the net head
delivered and the pump efficiency at a volumetric flow
rate of 227m3/h. Plot the pump head, power input and
efficiency as functions of the volumetric flow rate.
PUMP SYSTEM EXAMPLE Pt 1
NOTE - Red text refers to correction made in question
Table 1: Test results - Centrifugal pump
Volumetric
Flow Rate
(m3/h)
Suction
Pressure
(kPa-gauge)
Discharge
Pressure
(kPa-gauge)
Motor
Current (amp)
0 -25 377 18.0
114 -29 324 25.1
182 -32 277 30.0
227 -39 230 32.6
250 -43 207 34.1
273 -46 179 35.4
318 -53 114 39.0
341 -58 69 40.9
PUMP SYSTEM EXAMPLE Pt 1
GIVEN: Pump test flow system and data shown
FIND
•Pump head and efficiency at Q = 227 m3/h
•Pump head, power input, and efficiency as a
function of volumetric flow rate
•Plot the results
ASSUMPTIONS
•Steady and incompressible flow
•Uniform flow at each section
•U1 = U2
•Correct all heads to same elevation
𝐻𝑝 =
1
𝑔
𝑃
𝜌
+ +𝑔𝑧
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
−
𝑃
𝜌
+ 𝑔𝑧
𝑠𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑃2 − 𝑃1
𝜌𝑔
𝐻𝑝 =
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
−
𝑃
𝜌𝑔
+
𝑈2
2𝑔
+ 𝑧
𝑠𝑢𝑐𝑡𝑖𝑜𝑛
𝜂𝑝𝑢𝑚𝑝 =
𝑊ℎ
·
𝑊
·
𝑝𝑢𝑚𝑝
=
𝑊ℎ
·
= 𝜌𝑉
·
𝑔𝐻𝑝𝑢𝑚𝑝
𝜔𝑇
𝑊ℎ
·
= 𝜌𝑉
·
𝑔𝐻𝑝𝑢𝑚𝑝
GOVERNING EQUATIONS
Since U1 = U2, the pump head is
where the discharge and suction pressures, corrected to the same elevation,
are designated P2 and P1, respectively
𝐻𝑝 = 28.02𝑚
𝐻𝑝 =
𝑃2 − 𝑃1
𝜌𝑔
=
238.82 − −36.06 × 103
𝑃𝑎
1000𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2
×
𝑘𝑔 ⋅ 𝑚
𝑁 ⋅ 𝑠2
×
𝑁
𝑃𝑎 ⋅ 𝑚2
𝑃2 = 238.82 × 103
𝑃𝑎
𝑃2 = 230 × 103
𝑃𝑎 + 1000𝑘𝑔/𝑚3
× 9.81𝑚/𝑠2
× 0.9𝑚 ×
𝑁 ⋅ 𝑠2
𝑘𝑔 ⋅ 𝑚
×
𝑃𝑎 ⋅ 𝑚2
𝑁
𝑃2 = 𝑃𝑑 + 𝜌𝑔𝑧𝑑
𝑃1 = −39 × 103
𝑃𝑎 + 1000𝑘𝑔/𝑚3
× 9.81𝑚/𝑠2
× 0.3𝑚 ×
𝑁 ⋅ 𝑠2
𝑘𝑔 ⋅ 𝑚
×
𝑃𝑎 ⋅ 𝑚2
𝑁
𝑃1 = 𝑃𝑠 + 𝜌𝑔𝑧𝑠
Correct measured static pressures to the pump centreline
Calculate the pump head
𝑃1 = −36.06 × 103
𝑃𝑎
𝑊ℎ
·
= 17.333 × 103
𝑊
𝑊ℎ
·
= 227
𝑚3
ℎ
×
ℎ
3600𝑠
× 238.82 − −36.06 × 103
𝑃𝑎 ×
𝑁
𝑃𝑎 ⋅ 𝑚2
×
𝐽
𝑁 ⋅ 𝑚
×
𝑤 ⋅ 𝑠
𝐽
𝑊ℎ
·
= 𝜌𝑉
·
𝑔𝐻𝑝𝑢𝑚𝑝 = 𝑉
·
𝑃2 − 𝑃1
Compute the hydraulic power delivered to the fluid
𝜂𝑝 =
𝑊ℎ
·
𝑊
𝑚
· =
17.333 × 103
𝑊
20.4 × 103𝑊
= 0.847 ⟶
𝑃𝑖𝑛 = 20.4 × 103
𝑊
𝑃𝑖𝑛 = 0.9 × 3 × 0.875 × 460𝑉 × 32.6𝐴 ×
𝑊
𝑉𝐴
𝑃𝑖𝑛 = 𝜂 3 𝑃𝐹 𝐸𝐼
Calculate the motor power output (the mechanical power input to the pump) from the electrical information
The corresponding pump efficiency is
𝜂𝑝 = 85%
Convert
𝑚3
ℎ
𝑡𝑜
𝑚3
𝑠
Develop and format appropriately an excel worksheet which
calculates the;
•Pump head for each volumetric flow rate provided
•The hydraulic power delivered to the flow for each flow rate
•The power input required to drive the pump at each flow rate
•The pump efficiency at each flow rate
From the resulting dataset, plot the pump head, power input and
efficiency as functions fo volumetric flow-rate and describe what
can be observed or deduced from these results.
PUMP SYSTEM EXAMPLE Pt 2
Table 2 - Given Data
Given Data Value Units
Zs 0.3 m
Zd 0.9 m
RPM 1750 RPM
Temperature 20 deg
Density 998
Gravity 9.81
Efficiency 0.9
Volts 460
Power Factor 0.875
Table 2 - Calculated Hydraulic Power, Power Supplied and Pump Efficiency
Volumetric
Flow Rate
(m3/h)
Suction
Pressure
(kPa-gauge)
Discharge
Pressure
(kPa -
gauge)
Motor
Current
(amp)
P1 P2 Hp Hydraulic
Power
Power in Pump
Efficincy
0 -25 377 18.0 -22062.89 385811.34 41.58 0.00 11293.84 0.00
114 -29 324 25.1 -26062.89 332811.34 36.58 11364.35 15748.63 0.72
182 -32 277 30.0 -29062.89 285811.34 32.10 15918.64 18823.06 0.85
227 -39 230 32.6 -36062.89 238811.34 28.02 17332.35 20454.39 0.85
250 -43 207 34.1 -40062.89 215811.34 26.08 17769.04 21395.55 0.83
273 -46 179 35.4 -43062.89 187811.34 23.53 17507.96 22211.21 0.79
318 -53 114 39.0 -50062.89 122811.34 17.62 15270.56 24469.98 0.62
341 -58 69 40.9 -55062.89 77811.34 13.54 12586.14 25662.11 0.49
0
12.5
25
37.5
50
0 85.25 170.5 255.75 341
Pump
Head
(m)
Volumetric Flow Rate (m^3/h)
Pump Head
0.00
6500.00
13000.00
19500.00
26000.00
32500.00
0 85.25 170.5 255.75 341
Pump
Power
Input
(kW)
Volumetric Flow Rate (m^3/h)
Power Power in
0.00
0.23
0.45
0.68
0.90
0 85.25 170.5 255.75 341
Pump
Efficiency
Volumetric Flow Rate (m^3/h)
Pump Efficincy
Apply the method of least squares to the calculated pump
performance data obtained above and fit a parabolic curve of
the form 𝐻 = 𝐻𝑜 − 𝐴𝑉2
·
to this data. Include all formulations
and calculations as part of your submission, plot the fitted curve
using excel and compare this with the measured data.
PUMP SYSTEM EXAMPLE Pt 3
Formulation
𝑎∑𝑉2
·
+ 𝑏∑(𝑉2)
·
2
= ∑𝐻𝑝𝑉2
𝑎𝑛 + 𝑏∑𝑉2
·
= ∑𝐻𝑝
Table 3 - Method of Least Squares for Curve Fit
Volumetric
Flow Rate
(m3/h)
Q2 (Q2)2 Hp Q*Hp Curve Fit H(m) = 40.22 -
2.3e-4(Q^2)
0 0 0 41.46 0.00 40.22 -3.0
114 12996 168896016 36.46 473779.60 37.243916 2.2
182 33124 1097199376 31.96 1058695.84 32.634604 2.1
227 51529 2655237841 27.88 1436419.87 28.419859 2.0
250 62500 3906250000 25.94 1620954.40 25.9075 -0.1
273 74529 5554571841 23.38 1742617.95 23.152859 -1.0
318 101124 10226063376 17.46 1765378.36 17.062604 -2.3
341 116281 13521270961 13.37 1554899.92 13.591651 1.6
1705 452083 37129489411 217.90 9652745.93 -63.307007
Table 4 - Calculated Hydraulic Power, Power Supplied and Pump Efficiency with Least Squares
Volumetric
Flow Rate
(m3/h)
Suction
Pressure
(kPa-
gauge)
Discharge
Pressure
(kPa -
gauge)
Motor
Current
(amp)
P1 P2 Hp Hydraulic
Power
Power in Pump
Efficincy
Curve Fit H(m) = 40.22 -
2.3e-4(Q^2)
0 -25 377 18.0 -22062.89 385811.34 41.58 0.00 11293.84 0.00 40.22 -3.0
114 -29 324 25.1 -26062.89 332811.34 36.58 11364.35 15748.63 0.72 37.24 2.2
182 -32 277 30.0 -29062.89 285811.34 32.10 15918.64 18823.06 0.85 32.63 2.1
227 -39 230 32.6 -36062.89 238811.34 28.02 17332.35 20454.39 0.85 28.42 2.0
250 -43 207 34.1 -40062.89 215811.34 26.08 17769.04 21395.55 0.83 25.91 -0.1
273 -46 179 35.4 -43062.89 187811.34 23.53 17507.96 22211.21 0.79 23.15 -1.0
318 -53 114 39.0 -50062.89 122811.34 17.62 15270.56 24469.98 0.62 17.06 -2.3
341 -58 69 40.9 -55062.89 77811.34 13.54 12586.14 25662.11 0.49 13.59 1.6
Using the method of least squares, the equation for the fitted curve is obtained as
𝐻 𝑚 = 40.22 − 2.29 × 10−4
𝑉2
·
10.00
18.00
26.00
34.00
42.00
0 85.25 170.5 255.75 341
Calculated Pump Head Curve Fit

More Related Content

Similar to T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx

Parte experimental y metodologia pelton
Parte experimental y metodologia peltonParte experimental y metodologia pelton
Parte experimental y metodologia peltonEduardoVargas234
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and PlotsEngineering Software
 
Pump Calculations explanation
Pump Calculations explanationPump Calculations explanation
Pump Calculations explanationKyle Shepherd
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .happycocoman
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009CangTo Cheah
 
Energy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptEnergy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptD.Pawan Kumar
 
chiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhorchiller system by Mr.Seng Sunhor
chiller system by Mr.Seng SunhorStudent at ITC
 
Episode 5 liquid solid separation horizontal diaphragm filter press
Episode 5   liquid solid separation horizontal diaphragm filter pressEpisode 5   liquid solid separation horizontal diaphragm filter press
Episode 5 liquid solid separation horizontal diaphragm filter pressSAJJAD KHUDHUR ABBAS
 
Chapter_9_Instrument.pdf
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdfAnshuChandola1
 
Laporan+pompa+sentrifugal
Laporan+pompa+sentrifugalLaporan+pompa+sentrifugal
Laporan+pompa+sentrifugalIndiana Agak
 
Fluid exp7(تم )
Fluid exp7(تم )Fluid exp7(تم )
Fluid exp7(تم )NOFIND
 
HYDRAULIC SYSTEM DESIGN from hydraulics .pptx
HYDRAULIC SYSTEM DESIGN from hydraulics .pptxHYDRAULIC SYSTEM DESIGN from hydraulics .pptx
HYDRAULIC SYSTEM DESIGN from hydraulics .pptxsbpatalescoe
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGSAJJAD KHUDHUR ABBAS
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)SAJJAD KHUDHUR ABBAS
 

Similar to T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx (20)

Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
 
Parte experimental y metodologia pelton
Parte experimental y metodologia peltonParte experimental y metodologia pelton
Parte experimental y metodologia pelton
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
 
Pump Calculations explanation
Pump Calculations explanationPump Calculations explanation
Pump Calculations explanation
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .
 
Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009Pump efficiency curve - 8th October 2009
Pump efficiency curve - 8th October 2009
 
Energy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptEnergy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans ppt
 
chiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhorchiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhor
 
Episode 5 liquid solid separation horizontal diaphragm filter press
Episode 5   liquid solid separation horizontal diaphragm filter pressEpisode 5   liquid solid separation horizontal diaphragm filter press
Episode 5 liquid solid separation horizontal diaphragm filter press
 
Chapter_9_Instrument.pdf
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdf
 
Laporan+pompa+sentrifugal
Laporan+pompa+sentrifugalLaporan+pompa+sentrifugal
Laporan+pompa+sentrifugal
 
Fluid exp7(تم )
Fluid exp7(تم )Fluid exp7(تم )
Fluid exp7(تم )
 
PROBLEMA 3
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
HYDRAULIC SYSTEM DESIGN from hydraulics .pptx
HYDRAULIC SYSTEM DESIGN from hydraulics .pptxHYDRAULIC SYSTEM DESIGN from hydraulics .pptx
HYDRAULIC SYSTEM DESIGN from hydraulics .pptx
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
 
3.6.doc
3.6.doc3.6.doc
3.6.doc
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 

More from Keith Vaugh

Renewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesRenewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesKeith Vaugh
 
T3b - MASTER - Pump flow system - operating point 2023.pptx
T3b - MASTER - Pump flow system - operating point 2023.pptxT3b - MASTER - Pump flow system - operating point 2023.pptx
T3b - MASTER - Pump flow system - operating point 2023.pptxKeith Vaugh
 
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxKeith Vaugh
 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
 
T2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxKeith Vaugh
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
 
L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxKeith Vaugh
 
L6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxKeith Vaugh
 
L5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxKeith Vaugh
 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxKeith Vaugh
 
L2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxKeith Vaugh
 
L1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxKeith Vaugh
 
L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22Keith Vaugh
 
CAD & Analysis Introduction
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis IntroductionKeith Vaugh
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slidesKeith Vaugh
 
Essential fluids
Essential fluids Essential fluids
Essential fluids Keith Vaugh
 
Essential fluid mechanics
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanicsKeith Vaugh
 

More from Keith Vaugh (20)

Renewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesRenewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture Slides
 
T3b - MASTER - Pump flow system - operating point 2023.pptx
T3b - MASTER - Pump flow system - operating point 2023.pptxT3b - MASTER - Pump flow system - operating point 2023.pptx
T3b - MASTER - Pump flow system - operating point 2023.pptx
 
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
 
T2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptx
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptx
 
L6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptx
 
L5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptx
 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptx
 
L2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptx
 
L1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptx
 
L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22
 
CAD & Analysis Introduction
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis Introduction
 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
 
Hydropower
HydropowerHydropower
Hydropower
 
Fluid discharge
Fluid dischargeFluid discharge
Fluid discharge
 
Essential fluids
Essential fluids Essential fluids
Essential fluids
 
Essential fluid mechanics
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanics
 
L6 Wind Energy
L6  Wind EnergyL6  Wind Energy
L6 Wind Energy
 

Recently uploaded

Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 

Recently uploaded (20)

Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 

T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx

  • 1. KV WORKED EXAMPLES {for energy conversion} Keith Vaugh BEng (AERO) MEng
  • 2. The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is shown in the figure. The liquid water at 27 °C and the suction and discharge pipe diameters are 150 mm. Data measured during the test are given in the table. The electric motor is supplied at 460 V, 3-phase, and has a power factor of 0.875 and a constant efficiency of 90%. Calculate the net head delivered and the pump efficiency at a volumetric flow rate of 227m3/h. Plot the pump head, power input and efficiency as functions of the volumetric flow rate. PUMP SYSTEM EXAMPLE Pt 1 NOTE - Red text refers to correction made in question
  • 3. Table 1: Test results - Centrifugal pump Volumetric Flow Rate (m3/h) Suction Pressure (kPa-gauge) Discharge Pressure (kPa-gauge) Motor Current (amp) 0 -25 377 18.0 114 -29 324 25.1 182 -32 277 30.0 227 -39 230 32.6 250 -43 207 34.1 273 -46 179 35.4 318 -53 114 39.0 341 -58 69 40.9 PUMP SYSTEM EXAMPLE Pt 1
  • 4. GIVEN: Pump test flow system and data shown FIND •Pump head and efficiency at Q = 227 m3/h •Pump head, power input, and efficiency as a function of volumetric flow rate •Plot the results ASSUMPTIONS •Steady and incompressible flow •Uniform flow at each section •U1 = U2 •Correct all heads to same elevation
  • 5. 𝐻𝑝 = 1 𝑔 𝑃 𝜌 + +𝑔𝑧 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑃 𝜌 + 𝑔𝑧 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃2 − 𝑃1 𝜌𝑔 𝐻𝑝 = 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑃 𝜌𝑔 + 𝑈2 2𝑔 + 𝑧 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝜂𝑝𝑢𝑚𝑝 = 𝑊ℎ · 𝑊 · 𝑝𝑢𝑚𝑝 = 𝑊ℎ · = 𝜌𝑉 · 𝑔𝐻𝑝𝑢𝑚𝑝 𝜔𝑇 𝑊ℎ · = 𝜌𝑉 · 𝑔𝐻𝑝𝑢𝑚𝑝 GOVERNING EQUATIONS Since U1 = U2, the pump head is where the discharge and suction pressures, corrected to the same elevation, are designated P2 and P1, respectively
  • 6. 𝐻𝑝 = 28.02𝑚 𝐻𝑝 = 𝑃2 − 𝑃1 𝜌𝑔 = 238.82 − −36.06 × 103 𝑃𝑎 1000𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2 × 𝑘𝑔 ⋅ 𝑚 𝑁 ⋅ 𝑠2 × 𝑁 𝑃𝑎 ⋅ 𝑚2 𝑃2 = 238.82 × 103 𝑃𝑎 𝑃2 = 230 × 103 𝑃𝑎 + 1000𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2 × 0.9𝑚 × 𝑁 ⋅ 𝑠2 𝑘𝑔 ⋅ 𝑚 × 𝑃𝑎 ⋅ 𝑚2 𝑁 𝑃2 = 𝑃𝑑 + 𝜌𝑔𝑧𝑑 𝑃1 = −39 × 103 𝑃𝑎 + 1000𝑘𝑔/𝑚3 × 9.81𝑚/𝑠2 × 0.3𝑚 × 𝑁 ⋅ 𝑠2 𝑘𝑔 ⋅ 𝑚 × 𝑃𝑎 ⋅ 𝑚2 𝑁 𝑃1 = 𝑃𝑠 + 𝜌𝑔𝑧𝑠 Correct measured static pressures to the pump centreline Calculate the pump head 𝑃1 = −36.06 × 103 𝑃𝑎
  • 7. 𝑊ℎ · = 17.333 × 103 𝑊 𝑊ℎ · = 227 𝑚3 ℎ × ℎ 3600𝑠 × 238.82 − −36.06 × 103 𝑃𝑎 × 𝑁 𝑃𝑎 ⋅ 𝑚2 × 𝐽 𝑁 ⋅ 𝑚 × 𝑤 ⋅ 𝑠 𝐽 𝑊ℎ · = 𝜌𝑉 · 𝑔𝐻𝑝𝑢𝑚𝑝 = 𝑉 · 𝑃2 − 𝑃1 Compute the hydraulic power delivered to the fluid 𝜂𝑝 = 𝑊ℎ · 𝑊 𝑚 · = 17.333 × 103 𝑊 20.4 × 103𝑊 = 0.847 ⟶ 𝑃𝑖𝑛 = 20.4 × 103 𝑊 𝑃𝑖𝑛 = 0.9 × 3 × 0.875 × 460𝑉 × 32.6𝐴 × 𝑊 𝑉𝐴 𝑃𝑖𝑛 = 𝜂 3 𝑃𝐹 𝐸𝐼 Calculate the motor power output (the mechanical power input to the pump) from the electrical information The corresponding pump efficiency is 𝜂𝑝 = 85% Convert 𝑚3 ℎ 𝑡𝑜 𝑚3 𝑠
  • 8. Develop and format appropriately an excel worksheet which calculates the; •Pump head for each volumetric flow rate provided •The hydraulic power delivered to the flow for each flow rate •The power input required to drive the pump at each flow rate •The pump efficiency at each flow rate From the resulting dataset, plot the pump head, power input and efficiency as functions fo volumetric flow-rate and describe what can be observed or deduced from these results. PUMP SYSTEM EXAMPLE Pt 2 Table 2 - Given Data Given Data Value Units Zs 0.3 m Zd 0.9 m RPM 1750 RPM Temperature 20 deg Density 998 Gravity 9.81 Efficiency 0.9 Volts 460 Power Factor 0.875
  • 9. Table 2 - Calculated Hydraulic Power, Power Supplied and Pump Efficiency Volumetric Flow Rate (m3/h) Suction Pressure (kPa-gauge) Discharge Pressure (kPa - gauge) Motor Current (amp) P1 P2 Hp Hydraulic Power Power in Pump Efficincy 0 -25 377 18.0 -22062.89 385811.34 41.58 0.00 11293.84 0.00 114 -29 324 25.1 -26062.89 332811.34 36.58 11364.35 15748.63 0.72 182 -32 277 30.0 -29062.89 285811.34 32.10 15918.64 18823.06 0.85 227 -39 230 32.6 -36062.89 238811.34 28.02 17332.35 20454.39 0.85 250 -43 207 34.1 -40062.89 215811.34 26.08 17769.04 21395.55 0.83 273 -46 179 35.4 -43062.89 187811.34 23.53 17507.96 22211.21 0.79 318 -53 114 39.0 -50062.89 122811.34 17.62 15270.56 24469.98 0.62 341 -58 69 40.9 -55062.89 77811.34 13.54 12586.14 25662.11 0.49
  • 10. 0 12.5 25 37.5 50 0 85.25 170.5 255.75 341 Pump Head (m) Volumetric Flow Rate (m^3/h) Pump Head 0.00 6500.00 13000.00 19500.00 26000.00 32500.00 0 85.25 170.5 255.75 341 Pump Power Input (kW) Volumetric Flow Rate (m^3/h) Power Power in
  • 11. 0.00 0.23 0.45 0.68 0.90 0 85.25 170.5 255.75 341 Pump Efficiency Volumetric Flow Rate (m^3/h) Pump Efficincy
  • 12. Apply the method of least squares to the calculated pump performance data obtained above and fit a parabolic curve of the form 𝐻 = 𝐻𝑜 − 𝐴𝑉2 · to this data. Include all formulations and calculations as part of your submission, plot the fitted curve using excel and compare this with the measured data. PUMP SYSTEM EXAMPLE Pt 3
  • 13. Formulation 𝑎∑𝑉2 · + 𝑏∑(𝑉2) · 2 = ∑𝐻𝑝𝑉2 𝑎𝑛 + 𝑏∑𝑉2 · = ∑𝐻𝑝 Table 3 - Method of Least Squares for Curve Fit Volumetric Flow Rate (m3/h) Q2 (Q2)2 Hp Q*Hp Curve Fit H(m) = 40.22 - 2.3e-4(Q^2) 0 0 0 41.46 0.00 40.22 -3.0 114 12996 168896016 36.46 473779.60 37.243916 2.2 182 33124 1097199376 31.96 1058695.84 32.634604 2.1 227 51529 2655237841 27.88 1436419.87 28.419859 2.0 250 62500 3906250000 25.94 1620954.40 25.9075 -0.1 273 74529 5554571841 23.38 1742617.95 23.152859 -1.0 318 101124 10226063376 17.46 1765378.36 17.062604 -2.3 341 116281 13521270961 13.37 1554899.92 13.591651 1.6 1705 452083 37129489411 217.90 9652745.93 -63.307007
  • 14. Table 4 - Calculated Hydraulic Power, Power Supplied and Pump Efficiency with Least Squares Volumetric Flow Rate (m3/h) Suction Pressure (kPa- gauge) Discharge Pressure (kPa - gauge) Motor Current (amp) P1 P2 Hp Hydraulic Power Power in Pump Efficincy Curve Fit H(m) = 40.22 - 2.3e-4(Q^2) 0 -25 377 18.0 -22062.89 385811.34 41.58 0.00 11293.84 0.00 40.22 -3.0 114 -29 324 25.1 -26062.89 332811.34 36.58 11364.35 15748.63 0.72 37.24 2.2 182 -32 277 30.0 -29062.89 285811.34 32.10 15918.64 18823.06 0.85 32.63 2.1 227 -39 230 32.6 -36062.89 238811.34 28.02 17332.35 20454.39 0.85 28.42 2.0 250 -43 207 34.1 -40062.89 215811.34 26.08 17769.04 21395.55 0.83 25.91 -0.1 273 -46 179 35.4 -43062.89 187811.34 23.53 17507.96 22211.21 0.79 23.15 -1.0 318 -53 114 39.0 -50062.89 122811.34 17.62 15270.56 24469.98 0.62 17.06 -2.3 341 -58 69 40.9 -55062.89 77811.34 13.54 12586.14 25662.11 0.49 13.59 1.6 Using the method of least squares, the equation for the fitted curve is obtained as 𝐻 𝑚 = 40.22 − 2.29 × 10−4 𝑉2 ·
  • 15. 10.00 18.00 26.00 34.00 42.00 0 85.25 170.5 255.75 341 Calculated Pump Head Curve Fit