SlideShare a Scribd company logo
1 of 16
KV
WORKED EXAMPLES
{Pumping Systems Example 2}
Keith Vaugh BEng (AERO) MEng
PUMPING SYSTEM OPERATING POINT
A centrifugal pump pumps water at 25 ยฐC through a cast iron pipes in the system as illustrated. The pump
has an impeller of 200 mm diameter and a shutoff head H0 = 7.6 m off water when operated at 1170 rpm.
The best efficiency occurs at a volumetric flow rate of 68m3/h where the head H is 6.7m for this speed.
Given these conditions it can be shown that the parabolic equation representing this pump system is given
by; ๐ป = 7.6 โˆ’ 1.95 ร— 10โˆ’4
๐‘‰
ยท
2
If the pump is scaled to 1750 rpm, the parabolic equation can be shown to be ๐ป = 17 โˆ’ 1.95 ร—
10โˆ’4 ๐‘‰
ยท
2
For this case;
โ€ข Develop an algebraic expression for the general shape of the system resistance curve.
โ€ข Calculate and plot the system resistance curve.
โ€ข Solve graphically for the system operating point.
PUMPING SYSTEM OPERATING POINT
0.6 m 900 m
250 mm diameter 200 mm diameter
Given
Pump operating at 1750 rpm with a ๐ป = ๐ป0 โˆ’ ๐ด๐‘‰
ยท
2
where H0 = 17 m and ๐ด =
1.95 ร— 10โˆ’4
๐‘š/ (๐‘š3
/โ„Ž)2
. The pipe from the first reservoir to the pump has a
length of 0.6 m and a diameter of 250 mm, and the pipe from the pump to the
second reservoir has a length of 900 m and a diameter of 200 mm. Water at 25
degrees celsius is transferred horizontally between the reservoirs and the level of
water in each is at the same height.
Find:
(a) A general algebraic expression for the system head curve
(b) The system head curve by direct calculation
(c) The system operating point using a graphical solution
Solution
Apply the energy equation to the flow system
Total head loss is the summation of the major and minor losses in the system
๐‘“ = โˆ’1.8๐‘™๐‘œ๐‘”10
๐œ–
๐ท
3.7
1.11
โˆ’
6.9
๐‘…๐‘’
โˆ’2
๐‘ƒ๐‘–๐‘›
๐œŒ๐‘”
+
๐‘ˆ๐‘–๐‘›
2
2๐‘”
+ ๐‘ง๐‘–๐‘› =
๐‘ƒ๐‘œ๐‘ข๐‘ก
๐œŒ๐‘”
+
๐‘ˆ๐‘œ๐‘ข๐‘ก
2
2๐‘”
+ ๐‘ง๐‘œ๐‘ข๐‘ก + ๐‘“
๐ฟ
๐ท
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
+ โˆ‘๐‘“
๐ฟ๐‘’
๐ท
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
+ โˆ‘๐พ
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
โˆ’ ๐ป
๐ป =
โ„Ž๐‘
๐‘”
โ„Ž๐ฟ = ๐‘“
๐ฟ
๐ท
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
+ โˆ‘๐‘“
๐ฟ๐‘’
๐ท
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
+ โˆ‘๐พ
๐‘ˆ๐‘๐‘–๐‘๐‘’
2
2๐‘”
๐‘ƒ๐‘–๐‘›
๐œŒ๐‘”
+
๐‘ˆ๐‘–๐‘›
2
2๐‘”
+ ๐‘ง๐‘–๐‘› =
๐‘ƒ๐‘œ๐‘ข๐‘ก
๐œŒ๐‘”
+
๐‘ˆ๐‘œ๐‘ข๐‘ก
2
2๐‘”
+ ๐‘ง๐‘œ๐‘ข๐‘ก + โ„Ž๐ฟ โˆ’ ๐ป
Friction factor
Total head loss is the summation of the major and minor losses in the system
The energy equation for steady incompressible pipe flow can be written as;
๐‘๐‘ƒ๐‘†๐ป๐ด =
๐‘ƒ๐‘๐‘ข๐‘š๐‘ + ๐‘ƒ๐‘Ž๐‘ก๐‘š โˆ’ ๐‘ƒ๐‘ฃ๐‘Ž๐‘๐‘œ๐‘ข๐‘Ÿ
๐œŒ๐‘”
Net Positive Suction Head Available
GOVERNING EQUATIONS
GOVERNING EQUATIONS
Piping system -
๐‘ƒ0
๐œŒ๐‘”
+
๐‘ˆ0
2
2๐‘”
+ ๐‘ง0 + ๐ป๐‘Ž =
๐‘ƒ3
๐œŒ๐‘”
+
๐‘ˆ3
2
2๐‘”
+ ๐‘ง3 +
โ„Ž๐‘™๐‘ก
๐‘”
Friction Factor - ๐‘“ = โˆ’1.8๐‘™๐‘œ๐‘”10
๐œ–
๐ท
3.7
1.11
+
6.9
๐‘…๐‘’
โˆ’2
where z0 and z3 are the surface levels for the supply and discharge reservoirs respectively
ASSUMPTIONS
P0 = P3 =Patm
U0 = U3 = 0
z0 =z3
๐ป๐‘Ž =
โ„Ž๐‘™๐‘ก
๐‘”
=
โ„Ž๐‘™๐‘‡01
๐‘”
+
โ„Ž๐‘™๐‘‡23
๐‘”
= ๐ป๐‘™๐‘‡
Simplifying the Governing Equation
where section โ‘  and โ‘ก are located just upstream and downstream from the pump, respectively.
โ„Ž๐‘™๐‘‡23
= ๐‘“2
๐ฟ2
๐ท2
๐‘ˆ2
2
2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2
= ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2
โ„Ž๐‘™๐‘‡01
= ๐พ๐‘’๐‘›๐‘ก
๐‘ˆ1
2
2
+ ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ1
2
2
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ1
2
2
โ‘  โ‘ก โ‘ข
โ“ช
The total heads losses are the sum of the
major and minor losses, so
From continuity, ๐‘ˆ1๐ด1 = ๐‘ˆ2๐ด2 therefore ๐‘ˆ1 = ๐‘ˆ2
๐ด2
๐ด1
= ๐‘ˆ2
๐ท2
๐ท1
2
Hence
๐ป๐‘™๐‘‡
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐ท2
๐ท1
4
+ ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2๐‘”
๐ป๐‘™๐‘‡
=
โ„Ž๐‘™๐‘ก
๐‘”
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ2
2
2๐‘”
๐ท2
๐ท1
4
+ ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2๐‘”
Simplifying this equation results in an equation representative of the Total Head Loss in the pipes as
consequence of the Major and Minor Head Losses
At the operating point as per the simplified governing equation ๐ป๐‘Ž =
โ„Ž๐‘™๐‘ก
๐‘”
=
โ„Ž๐‘™๐‘‡01
๐‘”
+
โ„Ž๐‘™๐‘‡23
๐‘”
= ๐ป๐‘™๐‘‡
the head loss is equal to
the head produced nay the pump given by ๐ป = ๐ป0 โˆ’ ๐ด๐‘‰
ยท
2
where ๐ป0 = 17๐‘š and ๐ด = 1.95 ร— 10โˆ’4
๐‘š/ (๐‘š3
/โ„Ž)2
๐ป๐‘™๐‘‡
=
โ„Ž๐‘™๐‘ก
๐‘”
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ1
2
2๐‘”
+ ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2๐‘”
๐‘ˆ1 = ๐‘ˆ2
๐ด2
๐ด1
= ๐‘ˆ2
๐ท2
๐ท1
2
โ„Ž๐‘™๐‘‡23
= ๐‘“2
๐ฟ2
๐ท2
๐‘ˆ2
2
2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2
= ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2
โ„Ž๐‘™๐‘‡01
= ๐พ๐‘’๐‘›๐‘ก
๐‘ˆ1
2
2
+ ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ1
2
2
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐‘ˆ1
2
2
Pipe on the Left side of the pump
Pipe on the Right side of the pump
๐ป๐‘™๐‘‡
= โ„Ž๐‘™๐‘‡01
+ โ„Ž๐‘™๐‘‡23
Add these two equations to get the total head loss in the system
But from continuity
Gives
๐‘ˆ1
2
= ๐‘ˆ2
๐ท2
๐ท1
2 2
= ๐‘ˆ2
2
๐ท2
๐ท1
4
๐ป๐‘™๐‘‡
=
โ„Ž๐‘™๐‘ก
๐‘”
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
1
2๐‘”
๐‘ˆ2
2
ร—
๐ท2
๐ท1
4
+ ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2๐‘”
Table 1 - Data given in question or sourced from fluids tables
Given Data Value Units Source
Water at 25 Degrees
Pipe Diameter D1 25 cm
Pipe Diameter D2 20 cm
ฮต 2.6E-04 m Tables
Patm 101.3 kPa
Kinematic Viscosity 8.96E-07 m2/s Tables
Density 997 kg/m3
z1 0 m
z2 0 m
Lsuction 0.6 m Side of pump
Ldelivery 900 m Side of pump
LT 900.6 m
For minor losses, K
Reentrant 0.5 Tables
Sudden Expansion 1 Tables
KT 1.5
Compile all available data into a table
Some data needs to be sourced from
reference tables, databases etcโ€ฆ
EXAMPLE Table: Roughness for pipes of common Engineering Materials
Pipe Roughness, ฮต (mm)
Riveted steel 0.9 - 9
Concrete 0.3 - 3
Wood Stave 0.2 - 0.9
Cast Iron 0.26
Glavanised Iron 0.15
Asphalted Cast Iron 0.12
Commercial Steel or Wrought
Iron
0.046
Dran Tubing 0.0015
Generate a data table populated with the calculations distilled from the formulas developed
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number, Re
Friction
Factor, f2
New Pipes
(m)
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number, Re
Friction
Factor, f2
New Pipes
(m)
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
๐ป๐‘™๐‘‡
= ๐พ๐‘’๐‘›๐‘ก + ๐‘“1
๐ฟ1
๐ท1
๐ท2
๐ท1
4
+ ๐‘“2
๐ฟ2
๐ท2
+ ๐พ๐‘’๐‘ฅ๐‘–๐‘ก
๐‘ˆ2
2
2๐‘”
๐ป = 17 โˆ’ 1.95 ร— 10โˆ’4 ๐‘‰
ยท
2
Plot the relevant curves and identify the operating point for the pumping system.
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
0 50 100 150 200 250
Pump
Head
(m)
Volumetric Flow Rate in m^3/hr
New Pipes (m)
Where curves cross is the
optimum operating point for
the system. The graphical solution is
shown on the plot. At the
operating point H โ‰ˆ 11.4 m
and the volumetric flow
rate, 170 m3/h.
As pipes age with time, build up forms on the inner walls. This must be taken into account when
designing the system. Typical multipliers are available that can be applied to the calculations
Table 2 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s)
Reynolds
Number,
Re
Friction
Factor, f1
U2 (m/s)
Reynolds
Number,
Re
Friction
Factor, f2
New Pipes
(m)
Age pipes
10 years
Age pipes
20 years
Pump Curve
(m)
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51
75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90
100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05
125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95
150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61
175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03
200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20
225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13
250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
Add two new
columns to
the table
Table 2: Typical Multipliers applied to friction
factors, with ageing pipes
Pipe
Age (Years)
Small Pipes,
100 - 250
mm
Large Pipes,
300 - 1500
mm
New 1.00 1.00
10 2.2 1.60
20 5.00 2.00
30 7.25 2.20
40 8.75 2.40
50 9.6 2.86
60 10.0 3.70
70 10.1 4.70
From the table locate the multipliers
for the ageing pipe
Multiply these values by the fraction
factor for that condition
Given that each pipe is โ‰ค 250 mm diameter the multiplier for 10 years is 2.2 and for 20 years is 5
Table 3 - Data Tabulation and Analysis to determine the operating point of the system
Volumetric
Flow Rate
(m3/hr)
U1 (m/s) Reynolds
Number, Re
Friction
Factor, f1
U2 (m/s) Reynolds
Number,
Re
Friction
Factor, f2
New
Pipes (m)
Ageing
pipes 10
years
Ageing
pipes 20
years
0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 17.00
25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 0.61 2.41 16.88
50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 2.28 9.02 16.51
75 0.42 118371.21 0.0218 0.66 147964.0
2
0.0224 2.28 4.99 19.76 15.90
100 0.57 157828.28 0.0214 0.88 197285.3
5
0.0221 4.00 8.74 34.62 15.05
125 0.71 197285.35 0.0211 1.10 246606.6
9
0.0219 6.19 13.54 53.61 13.95
150 0.85 236742.42 0.0209 1.33 295928.0
3
0.0217 8.86 19.37 76.72 12.61
175 0.99 276199.49 0.0208 1.55 345249.3
7
0.0216 12.01 26.25 103.95 11.03
200 1.13 315656.57 0.0207 1.77 394570.7
1
0.0215 15.63 34.16 135.30 9.20
225 1.27 355113.64 0.0206 1.99 443892.0
5
0.0215 19.73 43.12 170.77 7.13
0.00
2.50
5.00
7.50
10.00
12.50
15.00
17.50
20.00
0 75 150 225 300
Pump
Head
(m)
Volumetric Flow Rate (m^3/hr)
New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years
Plot the relevant curves and identify the operating point for the ageing pipes in the pumping system.
The graphical solution is
shown on the plot. At the
operating point for new
pipes H โ‰ˆ 11.4 m and the
volumetric flow rate, 170
m3/h, for 10 year old pipes
H โ‰ˆ 13.75 m and the
volumetric flow rate, 127
m3/h, and for 10 year old
pipes H โ‰ˆ 16 m and the
volumetric flow rate, 67
m3/h.

More Related Content

Similar to T3a - Finding the operating point of a pumping system 2023.pptx

T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptxKeith Vaugh
ย 
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)SAJJAD KHUDHUR ABBAS
ย 
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYINGSAJJAD KHUDHUR ABBAS
ย 
Chapter_9_Instrument.pdf
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdfAnshuChandola1
ย 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesVijay Sarathy
ย 
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pumptheijes
ย 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basicsSalman1011
ย 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Mustefa Jibril
ย 
Performance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedDickens Mimisa
ย 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptxamirashraf61
ย 
Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014Ray Beebe
ย 
Energy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptEnergy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptD.Pawan Kumar
ย 

Similar to T3a - Finding the operating point of a pumping system 2023.pptx (20)

T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
ย 
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
ย 
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE โ€“ DILUTE PHASE PNEUMATIC CONVEYING
ย 
Chapter_9_Instrument.pdf
Chapter_9_Instrument.pdfChapter_9_Instrument.pdf
Chapter_9_Instrument.pdf
ย 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
ย 
LiquidHeatControl
LiquidHeatControlLiquidHeatControl
LiquidHeatControl
ย 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
ย 
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
ย 
Centrifugal pump sizing tutorial
Centrifugal pump sizing   tutorialCentrifugal pump sizing   tutorial
Centrifugal pump sizing tutorial
ย 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basics
ย 
ChilledWaterSystemDesign
ChilledWaterSystemDesignChilledWaterSystemDesign
ChilledWaterSystemDesign
ย 
Control system
Control systemControl system
Control system
ย 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...
ย 
Performance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosaved
ย 
Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
ย 
Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
ย 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptx
ย 
Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014Optimum overhaul of pumps 2014
Optimum overhaul of pumps 2014
ย 
Energy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans pptEnergy efficiency in pumps and fans ppt
Energy efficiency in pumps and fans ppt
ย 
Chapter_9.ppt
Chapter_9.pptChapter_9.ppt
Chapter_9.ppt
ย 

More from Keith Vaugh

Renewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesRenewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesKeith Vaugh
ย 
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxKeith Vaugh
ย 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
ย 
T2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxKeith Vaugh
ย 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
ย 
L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxKeith Vaugh
ย 
L6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxKeith Vaugh
ย 
L5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxKeith Vaugh
ย 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxKeith Vaugh
ย 
L2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxKeith Vaugh
ย 
L1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxKeith Vaugh
ย 
L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22Keith Vaugh
ย 
CAD & Analysis Introduction
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis IntroductionKeith Vaugh
ย 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slidesKeith Vaugh
ย 
Hydropower
HydropowerHydropower
HydropowerKeith Vaugh
ย 
Fluid discharge
Fluid dischargeFluid discharge
Fluid dischargeKeith Vaugh
ย 
Essential fluids
Essential fluids Essential fluids
Essential fluids Keith Vaugh
ย 
Essential fluid mechanics
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanicsKeith Vaugh
ย 
L6 Wind Energy
L6  Wind EnergyL6  Wind Energy
L6 Wind EnergyKeith Vaugh
ย 
L4 Bio mass
L4 Bio massL4 Bio mass
L4 Bio massKeith Vaugh
ย 

More from Keith Vaugh (20)

Renewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture SlidesRenewable Energy Thermodynamics Lecture Slides
Renewable Energy Thermodynamics Lecture Slides
ย 
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptxT2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
T2c - Centrifugal Pumps, turbines and Impeller calculations 2023.pptx
ย 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
ย 
T2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptxT2a - Fluid Discharge 2023.pptx
T2a - Fluid Discharge 2023.pptx
ย 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
ย 
L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptx
ย 
L6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptxL6 - Mass&EnergyClosedVol 2023.pptx
L6 - Mass&EnergyClosedVol 2023.pptx
ย 
L5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptxL5 - EnergyAnalysisClosedSys 2023.pptx
L5 - EnergyAnalysisClosedSys 2023.pptx
ย 
L4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptxL4 - PropertiesPureSubstances 2023.pptx
L4 - PropertiesPureSubstances 2023.pptx
ย 
L2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptxL2 - Basic Concepts 2023 UD.pptx
L2 - Basic Concepts 2023 UD.pptx
ย 
L1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptxL1 - ES & Thermofluids 2023 Master SS.pptx
L1 - ES & Thermofluids 2023 Master SS.pptx
ย 
L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22L1 - Energy Systems and Thermofluids 2021-22
L1 - Energy Systems and Thermofluids 2021-22
ย 
CAD & Analysis Introduction
CAD & Analysis IntroductionCAD & Analysis Introduction
CAD & Analysis Introduction
ย 
Wind Energy Lecture slides
Wind Energy Lecture slidesWind Energy Lecture slides
Wind Energy Lecture slides
ย 
Hydropower
HydropowerHydropower
Hydropower
ย 
Fluid discharge
Fluid dischargeFluid discharge
Fluid discharge
ย 
Essential fluids
Essential fluids Essential fluids
Essential fluids
ย 
Essential fluid mechanics
Essential fluid mechanicsEssential fluid mechanics
Essential fluid mechanics
ย 
L6 Wind Energy
L6  Wind EnergyL6  Wind Energy
L6 Wind Energy
ย 
L4 Bio mass
L4 Bio massL4 Bio mass
L4 Bio mass
ย 

Recently uploaded

ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
ย 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
ย 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
ย 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...Dr. Mazin Mohamed alkathiri
ย 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
ย 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
ย 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
ย 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 

Recently uploaded (20)

Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
ย 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ย 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
ย 
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
ย 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
ย 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
ย 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
ย 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
ย 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
ย 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
ย 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 

T3a - Finding the operating point of a pumping system 2023.pptx

  • 1. KV WORKED EXAMPLES {Pumping Systems Example 2} Keith Vaugh BEng (AERO) MEng
  • 2. PUMPING SYSTEM OPERATING POINT A centrifugal pump pumps water at 25 ยฐC through a cast iron pipes in the system as illustrated. The pump has an impeller of 200 mm diameter and a shutoff head H0 = 7.6 m off water when operated at 1170 rpm. The best efficiency occurs at a volumetric flow rate of 68m3/h where the head H is 6.7m for this speed. Given these conditions it can be shown that the parabolic equation representing this pump system is given by; ๐ป = 7.6 โˆ’ 1.95 ร— 10โˆ’4 ๐‘‰ ยท 2 If the pump is scaled to 1750 rpm, the parabolic equation can be shown to be ๐ป = 17 โˆ’ 1.95 ร— 10โˆ’4 ๐‘‰ ยท 2 For this case; โ€ข Develop an algebraic expression for the general shape of the system resistance curve. โ€ข Calculate and plot the system resistance curve. โ€ข Solve graphically for the system operating point.
  • 3. PUMPING SYSTEM OPERATING POINT 0.6 m 900 m 250 mm diameter 200 mm diameter
  • 4. Given Pump operating at 1750 rpm with a ๐ป = ๐ป0 โˆ’ ๐ด๐‘‰ ยท 2 where H0 = 17 m and ๐ด = 1.95 ร— 10โˆ’4 ๐‘š/ (๐‘š3 /โ„Ž)2 . The pipe from the first reservoir to the pump has a length of 0.6 m and a diameter of 250 mm, and the pipe from the pump to the second reservoir has a length of 900 m and a diameter of 200 mm. Water at 25 degrees celsius is transferred horizontally between the reservoirs and the level of water in each is at the same height. Find: (a) A general algebraic expression for the system head curve (b) The system head curve by direct calculation (c) The system operating point using a graphical solution Solution Apply the energy equation to the flow system
  • 5. Total head loss is the summation of the major and minor losses in the system ๐‘“ = โˆ’1.8๐‘™๐‘œ๐‘”10 ๐œ– ๐ท 3.7 1.11 โˆ’ 6.9 ๐‘…๐‘’ โˆ’2 ๐‘ƒ๐‘–๐‘› ๐œŒ๐‘” + ๐‘ˆ๐‘–๐‘› 2 2๐‘” + ๐‘ง๐‘–๐‘› = ๐‘ƒ๐‘œ๐‘ข๐‘ก ๐œŒ๐‘” + ๐‘ˆ๐‘œ๐‘ข๐‘ก 2 2๐‘” + ๐‘ง๐‘œ๐‘ข๐‘ก + ๐‘“ ๐ฟ ๐ท ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” + โˆ‘๐‘“ ๐ฟ๐‘’ ๐ท ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” + โˆ‘๐พ ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” โˆ’ ๐ป ๐ป = โ„Ž๐‘ ๐‘” โ„Ž๐ฟ = ๐‘“ ๐ฟ ๐ท ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” + โˆ‘๐‘“ ๐ฟ๐‘’ ๐ท ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” + โˆ‘๐พ ๐‘ˆ๐‘๐‘–๐‘๐‘’ 2 2๐‘” ๐‘ƒ๐‘–๐‘› ๐œŒ๐‘” + ๐‘ˆ๐‘–๐‘› 2 2๐‘” + ๐‘ง๐‘–๐‘› = ๐‘ƒ๐‘œ๐‘ข๐‘ก ๐œŒ๐‘” + ๐‘ˆ๐‘œ๐‘ข๐‘ก 2 2๐‘” + ๐‘ง๐‘œ๐‘ข๐‘ก + โ„Ž๐ฟ โˆ’ ๐ป Friction factor Total head loss is the summation of the major and minor losses in the system The energy equation for steady incompressible pipe flow can be written as; ๐‘๐‘ƒ๐‘†๐ป๐ด = ๐‘ƒ๐‘๐‘ข๐‘š๐‘ + ๐‘ƒ๐‘Ž๐‘ก๐‘š โˆ’ ๐‘ƒ๐‘ฃ๐‘Ž๐‘๐‘œ๐‘ข๐‘Ÿ ๐œŒ๐‘” Net Positive Suction Head Available GOVERNING EQUATIONS
  • 6. GOVERNING EQUATIONS Piping system - ๐‘ƒ0 ๐œŒ๐‘” + ๐‘ˆ0 2 2๐‘” + ๐‘ง0 + ๐ป๐‘Ž = ๐‘ƒ3 ๐œŒ๐‘” + ๐‘ˆ3 2 2๐‘” + ๐‘ง3 + โ„Ž๐‘™๐‘ก ๐‘” Friction Factor - ๐‘“ = โˆ’1.8๐‘™๐‘œ๐‘”10 ๐œ– ๐ท 3.7 1.11 + 6.9 ๐‘…๐‘’ โˆ’2 where z0 and z3 are the surface levels for the supply and discharge reservoirs respectively ASSUMPTIONS P0 = P3 =Patm U0 = U3 = 0 z0 =z3
  • 7. ๐ป๐‘Ž = โ„Ž๐‘™๐‘ก ๐‘” = โ„Ž๐‘™๐‘‡01 ๐‘” + โ„Ž๐‘™๐‘‡23 ๐‘” = ๐ป๐‘™๐‘‡ Simplifying the Governing Equation where section โ‘  and โ‘ก are located just upstream and downstream from the pump, respectively. โ„Ž๐‘™๐‘‡23 = ๐‘“2 ๐ฟ2 ๐ท2 ๐‘ˆ2 2 2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2 = ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2 โ„Ž๐‘™๐‘‡01 = ๐พ๐‘’๐‘›๐‘ก ๐‘ˆ1 2 2 + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ1 2 2 = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ1 2 2 โ‘  โ‘ก โ‘ข โ“ช The total heads losses are the sum of the major and minor losses, so
  • 8. From continuity, ๐‘ˆ1๐ด1 = ๐‘ˆ2๐ด2 therefore ๐‘ˆ1 = ๐‘ˆ2 ๐ด2 ๐ด1 = ๐‘ˆ2 ๐ท2 ๐ท1 2 Hence ๐ป๐‘™๐‘‡ = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐ท2 ๐ท1 4 + ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2๐‘” ๐ป๐‘™๐‘‡ = โ„Ž๐‘™๐‘ก ๐‘” = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ2 2 2๐‘” ๐ท2 ๐ท1 4 + ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2๐‘” Simplifying this equation results in an equation representative of the Total Head Loss in the pipes as consequence of the Major and Minor Head Losses At the operating point as per the simplified governing equation ๐ป๐‘Ž = โ„Ž๐‘™๐‘ก ๐‘” = โ„Ž๐‘™๐‘‡01 ๐‘” + โ„Ž๐‘™๐‘‡23 ๐‘” = ๐ป๐‘™๐‘‡ the head loss is equal to the head produced nay the pump given by ๐ป = ๐ป0 โˆ’ ๐ด๐‘‰ ยท 2 where ๐ป0 = 17๐‘š and ๐ด = 1.95 ร— 10โˆ’4 ๐‘š/ (๐‘š3 /โ„Ž)2
  • 9. ๐ป๐‘™๐‘‡ = โ„Ž๐‘™๐‘ก ๐‘” = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ1 2 2๐‘” + ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2๐‘” ๐‘ˆ1 = ๐‘ˆ2 ๐ด2 ๐ด1 = ๐‘ˆ2 ๐ท2 ๐ท1 2 โ„Ž๐‘™๐‘‡23 = ๐‘“2 ๐ฟ2 ๐ท2 ๐‘ˆ2 2 2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2 = ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2 โ„Ž๐‘™๐‘‡01 = ๐พ๐‘’๐‘›๐‘ก ๐‘ˆ1 2 2 + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ1 2 2 = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐‘ˆ1 2 2 Pipe on the Left side of the pump Pipe on the Right side of the pump ๐ป๐‘™๐‘‡ = โ„Ž๐‘™๐‘‡01 + โ„Ž๐‘™๐‘‡23 Add these two equations to get the total head loss in the system But from continuity Gives ๐‘ˆ1 2 = ๐‘ˆ2 ๐ท2 ๐ท1 2 2 = ๐‘ˆ2 2 ๐ท2 ๐ท1 4 ๐ป๐‘™๐‘‡ = โ„Ž๐‘™๐‘ก ๐‘” = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 1 2๐‘” ๐‘ˆ2 2 ร— ๐ท2 ๐ท1 4 + ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2๐‘”
  • 10. Table 1 - Data given in question or sourced from fluids tables Given Data Value Units Source Water at 25 Degrees Pipe Diameter D1 25 cm Pipe Diameter D2 20 cm ฮต 2.6E-04 m Tables Patm 101.3 kPa Kinematic Viscosity 8.96E-07 m2/s Tables Density 997 kg/m3 z1 0 m z2 0 m Lsuction 0.6 m Side of pump Ldelivery 900 m Side of pump LT 900.6 m For minor losses, K Reentrant 0.5 Tables Sudden Expansion 1 Tables KT 1.5 Compile all available data into a table Some data needs to be sourced from reference tables, databases etcโ€ฆ EXAMPLE Table: Roughness for pipes of common Engineering Materials Pipe Roughness, ฮต (mm) Riveted steel 0.9 - 9 Concrete 0.3 - 3 Wood Stave 0.2 - 0.9 Cast Iron 0.26 Glavanised Iron 0.15 Asphalted Cast Iron 0.12 Commercial Steel or Wrought Iron 0.046 Dran Tubing 0.0015
  • 11. Generate a data table populated with the calculations distilled from the formulas developed Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81
  • 12. Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81 ๐ป๐‘™๐‘‡ = ๐พ๐‘’๐‘›๐‘ก + ๐‘“1 ๐ฟ1 ๐ท1 ๐ท2 ๐ท1 4 + ๐‘“2 ๐ฟ2 ๐ท2 + ๐พ๐‘’๐‘ฅ๐‘–๐‘ก ๐‘ˆ2 2 2๐‘” ๐ป = 17 โˆ’ 1.95 ร— 10โˆ’4 ๐‘‰ ยท 2
  • 13. Plot the relevant curves and identify the operating point for the pumping system. 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 0 50 100 150 200 250 Pump Head (m) Volumetric Flow Rate in m^3/hr New Pipes (m) Where curves cross is the optimum operating point for the system. The graphical solution is shown on the plot. At the operating point H โ‰ˆ 11.4 m and the volumetric flow rate, 170 m3/h.
  • 14. As pipes age with time, build up forms on the inner walls. This must be taken into account when designing the system. Typical multipliers are available that can be applied to the calculations Table 2 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Age pipes 10 years Age pipes 20 years Pump Curve (m) 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 16.51 75 0.42 118371.21 0.0218 0.66 147964.02 0.0224 2.28 15.90 100 0.57 157828.28 0.0214 0.88 197285.35 0.0221 4.00 15.05 125 0.71 197285.35 0.0211 1.10 246606.69 0.0219 6.19 13.95 150 0.85 236742.42 0.0209 1.33 295928.03 0.0217 8.86 12.61 175 0.99 276199.49 0.0208 1.55 345249.37 0.0216 12.01 11.03 200 1.13 315656.57 0.0207 1.77 394570.71 0.0215 15.63 9.20 225 1.27 355113.64 0.0206 1.99 443892.05 0.0215 19.73 7.13 250 1.41 394570.71 0.0205 2.21 493213.38 0.0214 24.31 4.81 Add two new columns to the table Table 2: Typical Multipliers applied to friction factors, with ageing pipes Pipe Age (Years) Small Pipes, 100 - 250 mm Large Pipes, 300 - 1500 mm New 1.00 1.00 10 2.2 1.60 20 5.00 2.00 30 7.25 2.20 40 8.75 2.40 50 9.6 2.86 60 10.0 3.70 70 10.1 4.70 From the table locate the multipliers for the ageing pipe Multiply these values by the fraction factor for that condition
  • 15. Given that each pipe is โ‰ค 250 mm diameter the multiplier for 10 years is 2.2 and for 20 years is 5 Table 3 - Data Tabulation and Analysis to determine the operating point of the system Volumetric Flow Rate (m3/hr) U1 (m/s) Reynolds Number, Re Friction Factor, f1 U2 (m/s) Reynolds Number, Re Friction Factor, f2 New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years 0 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 17.00 25 0.14 39457.07 0.0246 0.22 49321.34 0.0246 0.28 0.61 2.41 16.88 50 0.28 78914.14 0.0226 0.44 98642.68 0.0230 1.04 2.28 9.02 16.51 75 0.42 118371.21 0.0218 0.66 147964.0 2 0.0224 2.28 4.99 19.76 15.90 100 0.57 157828.28 0.0214 0.88 197285.3 5 0.0221 4.00 8.74 34.62 15.05 125 0.71 197285.35 0.0211 1.10 246606.6 9 0.0219 6.19 13.54 53.61 13.95 150 0.85 236742.42 0.0209 1.33 295928.0 3 0.0217 8.86 19.37 76.72 12.61 175 0.99 276199.49 0.0208 1.55 345249.3 7 0.0216 12.01 26.25 103.95 11.03 200 1.13 315656.57 0.0207 1.77 394570.7 1 0.0215 15.63 34.16 135.30 9.20 225 1.27 355113.64 0.0206 1.99 443892.0 5 0.0215 19.73 43.12 170.77 7.13
  • 16. 0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0 75 150 225 300 Pump Head (m) Volumetric Flow Rate (m^3/hr) New Pipes (m) Ageing pipes 10 years Ageing pipes 20 years Plot the relevant curves and identify the operating point for the ageing pipes in the pumping system. The graphical solution is shown on the plot. At the operating point for new pipes H โ‰ˆ 11.4 m and the volumetric flow rate, 170 m3/h, for 10 year old pipes H โ‰ˆ 13.75 m and the volumetric flow rate, 127 m3/h, and for 10 year old pipes H โ‰ˆ 16 m and the volumetric flow rate, 67 m3/h.