SlideShare a Scribd company logo
1 of 39
PRELIMINARY DESIGN OF AN ENERGY
RECOVERY SYSTEM
MBDA PROJECTPresentation
BY
RajendraPatel
KishalayKumar sinha
JohnPaul
Under the guidance of:
Mr. S.A.HASHIM
Asst. Professor
Department of Aeronautical Engineering
1
Abstracts:
• A ramjet is a form of an air breathing jet engine.
• It uses engine’s forward motion to compress incoming air.
• Absence of rotary compressor.
• It cannot produce thrust at zero airspeed.
• It works most efficiently at supersonic speed around mach 3
and can operate till mach 6.
• Weapon designers are looking to use ramjet technology in
artillery shells to give added range (around 35 Km).
• The combustion chamber is closed except for an opening at
the exhaust nozzle. Burning fuel produces high pressure
gasses that escape through the nozzle at the rear, and gas
pressure at the front end of the engine pushes the rocket
forward.
2
What our project basically is……
• Introducing a moving element in ramjet.
• Bleeding some percentage of air which is highly
compressed into the turbine.
• Using the bleed air in energy conservation like
electricity generator etc.
• Comparing the thrust produced with and
without bleeding.
• Extraction of some thrust from the turbine to
compensate the loss.
3
Our project’s mission…..
• To reduce the use of heavy batteries carried by
them for their maintenance.
• To reduce the weight of missiles.
• Energy conservation.
• Innovative concept that can give ramjet a new
life.
4
Ramjet Engine:
5
PROJECT PREFACE:
• SUPERSONIC DIFFUSER DESIGN
• THRUST CALCULATION WITH & WITHOUT
BLEEDING
• COMBUSTION CHAMBER HEAT TARNSFER AND
ENERGY RECOVERY FROM COMBUSTOR TO
DIFFUSED BLEED AIR FOR TUTBINE INLET
• SUPERSONIC NOZZLE DESIGN
• TURBINE DESIGN
• SUBSONIC NOZZLE DESIGN
6
SINGLE SPIKE SUPERSONIC DIFFUSER
7
1. SUPERSONIC DIFFUSER DESIGN
SINGLE WEDGE SPIKE SUPERSONIC DIFFUSER
DOUBLE WEDGE SPIKE SUPERSONIC DIFFUSER
DATA GIVEN
Sea level condition, at 20,000m from standard atmospheric conditions
Mach no, M1 = 3.0
Static temperature, T1 = 216.66 K
Static pressure, P1 = 0.055293 bar
Static density, ρ1 = 0.08909 kg/m³
Mass flow rate , = 20 kg/s
Flow deflection angle (wedge angle) = 50,5.50,60,6.50,70,7.50,80 ,8.50, 90 ,9.50,100 ,10.50
Combustion chamber inlet mach number(Mcci)=0.4
8
Calculations:
●To calculate Mach number:
M₁= 3 , Θ=50 , ẞ=23.130
We have,
Mn₁ =M ₁ SINẞ =1.178456
 Mn₂= 1+(ɤ-1)/2*(M₁sinẞ)² = 0.876218
ɤ(M₁sinẞ) ²-(ɤ-1)/2
M₂ =
Mn₂ = 2.815846
Sin(ẞ-Ө)
 M₃ = 1+(ɤ-1)/2*(M₂)² = 0.487049
ɤM₂ ²-(ɤ-1)/2
9
Table No. 1:
Calculation of M₂ & M₃:
M₁ Ө ẞ Mn₁ Mn₂ M₂ M₃
3 5 23.13 1.178456 0.876218 2.815846 0.487049
3 5.5 23.53 1.197688 0.862917 2.787967 0.489028
3 6 23.93 1.216861 0.85022 2.761757 0.490938
3 6.5 24.34 1.236452 0.837792 2.734666 0.492963
3 7 24.76 1.256455 0.825636 2.706734 0.495108
3 7.5 25.18 1.27639 0.814026 2.680358 0.497187
3 8 25.61 1.296729 0.802669 2.653132 0.499392
3 8.5 26.04 1.316996 0.791813 2.627365 0.501534
3 9 26.49 1.338125 0.780957 2.598517 0.504
3 9.5 26.93 1.358705 0.770809 2.573305 0.506214
3 10 27.38 1.37967 0.760879 2.547237 0.508565
3 10.5 27.84 1.401012 0.75117 2.520355 0.511056 10
Angle(Ө) Vs Mach number
0.475
0.48
0.485
0.49
0.495
0.5
0.505
0.51
0.515
1 2 3 4 5 6 7 8 9 10 11 12
MACH(M₃)
ANGLE(Ө)
M₃
11
●To calculate pressures:
Total or stagnation pressure,
 P₀₁ = P₁ [1 + (ɤ-1)M₁²] ^ɤ/ɤ-1
2
 P₀₁ =2.031062 bar
 P₂=P₁ *[1+2ɤ*(M₁²sin²ẞ-1)] =0.080371 bar
ɤ+1
 P₀₂= P₂ [1 + (ɤ-1)M₂²] ^ɤ/ɤ-1 =0.730078 bar
2
 P₃= P₂* [1+ 2ɤ (M₂²-1) = 0.730078
ɤ+1
 P₀₃= P₁ *[1+(ɤ-1)*M₃²] ^ɤ/ɤ-1
2
= 0.85867 bar
12
Table No. 2:
Calculation for pressures and it’s losses:
Ө P₁(bar) p₂(bar) p₃(bar) p₀₁(bar) p₀₂(bar) p₀₃(bar) Loss of
pressure
(%)
5 0.055293 0.080371 0.730078 2.031062 2.234508 0.85867 57.72313
5.5 0.055293 0.083319 0.741669 2.031062 2.219963 0.873429 56.99645
6 0.055293 0.086305 0.753607 2.031062 2.209175 0.888597 56.24963
6.5 0.055293 0.089406 0.765147 2.031062 2.195467 0.903406 55.5205
7 0.055293 0.092623 0.776253 2.031062 2.178964 0.917816 54.81104
7.5 0.055293 0.09588 0.787658 2.031062 2.165895 0.932584 54.08395
8 0.055293 0.099256 0.798577 2.031062 2.150019 0.946898 53.37915
8.5 0.055293 0.102673 0.809771 2.031062 2.137298 0.961545 52.65804
9 0.055293 0.106292 0.819618 2.031062 2.116091 0.974847 52.00312
9.5 0.055293 0.109872 0.830511 2.031062 2.103598 0.989276 51.29269
10 0.055293 0.113576 0.840818 2.031062 2.088338 1.003144 50.60988
10.5 0.055293 0.117404 0.850501 2.031062 2.070458 1.016413 49.9565913
Ө Vs loss of pressure
46
48
50
52
54
56
58
60
1 2 3 4 5 6 7 8 9 10 11 12
LOSSOFPRESSURE(%)
ANGLE(Ө)
Loss of pressure(%)
14
●To calculate area,velocity and densities :
 ρ₃= p₃ * 10⁵ =0.426752 kg/m^3
R * T₃
 V₃= M₃*(ɤRT₃)^1/2 =238.3599 m/s
 A₃ = ṁ =0.196617
ρ₃*v₃
 ρ₁/ρ₂ = (ɤ-1) *M₁² sin² ẞ+2 = 0.766723
(ɤ+1) M₁²sin²ẞ
 P₂/P₁ = (ɤ-1) M₁ ²* sin²ẞ+2 = 1.453552
(ɤ+1)M₁ ²*sin²ẞ
15
Table No. 3:
Ө ρ₃ ρcci ρ₁/ρ₂ P₂/P₁ V₃(m/s) A₃ Acci
5 0.426752 0.4429 0.766723 241.4614 238.3599 0.196617 0.22897
5.5 0.434288 0.451137 0.747607 244.0768 239.119 0.192592 0.224946
6 0.441803 0.459354 0.729445 246.683 239.91 0.188692 0.221014
6.5 0.449243 0.467534 0.711752 249.3466 240.7188 0.184943 0.217269
7 0.456585 0.475655 0.694534 252.0691 241.5486 0.181344 0.213709
7.5 0.463878 0.483728 0.678174 254.7871 242.4102 0.177859 0.210233
8 0.471042 0.491713 0.662254 257.5668 243.2955 0.174516 0.206937
8.5 0.478145 0.499637 0.647119 260.3448 244.2114 0.171279 0.20372
9 0.484984 0.507382 0.632066 263.2518 245.1525 0.168216 0.200775
9.5 0.491842 0.515105 0.618074 266.0952 246.1263 0.165214 0.197806
10 0.498508 0.522679 0.604459 269.0054 247.1298 0.162343 0.195005
10.5 0.504956 0.530079 0.591223 271.9836 248.1664 0.1596 0.192371
16
Ө Vs Acci
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
1 2 3 4 5 6 7 8 9 10 11 12
COMBUSTIONCHAMBERINLETAREA
ANGLE(Ө)
Acci
17
●Calculation for temperatures:
 T₁ = 216.66 K(given)
 T₂=P₂* ρ ₁*T₁ = 241.4614 K
P₁* ρ₂
 T₃= T₂[1+2(ɤ-1) (ɤM₁²+1) (M₂²-1)] = 596.09 K
(ɤ+1)² * M₂²
 T ₀₁=T₁ *[1+(ɤ-1)M₁²] =606.648 K
2
 T ₀₂=T₁ *[1+(ɤ-1)M₂²]=624.3704 K
2
 T ₀₃=T₁ *[1+(ɤ-1)M₃²]=624.3704 K
2
 T₅=(P₅/P₀₄) ^ɤ/ɤ-1 *T₀₄ =1096.178 K
18
Table No:4
Ө T₂(K) T₃(K) T₀₁(K) T₀₂=T₀₃(K) T₅(K)
5 241.4614 596.09 606.648 624.3704 1096.178
5.5 244.0768 595.0459 606.648 623.5067 1090.853
6 246.683 594.3385 606.648 622.988 1085.5
6.5 249.3466 593.4462 606.648 622.2892 1080.386
7 252.0691 592.3792 606.648 621.4213 1075.512
7.5 254.7871 591.6318 606.648 620.8816 1070.619
8 257.5668 590.7112 606.648 620.175 1065.969
8.5 260.3448 590.0934 606.648 619.7794 1061.304
9 263.2518 588.8471 606.648 618.7624 1057.147
9.5 266.0952 588.3529 606.648 618.5063 1052.718
10 269.0054 587.6894 606.648 618.0892 1048.539
10.5 271.9836 586.8664 606.648 617.5218 1044.61
19
Angle(Ө) Vs Temperature(T₅)
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1 2 3 4 5 6 7 8 9 10 11 12
TEMPERATURE(T₅)
ANGLE(Ө)
T₅
20
●Calculation for thrust:
Thrust without Bleed(T)=ṁ(Cj-Ci) ,ṁ=20kg
= 14.6741 KN
Thrust with Bleed(T)= ṁ(Cj-Ci) , ṁ=18kg
=13.20669 KN
Cj=√(2*R*(T₀₄-T₅) Ci=3*√Cp(T₀₄-T₅)
=1618.852 m/s = 885.1474 m/s
21
Table No: 5
Ө Ci (m/s) Cj (m/s) Thrust(wit
hout
bleeding)
KN
Thrust(wit
h bleeding)
KN
Loss in
thrust (KN)
Loss of
thrust(%)
5 885.1474 1618.852 14.6741 13.20669 1.46741 10
5.5 885.1474 1622.155 14.74014 13.26613 1.474014 10
6 885.1474 1625.468 14.8064 13.32576 1.48064 10
6.5 885.1474 1628.626 14.86958 13.38262 1.486958 10
7 885.1474 1631.631 14.92968 13.43671 1.492968 10
7.5 885.1474 1634.643 14.98991 13.49092 1.498991 10
8 885.1474 1637.499 15.04703 13.54232 1.504703 10
8.5 885.1474 1640.359 15.10423 13.59381 1.510423 10
9 885.1474 1642.905 15.15514 13.63963 1.515514 10
9.5 885.1474 1645.611 15.20928 13.68835 1.520928 10
10 885.1474 1648.162 15.26028 13.73425 1.526028 10
10.5 885.1474 1650.556 15.30817 13.77735 1.530817 10
22
Thrust Vs Angle(Ө)
12
12.5
13
13.5
14
14.5
15
15.5
1 2 3 4 5 6 7 8 9 10 11 12
THRUST(T)
ANGLE(Ө)
Thrust(without bleeding) KN
Thrust(with bleeding) KN
23
DOUBLE WEDGESPIKESUPERSONICDIFFUSER:
24
 Double wedge spike :
PERFORMANCE PARAMETERS:
25
 Mach No. Vs Loss Of Thrust:
graph:
0
0.5
1
1.5
2
2.5
3
3.5
1 2 3
LOSSOFTHRUST
MACH NO
MACH NO
LOSS OF THRUST
26
HEAT EXCHANGER:
• A heat exchanger may be defined as an equipment which
transfers energy from a hot fluid to cold fluid with maximum
rate and minimum investment and running cost.
• Eg.
 Intercoolers and preheaters.
 Condensers and evaporators in
refrigeration unit.
 Oil coolers of heat engines etc.
27
Types Of Heat Exchangers:
 On basis of Nature:
 Direct contact heat exchanger
Indirect contact heat exchanger
 On basis of Flow direction:
Parallel flow heat exchanger
Counter flow heat exchanger
Cross flow heat exchanger
28
FINS
 These are the elongated body parts that extend outside
of the body which helps in heat transfer.
 The heated surface transfer it’s part of heat to the
elongated fins.
 These are classified based on shapes as:
i) Rectangular
ii) Square
iii) Triangular
iv) Pentagonal etc.
29
Selection of fin materials:
 The temperature of combustion chamber is about 2400k.
 Fin should have high melting point based on which given material
can be selected:
1. Tantalum hafnium carbide(Ta₄HFC₅)
melting point: 3290K – 4488K
2. Titanium Carbide (Tic)
melting point: 3433K
OR
alloys of zirconium,Ti,Hf,Ta etc.
We have selected molybdenum for our fin material,
Melting point= 2896 k, boiling point= 4912k
Thermal conductivity at 2500k = 85.89 w/mk
30
•CALCULATION OF HEAT TRANSFER BY FINS:
Given data:
Tᵤ=624.4K Tᵥ= 2400K
Film temp(T)= Tᵤ+Tᵥ = 1512.2K = 1239.2°C
2
At 1200°C, from HMTD
Density(Þ)=0.239 kg/mᶟ
Kinematic viscosity(ʋ)=223.70*10^-⁶
Prandlt number(P᷊)=0.724
Thermal conductivity(k)=0.09153w/Mk
Diameter(D)=0.4m
Length of cylinder(L)=1m
Thickness of fin(t)=0.005m
Length of fin(l)=0.05m
Area of fin= 0.05*0.05=0.0025m²
31
CALCULATION:
P₀=P₃+1/2*Þ*V ² =7.32*10⁴ N/m ²
u= ʋ*1 bar = 3.05*10^-⁴ ,velocity(V) = 50m/s
P₀
Now reynolds number(Re)=U*D/u =6.54*10⁴
Nusselt number(Nux)=0.332*(Re)^0.5*(Pr)^0.333=76.27
We know, Nux=hx*D , hx=17.46w/m²k , h=2*hx=34.90w/m²k
K
Perimeter(P)=2*L=2m , m=(h*P /KA)^0.5 = 123.49
Also , m*l = 6.17
Heat transfer by 1 fin,
Q=m*K*A*(Tᵥ-Tᵤ)*tan(m*l)=1003.47W
Therefore heat transfer by 95 fins(Q₁)=95329.65W
32
Heat transfer by unfinned surface(Q₂)= h*A*(Tᵥ-Tᵤ)
=h*(ᴫ*D*L-95*t*l)*1775.6
= 76400.08W
CALCULATION FOR TEMERATURE OF FIN(Tf) = Tᵥ-Tᵤ + Tᵤ = 631.82K
cosh (ml)
Overall Heat transfer ,
Q= Q₁+Q₂ = 171729.73W
Again,
Calculation for temperature of air(T) = Q/(m*K*A*tanh(ml))+Tf
=944.79K
where k of fin material=85.89W/mK
33
•Table no.1
Tᵤ Tᵥ P₀(N
/m²)
Re
No.
Nux h
w/m
²k
No
of fin
Q
(with
fin)
W
Velo
city
(v)
m/s
Q
(with
out
fin)
Q
(over
all)
W
Tem
p of
fin(Tf
) K
Tem
p of
air
(T)
K
596.09 2400 73679.99 98810.89 93.72025 42.89107 95 107374.9 50 95387.62 202762.5 599.9298 932.6136
595.046 2400 74597.1 80032.65 84.34603 38.60096 96 102995 60 85878.89 188873.9 600.5054 939.1265
594.339 2400 75946.25 95060.13 91.92428 42.06914 97 108685.2 70 93612.55 202297.8 598.4438 945.8596
593.446 2400 77279.5 110547.3 99.13002 45.36685 98 114084.7 80 100980 215064.7 596.611 952.2748
592.379 2400 78593.25 126480 106.0332 48.5261 99 119264.6 90 108053.9 227318.5 594.8677 958.3528
591.632 2400 79960.8 142978.6 112.737 51.5941 100 124270.6 100 114909.7 239180.3 593.6164 964.5231
590.711 2400 81303.65 159917.8 119.2283 54.56484 101 129141.9 110 121563.2 250705.2 592.3157 970.363
590.093 2400 82697.9 177447.4 125.5931 57.4777 105 137840.5 120 127992.4 265832.9 591.403 981.9725
588.847 2400 83981.35 195218.2 131.732 60.28713 110 147993.2 130 134204.5 282197.7 589.9294 994.7665
588.353 2400 85739.85 229968.3 142.9766 65.43325 115 161232.4 150 145551.7 306784.2 589.124 1011.572
587.689 2400 87141 249308.2 148.8673 68.12912 120 171736.2 160 151449.7 323185.9 588.3386 1024.478
586.866 2400 88503.65 269032.1 154.644 70.77283 125 182412.6 170 157237.6 339650.2 587.4167 1037.13234
•2-D diagram of the engine:
35
•CALCULATION OF DIFFUSER PRESSURE PLACED BEFORE C.C.
Given,
Temperature(T)=596.09K
Cp value of dry air at 596.09K = 1045
Inlet velocity(V₁)= 195.77m/s
Inlet pressure(P₁)=0.732 bar
Inlet mach(M₁)=0.4
Exit Velocity(V₂)= 75m/s
D₂= 0.34
Mass flow rate(ṁ) = 2/0.65kg/s
 T₀₁= T₁ *[1+(ɤ-1)M₁²] = 615.27K
2
 P₀₁ = P₁ [1 + (ɤ-1)M₁²] ^ɤ/ɤ-1 = 0.8173 bar
2
 ṁ/A1= P₀₁ [ 2ɤ/ɤ+1)*(P₁/P₀₁)^2/ɤ-(P₁/P₀₁)^ɤ+1/ɤ]^1/2
(RT₀₁)^1/2
A₁ = 0.023m² , D₁=0.29m
Therefore diameter of the inlet diffuser(D)= D₂-D₁=0.34m-0.29m = 0.5m
36
FOR GIVEN DIA(d₄)=0.4
The bleed gap = D₂-D₁+0.6= 0.34-0.29+0.6
=0.11m
Total bleed gap = 2* 0.11 = 0.22 m
Therefore,
D₃= D₄-Total bleed gap
D₃ = 0.4-0.22 = 0.18m
Hence exit diameter of the diffuser at C.C.(D´) = D₄-D₁
= 0.4-0.29
= 0.11m
37
Next Work
• In the next report we will submit the complete
design of the Heat Exchanger and the Turbine.
38
work in progress
THANK YOU
39

More Related Content

What's hot

Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycleSoumith V
 
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...IRJET Journal
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressorVJTI Production
 
Enhancement of heat transfer from plate fin heat sinks
Enhancement of heat transfer from plate fin heat sinksEnhancement of heat transfer from plate fin heat sinks
Enhancement of heat transfer from plate fin heat sinkseSAT Journals
 
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning SystemCFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning SystemIJERA Editor
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamicsSoumith V
 
PLD-FINAL-REPORT
PLD-FINAL-REPORTPLD-FINAL-REPORT
PLD-FINAL-REPORTadnan malak
 
IRJET - Thermal Analysis Of Reheating Furnace
IRJET -  	  Thermal Analysis Of Reheating FurnaceIRJET -  	  Thermal Analysis Of Reheating Furnace
IRJET - Thermal Analysis Of Reheating FurnaceIRJET Journal
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3Ebra21
 
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...Vijay Sarathy
 
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...IRJET Journal
 
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...Design With Solid works Software and Planning Calculation Analysis of Fire Tu...
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...IJRES Journal
 
heat engine information detail
heat engine information detailheat engine information detail
heat engine information detailpratik darji
 
Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)qiebti
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a naturalAI Publications
 
Use of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panelsUse of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panelsvarungoyal98
 

What's hot (20)

Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
 
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...
IRJET- Study of Heat Transfer Coefficient in Natural and Forced Convection by...
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressor
 
Enhancement of heat transfer from plate fin heat sinks
Enhancement of heat transfer from plate fin heat sinksEnhancement of heat transfer from plate fin heat sinks
Enhancement of heat transfer from plate fin heat sinks
 
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning SystemCFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System
CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System
 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycle
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamics
 
PLD-FINAL-REPORT
PLD-FINAL-REPORTPLD-FINAL-REPORT
PLD-FINAL-REPORT
 
IRJET - Thermal Analysis Of Reheating Furnace
IRJET -  	  Thermal Analysis Of Reheating FurnaceIRJET -  	  Thermal Analysis Of Reheating Furnace
IRJET - Thermal Analysis Of Reheating Furnace
 
Boiler design-calculation 3
Boiler design-calculation 3Boiler design-calculation 3
Boiler design-calculation 3
 
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
 
30120130405031 2
30120130405031 230120130405031 2
30120130405031 2
 
Thermodynamic cycles
Thermodynamic cyclesThermodynamic cycles
Thermodynamic cycles
 
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...
Design and Thermal Analysis of Hydraulic Oil Cooler by using Computational Fl...
 
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...Design With Solid works Software and Planning Calculation Analysis of Fire Tu...
Design With Solid works Software and Planning Calculation Analysis of Fire Tu...
 
heat engine information detail
heat engine information detailheat engine information detail
heat engine information detail
 
Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural1 ijebm jan-2018-1-combustion adjustment in a natural
1 ijebm jan-2018-1-combustion adjustment in a natural
 
Use of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panelsUse of Nanofluids to increase the efficiency of solar panels
Use of Nanofluids to increase the efficiency of solar panels
 

Viewers also liked

MC&TFEditedPressKit
MC&TFEditedPressKitMC&TFEditedPressKit
MC&TFEditedPressKitNick Gulino
 
IzyTrack Slide deck.pitch.final
IzyTrack Slide deck.pitch.finalIzyTrack Slide deck.pitch.final
IzyTrack Slide deck.pitch.finalTony Spurlin
 
ARichardsResumeplusAug.15
ARichardsResumeplusAug.15ARichardsResumeplusAug.15
ARichardsResumeplusAug.15Anne Richards
 
Open door mission post ave presentation
Open door mission post ave presentationOpen door mission post ave presentation
Open door mission post ave presentationChris Scribani
 
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...Carter Moody
 
IzyTrack Slide deck.final
IzyTrack Slide deck.finalIzyTrack Slide deck.final
IzyTrack Slide deck.finalTony Spurlin
 
Thermodynamics lab report
Thermodynamics lab reportThermodynamics lab report
Thermodynamics lab reportawais ahmad
 
M is hobbies
M is hobbiesM is hobbies
M is hobbieszappa2112
 
Lab report ic engine 03
Lab report ic engine 03Lab report ic engine 03
Lab report ic engine 03Raja Ali
 
Fis 820 286619-a4_40str_ml - Servicio Tecnico Fagor
Fis 820 286619-a4_40str_ml - Servicio Tecnico FagorFis 820 286619-a4_40str_ml - Servicio Tecnico Fagor
Fis 820 286619-a4_40str_ml - Servicio Tecnico Fagorserviciotecnicofagor
 
Lab report ic engine 13
Lab report ic engine 13Lab report ic engine 13
Lab report ic engine 13Raja Ali
 
Machine Learning Environment and Intro
Machine Learning Environment and IntroMachine Learning Environment and Intro
Machine Learning Environment and IntroXavier Banegas
 
Lab report ic engine 09
Lab report ic engine 09Lab report ic engine 09
Lab report ic engine 09Raja Ali
 

Viewers also liked (20)

bioandfactsheet
bioandfactsheetbioandfactsheet
bioandfactsheet
 
Ruby power poit valores
Ruby power poit valoresRuby power poit valores
Ruby power poit valores
 
MC&TFEditedPressKit
MC&TFEditedPressKitMC&TFEditedPressKit
MC&TFEditedPressKit
 
IzyTrack Slide deck.pitch.final
IzyTrack Slide deck.pitch.finalIzyTrack Slide deck.pitch.final
IzyTrack Slide deck.pitch.final
 
Nairuz Consultoria Digital
Nairuz Consultoria DigitalNairuz Consultoria Digital
Nairuz Consultoria Digital
 
Ayers resume
Ayers resumeAyers resume
Ayers resume
 
ARichardsResumeplusAug.15
ARichardsResumeplusAug.15ARichardsResumeplusAug.15
ARichardsResumeplusAug.15
 
Open door mission post ave presentation
Open door mission post ave presentationOpen door mission post ave presentation
Open door mission post ave presentation
 
My Access Database
My Access DatabaseMy Access Database
My Access Database
 
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...
Carter Moody Writing-Editing Sample--Annual Report, Ctr. for Refugees & Immig...
 
IzyTrack Slide deck.final
IzyTrack Slide deck.finalIzyTrack Slide deck.final
IzyTrack Slide deck.final
 
Thermodynamics lab report
Thermodynamics lab reportThermodynamics lab report
Thermodynamics lab report
 
M is hobbies
M is hobbiesM is hobbies
M is hobbies
 
Lab report ic engine 03
Lab report ic engine 03Lab report ic engine 03
Lab report ic engine 03
 
Fis 820 286619-a4_40str_ml - Servicio Tecnico Fagor
Fis 820 286619-a4_40str_ml - Servicio Tecnico FagorFis 820 286619-a4_40str_ml - Servicio Tecnico Fagor
Fis 820 286619-a4_40str_ml - Servicio Tecnico Fagor
 
Lab report ic engine 13
Lab report ic engine 13Lab report ic engine 13
Lab report ic engine 13
 
Machine Learning Environment and Intro
Machine Learning Environment and IntroMachine Learning Environment and Intro
Machine Learning Environment and Intro
 
MohamedGomaaMohamed-shortCV
MohamedGomaaMohamed-shortCVMohamedGomaaMohamed-shortCV
MohamedGomaaMohamed-shortCV
 
Lab report ic engine 09
Lab report ic engine 09Lab report ic engine 09
Lab report ic engine 09
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 

Similar to MBDA 13.03.13

Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson
 
PERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATORPERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATORIRJET Journal
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle UPENDRA YADAV
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptxKeith Vaugh
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2James Li
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxRasaniyaShreem
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYssuser5a6db81
 
Pipe insulation efficiency study unit |HEAT TRANSFER Laboratory
Pipe insulation efficiency study unit |HEAT TRANSFER LaboratoryPipe insulation efficiency study unit |HEAT TRANSFER Laboratory
Pipe insulation efficiency study unit |HEAT TRANSFER LaboratorySaif al-din ali
 
Reduction in Size of Vars by using Different Materials in Generator
Reduction in Size of Vars by using Different Materials in GeneratorReduction in Size of Vars by using Different Materials in Generator
Reduction in Size of Vars by using Different Materials in Generatorijtsrd
 
Thermal Analysis of Passive Radiator for Inter Planetary Space Applications
Thermal Analysis of Passive Radiator for Inter Planetary Space ApplicationsThermal Analysis of Passive Radiator for Inter Planetary Space Applications
Thermal Analysis of Passive Radiator for Inter Planetary Space ApplicationsShailesh Rajput
 
IRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET Journal
 
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET Journal
 
SARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESarnath R
 
Free heat convection |HEAT TRANSFER Laboratory
Free heat convection |HEAT TRANSFER LaboratoryFree heat convection |HEAT TRANSFER Laboratory
Free heat convection |HEAT TRANSFER LaboratorySaif al-din ali
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conductionAree Salah
 

Similar to MBDA 13.03.13 (20)

Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
 
Presentation-for-teachers.pptx
Presentation-for-teachers.pptxPresentation-for-teachers.pptx
Presentation-for-teachers.pptx
 
PERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATORPERFORMANCE ANALYSIS OF CAR RADIATOR
PERFORMANCE ANALYSIS OF CAR RADIATOR
 
Thermal conductivity admiral
Thermal conductivity admiralThermal conductivity admiral
Thermal conductivity admiral
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem  2023.pptxT3c - MASTER - Pump test flow system and data shown Problem  2023.pptx
T3c - MASTER - Pump test flow system and data shown Problem 2023.pptx
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptx
 
Turbine Design
Turbine DesignTurbine Design
Turbine Design
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
Pipe insulation efficiency study unit |HEAT TRANSFER Laboratory
Pipe insulation efficiency study unit |HEAT TRANSFER LaboratoryPipe insulation efficiency study unit |HEAT TRANSFER Laboratory
Pipe insulation efficiency study unit |HEAT TRANSFER Laboratory
 
Reduction in Size of Vars by using Different Materials in Generator
Reduction in Size of Vars by using Different Materials in GeneratorReduction in Size of Vars by using Different Materials in Generator
Reduction in Size of Vars by using Different Materials in Generator
 
Thermal Analysis of Passive Radiator for Inter Planetary Space Applications
Thermal Analysis of Passive Radiator for Inter Planetary Space ApplicationsThermal Analysis of Passive Radiator for Inter Planetary Space Applications
Thermal Analysis of Passive Radiator for Inter Planetary Space Applications
 
IRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine Blade
 
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
 
SARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESARNATH-PROFILE-CAE
SARNATH-PROFILE-CAE
 
Free heat convection |HEAT TRANSFER Laboratory
Free heat convection |HEAT TRANSFER LaboratoryFree heat convection |HEAT TRANSFER Laboratory
Free heat convection |HEAT TRANSFER Laboratory
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 

MBDA 13.03.13

  • 1. PRELIMINARY DESIGN OF AN ENERGY RECOVERY SYSTEM MBDA PROJECTPresentation BY RajendraPatel KishalayKumar sinha JohnPaul Under the guidance of: Mr. S.A.HASHIM Asst. Professor Department of Aeronautical Engineering 1
  • 2. Abstracts: • A ramjet is a form of an air breathing jet engine. • It uses engine’s forward motion to compress incoming air. • Absence of rotary compressor. • It cannot produce thrust at zero airspeed. • It works most efficiently at supersonic speed around mach 3 and can operate till mach 6. • Weapon designers are looking to use ramjet technology in artillery shells to give added range (around 35 Km). • The combustion chamber is closed except for an opening at the exhaust nozzle. Burning fuel produces high pressure gasses that escape through the nozzle at the rear, and gas pressure at the front end of the engine pushes the rocket forward. 2
  • 3. What our project basically is…… • Introducing a moving element in ramjet. • Bleeding some percentage of air which is highly compressed into the turbine. • Using the bleed air in energy conservation like electricity generator etc. • Comparing the thrust produced with and without bleeding. • Extraction of some thrust from the turbine to compensate the loss. 3
  • 4. Our project’s mission….. • To reduce the use of heavy batteries carried by them for their maintenance. • To reduce the weight of missiles. • Energy conservation. • Innovative concept that can give ramjet a new life. 4
  • 6. PROJECT PREFACE: • SUPERSONIC DIFFUSER DESIGN • THRUST CALCULATION WITH & WITHOUT BLEEDING • COMBUSTION CHAMBER HEAT TARNSFER AND ENERGY RECOVERY FROM COMBUSTOR TO DIFFUSED BLEED AIR FOR TUTBINE INLET • SUPERSONIC NOZZLE DESIGN • TURBINE DESIGN • SUBSONIC NOZZLE DESIGN 6
  • 8. 1. SUPERSONIC DIFFUSER DESIGN SINGLE WEDGE SPIKE SUPERSONIC DIFFUSER DOUBLE WEDGE SPIKE SUPERSONIC DIFFUSER DATA GIVEN Sea level condition, at 20,000m from standard atmospheric conditions Mach no, M1 = 3.0 Static temperature, T1 = 216.66 K Static pressure, P1 = 0.055293 bar Static density, ρ1 = 0.08909 kg/m³ Mass flow rate , = 20 kg/s Flow deflection angle (wedge angle) = 50,5.50,60,6.50,70,7.50,80 ,8.50, 90 ,9.50,100 ,10.50 Combustion chamber inlet mach number(Mcci)=0.4 8
  • 9. Calculations: ●To calculate Mach number: M₁= 3 , Θ=50 , ẞ=23.130 We have, Mn₁ =M ₁ SINẞ =1.178456  Mn₂= 1+(ɤ-1)/2*(M₁sinẞ)² = 0.876218 ɤ(M₁sinẞ) ²-(ɤ-1)/2 M₂ = Mn₂ = 2.815846 Sin(ẞ-Ө)  M₃ = 1+(ɤ-1)/2*(M₂)² = 0.487049 ɤM₂ ²-(ɤ-1)/2 9
  • 10. Table No. 1: Calculation of M₂ & M₃: M₁ Ө ẞ Mn₁ Mn₂ M₂ M₃ 3 5 23.13 1.178456 0.876218 2.815846 0.487049 3 5.5 23.53 1.197688 0.862917 2.787967 0.489028 3 6 23.93 1.216861 0.85022 2.761757 0.490938 3 6.5 24.34 1.236452 0.837792 2.734666 0.492963 3 7 24.76 1.256455 0.825636 2.706734 0.495108 3 7.5 25.18 1.27639 0.814026 2.680358 0.497187 3 8 25.61 1.296729 0.802669 2.653132 0.499392 3 8.5 26.04 1.316996 0.791813 2.627365 0.501534 3 9 26.49 1.338125 0.780957 2.598517 0.504 3 9.5 26.93 1.358705 0.770809 2.573305 0.506214 3 10 27.38 1.37967 0.760879 2.547237 0.508565 3 10.5 27.84 1.401012 0.75117 2.520355 0.511056 10
  • 11. Angle(Ө) Vs Mach number 0.475 0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 1 2 3 4 5 6 7 8 9 10 11 12 MACH(M₃) ANGLE(Ө) M₃ 11
  • 12. ●To calculate pressures: Total or stagnation pressure,  P₀₁ = P₁ [1 + (ɤ-1)M₁²] ^ɤ/ɤ-1 2  P₀₁ =2.031062 bar  P₂=P₁ *[1+2ɤ*(M₁²sin²ẞ-1)] =0.080371 bar ɤ+1  P₀₂= P₂ [1 + (ɤ-1)M₂²] ^ɤ/ɤ-1 =0.730078 bar 2  P₃= P₂* [1+ 2ɤ (M₂²-1) = 0.730078 ɤ+1  P₀₃= P₁ *[1+(ɤ-1)*M₃²] ^ɤ/ɤ-1 2 = 0.85867 bar 12
  • 13. Table No. 2: Calculation for pressures and it’s losses: Ө P₁(bar) p₂(bar) p₃(bar) p₀₁(bar) p₀₂(bar) p₀₃(bar) Loss of pressure (%) 5 0.055293 0.080371 0.730078 2.031062 2.234508 0.85867 57.72313 5.5 0.055293 0.083319 0.741669 2.031062 2.219963 0.873429 56.99645 6 0.055293 0.086305 0.753607 2.031062 2.209175 0.888597 56.24963 6.5 0.055293 0.089406 0.765147 2.031062 2.195467 0.903406 55.5205 7 0.055293 0.092623 0.776253 2.031062 2.178964 0.917816 54.81104 7.5 0.055293 0.09588 0.787658 2.031062 2.165895 0.932584 54.08395 8 0.055293 0.099256 0.798577 2.031062 2.150019 0.946898 53.37915 8.5 0.055293 0.102673 0.809771 2.031062 2.137298 0.961545 52.65804 9 0.055293 0.106292 0.819618 2.031062 2.116091 0.974847 52.00312 9.5 0.055293 0.109872 0.830511 2.031062 2.103598 0.989276 51.29269 10 0.055293 0.113576 0.840818 2.031062 2.088338 1.003144 50.60988 10.5 0.055293 0.117404 0.850501 2.031062 2.070458 1.016413 49.9565913
  • 14. Ө Vs loss of pressure 46 48 50 52 54 56 58 60 1 2 3 4 5 6 7 8 9 10 11 12 LOSSOFPRESSURE(%) ANGLE(Ө) Loss of pressure(%) 14
  • 15. ●To calculate area,velocity and densities :  ρ₃= p₃ * 10⁵ =0.426752 kg/m^3 R * T₃  V₃= M₃*(ɤRT₃)^1/2 =238.3599 m/s  A₃ = ṁ =0.196617 ρ₃*v₃  ρ₁/ρ₂ = (ɤ-1) *M₁² sin² ẞ+2 = 0.766723 (ɤ+1) M₁²sin²ẞ  P₂/P₁ = (ɤ-1) M₁ ²* sin²ẞ+2 = 1.453552 (ɤ+1)M₁ ²*sin²ẞ 15
  • 16. Table No. 3: Ө ρ₃ ρcci ρ₁/ρ₂ P₂/P₁ V₃(m/s) A₃ Acci 5 0.426752 0.4429 0.766723 241.4614 238.3599 0.196617 0.22897 5.5 0.434288 0.451137 0.747607 244.0768 239.119 0.192592 0.224946 6 0.441803 0.459354 0.729445 246.683 239.91 0.188692 0.221014 6.5 0.449243 0.467534 0.711752 249.3466 240.7188 0.184943 0.217269 7 0.456585 0.475655 0.694534 252.0691 241.5486 0.181344 0.213709 7.5 0.463878 0.483728 0.678174 254.7871 242.4102 0.177859 0.210233 8 0.471042 0.491713 0.662254 257.5668 243.2955 0.174516 0.206937 8.5 0.478145 0.499637 0.647119 260.3448 244.2114 0.171279 0.20372 9 0.484984 0.507382 0.632066 263.2518 245.1525 0.168216 0.200775 9.5 0.491842 0.515105 0.618074 266.0952 246.1263 0.165214 0.197806 10 0.498508 0.522679 0.604459 269.0054 247.1298 0.162343 0.195005 10.5 0.504956 0.530079 0.591223 271.9836 248.1664 0.1596 0.192371 16
  • 17. Ө Vs Acci 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 1 2 3 4 5 6 7 8 9 10 11 12 COMBUSTIONCHAMBERINLETAREA ANGLE(Ө) Acci 17
  • 18. ●Calculation for temperatures:  T₁ = 216.66 K(given)  T₂=P₂* ρ ₁*T₁ = 241.4614 K P₁* ρ₂  T₃= T₂[1+2(ɤ-1) (ɤM₁²+1) (M₂²-1)] = 596.09 K (ɤ+1)² * M₂²  T ₀₁=T₁ *[1+(ɤ-1)M₁²] =606.648 K 2  T ₀₂=T₁ *[1+(ɤ-1)M₂²]=624.3704 K 2  T ₀₃=T₁ *[1+(ɤ-1)M₃²]=624.3704 K 2  T₅=(P₅/P₀₄) ^ɤ/ɤ-1 *T₀₄ =1096.178 K 18
  • 19. Table No:4 Ө T₂(K) T₃(K) T₀₁(K) T₀₂=T₀₃(K) T₅(K) 5 241.4614 596.09 606.648 624.3704 1096.178 5.5 244.0768 595.0459 606.648 623.5067 1090.853 6 246.683 594.3385 606.648 622.988 1085.5 6.5 249.3466 593.4462 606.648 622.2892 1080.386 7 252.0691 592.3792 606.648 621.4213 1075.512 7.5 254.7871 591.6318 606.648 620.8816 1070.619 8 257.5668 590.7112 606.648 620.175 1065.969 8.5 260.3448 590.0934 606.648 619.7794 1061.304 9 263.2518 588.8471 606.648 618.7624 1057.147 9.5 266.0952 588.3529 606.648 618.5063 1052.718 10 269.0054 587.6894 606.648 618.0892 1048.539 10.5 271.9836 586.8664 606.648 617.5218 1044.61 19
  • 20. Angle(Ө) Vs Temperature(T₅) 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1 2 3 4 5 6 7 8 9 10 11 12 TEMPERATURE(T₅) ANGLE(Ө) T₅ 20
  • 21. ●Calculation for thrust: Thrust without Bleed(T)=ṁ(Cj-Ci) ,ṁ=20kg = 14.6741 KN Thrust with Bleed(T)= ṁ(Cj-Ci) , ṁ=18kg =13.20669 KN Cj=√(2*R*(T₀₄-T₅) Ci=3*√Cp(T₀₄-T₅) =1618.852 m/s = 885.1474 m/s 21
  • 22. Table No: 5 Ө Ci (m/s) Cj (m/s) Thrust(wit hout bleeding) KN Thrust(wit h bleeding) KN Loss in thrust (KN) Loss of thrust(%) 5 885.1474 1618.852 14.6741 13.20669 1.46741 10 5.5 885.1474 1622.155 14.74014 13.26613 1.474014 10 6 885.1474 1625.468 14.8064 13.32576 1.48064 10 6.5 885.1474 1628.626 14.86958 13.38262 1.486958 10 7 885.1474 1631.631 14.92968 13.43671 1.492968 10 7.5 885.1474 1634.643 14.98991 13.49092 1.498991 10 8 885.1474 1637.499 15.04703 13.54232 1.504703 10 8.5 885.1474 1640.359 15.10423 13.59381 1.510423 10 9 885.1474 1642.905 15.15514 13.63963 1.515514 10 9.5 885.1474 1645.611 15.20928 13.68835 1.520928 10 10 885.1474 1648.162 15.26028 13.73425 1.526028 10 10.5 885.1474 1650.556 15.30817 13.77735 1.530817 10 22
  • 23. Thrust Vs Angle(Ө) 12 12.5 13 13.5 14 14.5 15 15.5 1 2 3 4 5 6 7 8 9 10 11 12 THRUST(T) ANGLE(Ө) Thrust(without bleeding) KN Thrust(with bleeding) KN 23
  • 25.  Double wedge spike : PERFORMANCE PARAMETERS: 25
  • 26.  Mach No. Vs Loss Of Thrust: graph: 0 0.5 1 1.5 2 2.5 3 3.5 1 2 3 LOSSOFTHRUST MACH NO MACH NO LOSS OF THRUST 26
  • 27. HEAT EXCHANGER: • A heat exchanger may be defined as an equipment which transfers energy from a hot fluid to cold fluid with maximum rate and minimum investment and running cost. • Eg.  Intercoolers and preheaters.  Condensers and evaporators in refrigeration unit.  Oil coolers of heat engines etc. 27
  • 28. Types Of Heat Exchangers:  On basis of Nature:  Direct contact heat exchanger Indirect contact heat exchanger  On basis of Flow direction: Parallel flow heat exchanger Counter flow heat exchanger Cross flow heat exchanger 28
  • 29. FINS  These are the elongated body parts that extend outside of the body which helps in heat transfer.  The heated surface transfer it’s part of heat to the elongated fins.  These are classified based on shapes as: i) Rectangular ii) Square iii) Triangular iv) Pentagonal etc. 29
  • 30. Selection of fin materials:  The temperature of combustion chamber is about 2400k.  Fin should have high melting point based on which given material can be selected: 1. Tantalum hafnium carbide(Ta₄HFC₅) melting point: 3290K – 4488K 2. Titanium Carbide (Tic) melting point: 3433K OR alloys of zirconium,Ti,Hf,Ta etc. We have selected molybdenum for our fin material, Melting point= 2896 k, boiling point= 4912k Thermal conductivity at 2500k = 85.89 w/mk 30
  • 31. •CALCULATION OF HEAT TRANSFER BY FINS: Given data: Tᵤ=624.4K Tᵥ= 2400K Film temp(T)= Tᵤ+Tᵥ = 1512.2K = 1239.2°C 2 At 1200°C, from HMTD Density(Þ)=0.239 kg/mᶟ Kinematic viscosity(ʋ)=223.70*10^-⁶ Prandlt number(P᷊)=0.724 Thermal conductivity(k)=0.09153w/Mk Diameter(D)=0.4m Length of cylinder(L)=1m Thickness of fin(t)=0.005m Length of fin(l)=0.05m Area of fin= 0.05*0.05=0.0025m² 31
  • 32. CALCULATION: P₀=P₃+1/2*Þ*V ² =7.32*10⁴ N/m ² u= ʋ*1 bar = 3.05*10^-⁴ ,velocity(V) = 50m/s P₀ Now reynolds number(Re)=U*D/u =6.54*10⁴ Nusselt number(Nux)=0.332*(Re)^0.5*(Pr)^0.333=76.27 We know, Nux=hx*D , hx=17.46w/m²k , h=2*hx=34.90w/m²k K Perimeter(P)=2*L=2m , m=(h*P /KA)^0.5 = 123.49 Also , m*l = 6.17 Heat transfer by 1 fin, Q=m*K*A*(Tᵥ-Tᵤ)*tan(m*l)=1003.47W Therefore heat transfer by 95 fins(Q₁)=95329.65W 32
  • 33. Heat transfer by unfinned surface(Q₂)= h*A*(Tᵥ-Tᵤ) =h*(ᴫ*D*L-95*t*l)*1775.6 = 76400.08W CALCULATION FOR TEMERATURE OF FIN(Tf) = Tᵥ-Tᵤ + Tᵤ = 631.82K cosh (ml) Overall Heat transfer , Q= Q₁+Q₂ = 171729.73W Again, Calculation for temperature of air(T) = Q/(m*K*A*tanh(ml))+Tf =944.79K where k of fin material=85.89W/mK 33
  • 34. •Table no.1 Tᵤ Tᵥ P₀(N /m²) Re No. Nux h w/m ²k No of fin Q (with fin) W Velo city (v) m/s Q (with out fin) Q (over all) W Tem p of fin(Tf ) K Tem p of air (T) K 596.09 2400 73679.99 98810.89 93.72025 42.89107 95 107374.9 50 95387.62 202762.5 599.9298 932.6136 595.046 2400 74597.1 80032.65 84.34603 38.60096 96 102995 60 85878.89 188873.9 600.5054 939.1265 594.339 2400 75946.25 95060.13 91.92428 42.06914 97 108685.2 70 93612.55 202297.8 598.4438 945.8596 593.446 2400 77279.5 110547.3 99.13002 45.36685 98 114084.7 80 100980 215064.7 596.611 952.2748 592.379 2400 78593.25 126480 106.0332 48.5261 99 119264.6 90 108053.9 227318.5 594.8677 958.3528 591.632 2400 79960.8 142978.6 112.737 51.5941 100 124270.6 100 114909.7 239180.3 593.6164 964.5231 590.711 2400 81303.65 159917.8 119.2283 54.56484 101 129141.9 110 121563.2 250705.2 592.3157 970.363 590.093 2400 82697.9 177447.4 125.5931 57.4777 105 137840.5 120 127992.4 265832.9 591.403 981.9725 588.847 2400 83981.35 195218.2 131.732 60.28713 110 147993.2 130 134204.5 282197.7 589.9294 994.7665 588.353 2400 85739.85 229968.3 142.9766 65.43325 115 161232.4 150 145551.7 306784.2 589.124 1011.572 587.689 2400 87141 249308.2 148.8673 68.12912 120 171736.2 160 151449.7 323185.9 588.3386 1024.478 586.866 2400 88503.65 269032.1 154.644 70.77283 125 182412.6 170 157237.6 339650.2 587.4167 1037.13234
  • 35. •2-D diagram of the engine: 35
  • 36. •CALCULATION OF DIFFUSER PRESSURE PLACED BEFORE C.C. Given, Temperature(T)=596.09K Cp value of dry air at 596.09K = 1045 Inlet velocity(V₁)= 195.77m/s Inlet pressure(P₁)=0.732 bar Inlet mach(M₁)=0.4 Exit Velocity(V₂)= 75m/s D₂= 0.34 Mass flow rate(ṁ) = 2/0.65kg/s  T₀₁= T₁ *[1+(ɤ-1)M₁²] = 615.27K 2  P₀₁ = P₁ [1 + (ɤ-1)M₁²] ^ɤ/ɤ-1 = 0.8173 bar 2  ṁ/A1= P₀₁ [ 2ɤ/ɤ+1)*(P₁/P₀₁)^2/ɤ-(P₁/P₀₁)^ɤ+1/ɤ]^1/2 (RT₀₁)^1/2 A₁ = 0.023m² , D₁=0.29m Therefore diameter of the inlet diffuser(D)= D₂-D₁=0.34m-0.29m = 0.5m 36
  • 37. FOR GIVEN DIA(d₄)=0.4 The bleed gap = D₂-D₁+0.6= 0.34-0.29+0.6 =0.11m Total bleed gap = 2* 0.11 = 0.22 m Therefore, D₃= D₄-Total bleed gap D₃ = 0.4-0.22 = 0.18m Hence exit diameter of the diffuser at C.C.(D´) = D₄-D₁ = 0.4-0.29 = 0.11m 37
  • 38. Next Work • In the next report we will submit the complete design of the Heat Exchanger and the Turbine. 38