SlideShare a Scribd company logo
1 of 12
Download to read offline
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 36 |
Design and Fabrication of wear Testing Machine
Koteswaran.P.J
Student, Department Of Mechanical Engineering R.M.K College Of Engineering & Technology,
Thiruvallur , India
I. INTRODUCTION
1.1 Wear:
There are several precise definitions for wear. However, for engineering purposes the following
definitions contains the essential elements. Wear is damage to a surface as a result of relative motion with
respect to another substance. One key point is that wear is damage and it is not limited to loss of material from
the surface. However, loss of material is definitely one way in which a part can experience wear. Another way
included in this definition is by movement of material without loss of mass. An example of this would be the
change of geometry or dimension of a part as a result of plastic deformation (e.g., from repeated hammering).
There is also a third mode implied, which is damage to a surface that does not result in mass loss or dimensional
changes. An example of this third mode might be development of network of cracks in a surface. This might be
of significance in applications where maintaining optical transparency is a prime engineering concern. Lens and
aircraft windows are examples where this is an appropriate definition of wear. In the older definitions of wear
there used to be a greater stress on the “loss of material” , however now-a-days the newer and more general
definitions of wear is very natural to the design or device engineer , who thinks of wear in terms of a change to a
part that effects its performance. The focus is on the change which may be translated to damage. The
implication of this generalization will be further explored in the discussion of wear measures.
1.2 Essential Study of Wear:
Wear causes an enormous annual expenditure by industry and consumers. For some industries such as
agriculture, as many as 40% of the components replaced on equipments have failed by wear. Estimates of direct
cost of wear to industrial nations vary from 1 to 4 % of GNP and it is estimated that 10% of all energy generated
by man is dissipated in various friction processes. Thus the magnitude of losses caused to mankind (which can
be expressed in percentage points of GDP) makes it absolutely necessary to study ways to minimize it. Thus
minimizing wear, affects the economics of production in a major way.
1.3 Wear Measures:
Previously wear was defined as damaged to a surface. The most common form of that damage is loss
or displacement of material and volume can be used as a measure of wear volume of material removed or
volume of material displaced. For scientific purposes this is frequently the measure used to quantify wear.
In many studies, particularly material investigations, mass loss is frequently the measure used instead of
volume. This is done because of the relative ease of performing a weight loss measurement. However there are
some problems in using mass as primary measure of wear.
Direct comparison of materials can only be done if their densities are same. For bulk material this is
not a major obstacle, since the density is either known or easily determined. In the case of coatings however,
this can be a major problem. The other problems are more intrinsic ones. A mass measurement does not
ABSTRACT: Wear is damage to a surface as a result of relative motion with respect to another
substance. One key point is that wear is damage and it is not limited to loss of material from the surface.
However, loss of material is definitely one way in which a part can experience wear. In the older
definitions of wear there used to be a greater stress on the “loss of material” , however now-a-days the
newer and more general definitions of wear is very natural to the design or device engineer , who thinks
of wear in terms of a change to a part that effects its performance. The focus is on the change which may
be translated to damage. The implication of this generalization will be further explored in the discussion
of wear measures. A mass measurement does not measure displaced materials. In addition it is
sensitive to wear debris and transferred material that becomes attached to the surface and can not
be removed. This material does not necessarily have to be from the same surface; it can from the
counter face as well.
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 37 |
measure displaced materials. In addition it is sensitive to wear debris and transferred material that becomes
attached to the surface and can not be removed. This material does not necessarily have to be from the same
surface; it can from the counter face as well. From the above it can be seen that volume is the fundamental
measure for wear when wear is calculated with loss or displacement of material. However, in engineering
applications, is generally with the loss of a dimension, the increase in clearance or change in contour not the
volume loss. Volume, mass loss and a dimension are not the only measures for wear that are used in
engineering. Life, vibration level, roughness, appearance, friction level, and degree of surface crack or crazing
are some of the operational measures that are encountered.
Wear & Failure Mechanisms
The more we can characterize the full scale problem the easier it becomes to ensure that the bench
tests we run will provide useful information. Critical to the characterization process and ultimately to the
interpretation of the test results, is the determination of the mechanisms of wear at work in the contact. Wear
processes must be analyzed and defined before they can be modeled, for example abrasion, erosion, corrosion
or other chemical action, de-lamination or adhesive wear, the involvement of wear debris identified, the
appearance of failed surfaces established (for example, cracking, phase transformations, melting, chemical
layers). The type of wear process will, to a large extent, govern whether it can be modeled at reduced scale
and whether accelerated testing is valid. As a general rule, contacts involving both sliding friction and wear
can be modeled at reduced scale and with accelerated testing. This is because it is usually possible to
increase the loading conditions in the contact without changing the wear regime. Processes involving surface
fatigue can in some cases be modeled at reduced scale, but for obvious reasons, not at a reduced number of
cycles. These processes include rolling contact fatigue and fretting. Abrasive and erosive wear processes, where
particle size, distribution, angle of incidence and, in the case of erosive wear, particle velocity, are critical to
the wear process essentially have to be modeled at full scale, but this is possible in an appropriately designed
test.
Bench Test Machine Categories
There is no shortage of choice when it comes to friction and wear test machines. Selection
will depend very much on what kind of test you wish to perform and/or the application for your product.
Available test rigs can usefully be divided into four categories.
Thermally Self-Regulating Continuous Energy Pulse
These are machines in which the point of contact is stationary with respect to one of the specimens
and subject to constant speed uni-directional sliding. It is important to recognize that there are virtually no real
life applications other than perhaps braking systems in which this occurs, thus introducing a degree of unreality
to the test. However, these machines are widely used because they are simple. Examples include pin on disc,
block on ring, crossed cylinder and sliding 4-ball test machines. Data generated by such machines rarely
correlates with known field data. In each case the specimen geometry is simple and relatively easy and
cheap to manufacture. This may be an important consideration when studying new materials where batch
quantities are small.
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 38 |
Uses:
Historically, this type of machine has been used for fundamental wear studies of materials
including metals, plastics, composites, ceramics and coatings in solid lubricated or dry conditions. They are
less successful with liquid lubrication. Their principal advantage is that it is easy to cover wide load and speed
ranges and therefore obtain a broad sweep of material performance. Wear mapping and parametric studies are
readily performed.
Limitation:
For liquid lubricated tests, aimed at investigating lubricant additive performance, entrainment
conditions associated with constant speed sliding result in a requirement for heavily loaded contacts in order to
overcome hydrodynamic lubrication and thus promote mixed or boundary lubrication, and ultimately, film
failure. Increasing the load to achieve film failure may bring to significance specimen material properties,
which one may otherwise wish to eliminate from the test parameters. These machines typically do not emulate
real lubricated contacts. The Energy Pulse for the fixed point of contact specimen is continuous: it lasts for
the duration of the test. This highlights one of the main limitations of these machines as models of real
surfaces. Instead of brief rubbing episodes frequently repeated, the machine subjects one specimen to
continuous rubbing and the associated temperature field dominates.
The test configuration defines the thermal conditions in the contact. The contact temperature
(unlike the bulk temperature) is self-regulating and cannot be controlled as an independent variable. High
contact temperatures result in a number of problems, depending on the material under test. In plastics, the limit
is the melting point (this usually is given the name PV - pressure/velocity limit and is in reality the melting
point). Thermal collapse limits the contact at high velocity, whereas mechanical strength limits the contact at
high pressure. With ceramics, which are poor thermal conductors, the heat is locked in at the surface and the
heat/quench cycle generated can result in thermal fatigue of the specimens.
Standards
The majority of existing standards in sliding wear use uni-directional sliding machines. For the
most common, the pin on disc, there are two generic standards (ASTM G-99 and DIN 50324), giving
recommendations on their use, but acknowledging that the application will actually influence the final choice
of test conditions. A further, more detailed guideline is available in the form of a publication from the UK
Wear and Friction Forum, which looks at aspects of methodology and rig design.
Thermally Self-Regulating Cyclic Energy Pulse
These are machines where the point of contact moves with respect to both contacting surfaces and
there is a close approximation to the motion in actual machine components (for example, gears, cams, joints
and mechanisms). These include a number of component test machines, using idealized or standardized
components such as gears, cam/follower and rolling element bearings.
Uses:
These machines are essentially designed to emulate real contact conditions and typically operate under
conditions broadly similar to those found in practical applications. To all intents and purposes these machines
are "full scale" and are hence emulators of the real contact. Test piece production must be carefully controlled
to ensure optimum reproducibility. These machines can usefully be divided into two subgroups:
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 39 |
Pure Rolling Machine
Here two specimens (usually rollers) are loaded together and are rotated at the same speed. The
motion is pure rolling and such machines are used to address particular problems in the lubrication of gears and
drives in the piezo-viscous region (elastohydrodynamic). They are also used to study pitting failure
(rolling contact fatigue), caused by the cyclic stressing of the surfaces. Rolling element bearing test rigs and
rolling four ball machines are included under this general heading.
1.4 Abrasion:
Abrasive and erosive testing of materials requires different types of machine from the primarily
adhesive wear test machines discussed above, as a free body is usually involved. Although the size of test
samples may be small compared with real life applications, satisfactory data can only be generated by
matching conditions within the real life process, hence these are effectively ³real life´ and not scale model test
devices.
II. ABRASION TESTS
Abrasion tests either use loose particles of a well-defined shape and size or particles bonded to a
substrate in the form of abrasive paper. The former results primarily in three-body abrasion and the latter in
two-body abrasion.Three body abrasion test rigs typically comprise a stationary specimen loaded against a
rotating drum with abrasive particles introduced into the contact either dry or with a liquid transport medium.
The use of hopper fed systems for abrasive particles improves the uniformity of supply, which
in turns enhances control of the particle loading on the contact. To avoid contaminating the abrasive
particles, whether dry or wet, with wear debris from the test specimens, it is normal to use a single pass system
and not re-circulate the abradant.
A key point to note with three body slurry abrasion is that increasing the particle loading on the
contact may ultimately give rise to a two body abrasive mechanism, with abradant particles effectively trapped
within the contact.
In two-body abrasion rigs the principal problem is controlling the condition of the abrasive paper. If a
pin-on-disc test is carried out with abrasive paper attached to the disc, the paper rapidly degrades and
becomes clogged with wear particles. Indexing the pin across the disc in a spiral pattern, thus ensuring
that fresh abrasive paper comes into contact with the pin at all times, overcomes this problem.
2.1 Types Of Wear:-
The various types of wear, there symptoms and appearance of the worn out surfaces are given below.
Table 1
TYPES OF WEAR SYMPTOMS APPEARANCE OF THE
WORN OUT SURFACE
Abrasive Presence of clean furrows
cut out by abrasive particles
Grooves
Adhesive Metal transfer is a prime
symptom
Seizure ,catering rough and
torn out surfaces
Erosion Presence of abrasives in the
fast moving fluid and short abrasion furrows
Waves and troughs
Corrosion Presence of metal corrosion
products
Rough pits or depressions
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 40 |
Impacts Surface fatigue , small sub
micron particles or formation of spalls
Fragmentation ,peeling and
pitting
Fatigue Presence of surface and sub
surface cracks accompanied by pits and spalls
Sharp and angular edges
around pits
Delimitation Presence of surface cracks
parallel to the surface with semi dislodged or
loose flakes
Loose , long and thin sheet
like particles
Fretting Production of voluminous
amount of loose debris
Roughening , seizure and
development of oxide ridges
Electric attack Presence of micro craters or
a track with evidence of smooth molten metal
Smooth holes
2.2wear:-
Definition:
Wear has been defined as the process of metal removal due to impingement of solid particles on a surface. In
this case particles are generally entrained in a fluid, such as in slurry. The wear caused in pipe lines handling
abrasive slurries would be one example; another would be the wearing action caused by sand and grit in air
streams.
Mechanism of wear :-
In erosive wear situation, particles that are normally entrained in a fluid can impact the wearing
surface. The load between the particle and surface results from the momentum and kinetic energy of the
particle. This difference in the loading situation results in a modification of equation used to describe the wear,
which can be shown by a simple model for particle impact. In erosion it has been established that the angle
at which the stream impinges the surface influences the rate at which material removed from the
surface and that this dependency is also influenced by the nature of wearing material. Such a dependency
is to be anticipated. This can be seen by considering the impact of a single particle with a surface. This angle
determines the relative magnitude of the two velocity components of the impact, namely the component normal
to the surface and the one parallel to the surface. The normal component will determine how long the
impact will last i.e. the contact time, tc, and the load. The product of tc and the tangential velocity
component determine the amount of sliding that takes place.
2.3 Factors Affecting Wear:
The tangential velocity component also provides a shear loading to the surface, which is in addition
to the normal load that the normal velocity component causes. Therefore as this angle changes, the amount of
sliding that takes place also changes, as does the nature and magnitude of the stress system. Both of these
aspects influence the way a material wears. These changes would also imply that different types of materials
would exhibit different angular dependencies as well.
Erosion Wear Situation Changes In Surface Topography As A Result Of Erosion
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 41 |
It has been demonstrated that the angle of attack between leading edge of the particle and the wearing
surface determine whether or not cutting will take place. Below a critical value, deformation takes place.
tan (90-Ac)=(1-µ²)/2µ
Ac: Critical angle for cutting to occur
µ: Coefficient of friction
The angle of impact determines the two components of impact velocity.
The normal component (Vn) determines the contact time (tc) and the load. The product of tc and the tangential
velocity component (Vt)determine the amount of sliding that takes place.
Fig 6
Effect Of Angle Of Attack
As evident from the figure- The effect of angle on erosion rate is significantly different for ductile
and brittle materials, particularly the angle associated with maximum erosion rate. These differences can be
understood in terms of the predominant modes of damage associated with these types of materials. Brittle
materials fracture tends to increase the abraded wear volume over that caused by cutting or plugging (plastic
deformation). This could be as much as ten times. As a general rule, brittle materials are more likely to fracture
under normal impact conditions (i.e. impacting velocity perpendicular to the surface), than ductile materials.
Consequently as erosive condition moves from a more grazing situation to a more normal impact, brittle
materials would experience a greater tendency to experience brittle fracture, which tends to mask the ductile or
cutting contributions. For brittle materials the erosion rate would then be expected to monotonically increase
with the angle. For ductile materials, cutting and ploughing (deformation) are the predominant modes and
fracture is negligible. The model for abrasion indicates that the wear due to these two modes is proportional to
product of load and distance. Since load increases with angle and the sliding decreases with angle, an
intermediate angle should exist where the product of the two is maximum volume of wear
17 . V=K (L/p) x ------- (1)
V is the volume of wear
X is the distance of sliding
L is the load
P is the penetration hardness
K is the probability that the rupture of any given junction will result in wear.
Suppose L is the normal load then it can be converted to frictional load by means of
Amontons law,
F=µL
µ is the co-efficient of friction
Eqn (1) then becomes
V=K (Fx)/µp
Where the product Fx represents the energy dissipated by sliding during the impact. The total kinetic energy of
the particle stream of total mass M, and particle velocity v, is given by
E=1/2Mv
2………..(1)
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 42 |
As a result of the impact with the surface a fraction, β, of the energy is dissipated. Equating this loss to Fx the
following expression is obtained
V=K βMv
2
/2µp ………….. (2)
This angular dependency is contained in equation (2).Assuming that β can be separated into an angular factor,
φ, and a factor independent of angle β’, and combining several of the material sensitive parameters and
numerical factors into one, Ke , the following expression can be obtained,
V = Ke φ Mv
2
/ v ……………(3)
Examining this equation for erosive wear volume it can be seen that it does not provide an explicit
dependency on duration. However, such a dependency is implicitly contained in M, the total mass of the
particles. If Q is particle mass per unit time, then M is Qt, where t is the time of exposure to the particle
stream. Including this into equation (3), the following form is obtained.
Another variation of equation (3) is frequently encountered in the literature. Many investigators like to
compare erosive wear situations in terms of the relative amount of material removed from the surface to the
amount of abrasive particles to which it was exposed. Letting d be the density of the particles, the following
equation can be obtained.
V/Ve = Ke d φ v
2
/p
Where Va is the volume of abrasive used to produce the wear. (Ke Values for Erosion)
Table 2
TARGET MATERIAL Ke
Soft Steel 8* 10^-3 To 4*10^-2
steel 1*10^-2 To 8*10^-2
Hard Steel 1*10^-2 To 1*10^-1
Aluminium 5*10^-3 To 1.5*10^-2
copper 3*10^-3 To 1.3*10^-2
Motor:
Sl.No COMPONENT MATERIAL QUANTITY
1 ½ HP Motor ------ 1
2 Pulley CAST IRON 2
3 Smaller Pulley CAST IRON 1
4 V-Belt(A 41) ------- 1
5 Disc EN 8 1
6 Beam Aluminum 1
7 Beam Post MILD STEEL 1
8 Load MILD STEEL 1
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 43 |
This reversible electric motor can replace worn out or broken motors in blowers, sanders, saws,
conveyor belts and other tools! Designed with a durable rigid base, this electric motor can reach speeds up to
1725 RPM to power your equipment like new. At 1/2 HP output, this electric motor can give your tools the
boost they need to work at peak efficiency.
 NEMA Frame: 56
 Utilization Volts: 115/230
 Shaft diameter: 5/8 in.
 Maximum speed: 1725 RPM
 Reversible
Pulley:
 Used to transmit motion and torque
 Change speed of rotation
 Stepped cone pulleys
 Pulley belts used to transport products
 Pulley belts used as band saws
 Pulleys used for lifting.
Smaller Pulley:
A simple pulley basically consists of two components, the wheel and the string; the wheel may be
made up of wood or metal and includes a grove cut along its circumferential periphery. The string is allowed to
slide or pass through this groove with a load that is to be lifted fixed at one of its ends and an effort applied at
the other end in order to lift the load. The pulley wheel is supported over a rigid frame about its central axis.
The applied effort through pulling of the string rotates the pulley and pulls the load upwards, helping the load to
be lifted with ease.
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 44 |
A classic example of this mechanism can be witnessed over wells where the pulley and rope are used for
lifting water-filled bucket. 24
V Belt:
Belts are the cheapest utility for power transmission between shafts that may not be axially aligned.
Power transmission is achieved by specially designed belts and pulleys. The demands on a belt drive
transmission system are large and this has led to many variations on the theme. They run smoothly and with
little noise, and cushion motor and bearings against load changes, albeit with less strength than gears or chains.
However, improvements in belt engineering allow use of belts in systems that only formerly allowed chains or
gears Power transmitted between a belt and a pulley is expressed as the product of difference of tension and belt
velocity
where, T1 and T2 are tensions in the tight side and slack side of the belt respectively. They are related as:
where, μ is the coefficient of friction, and α is the angle subtended by contact surface at the centre of the pulley.
Disc:
This study was carried out to design and fabricate a cost effective and efficient weartester
(pinondisc)used in the metallurgy search field. Design and calculations were established and the machine was
fabricated with well selected materials and components all sourced locally. The performance of the fabricated
machine was finally evaluated against a standard wear machine in
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 45 |
He Standards Organization using statistical methods and the result showed that the locally fabricated machine is
97% effective.
Fulcrum lever:
The fulcrum is again placed at one end of the beam, but now the load and effort points are reversed,
with the load on the opposite end of the beam from the fulcrum and the effort applied at some intermediate
location. Many muscles that operate animal limbs work as type of levers. A pair of tweezers is a two-beam.
Working diagram:
Fig 7
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 46 |
Cost estimation:
Sl.No Component Material Quantity Cost
Rs
1 ½ Hp Motor --------- 1 2000
2 Pulley Cast Iron 2 750
3 Smaller Pulley Cast Iron 1 180
4 Belt(A 41) --------- 1 220
5 Disc En 19 1 720
6 Beam Aluminum 1 1800
7 Beam Post Mild Steel 1 800
8 Load --------- 1 380
9 Other Cutting Charges&Table -------- ----- 2850
Total ¤ ----- Rs.9700
Table 2
III. CONCLUSION
Erosion rate with respect to angle of impact is maximum at 30degree and minimum at 90degree.
Erosion rate with respect to stand of distance is maximum at 100mm and lower for 200mm. This implies that
lower the stand of distance greater is the rate of erosion. Erosion rate with respect to Pressure increases as the
rate of erosion increases. From the predicted mechanism it is found that the erosion behavior is valid for ductile
materials. Hence our observation also follows the same rule. Having calculated the ideal angle of contact,
force of impingement and the distance of fall for an Mild Steel, Aluminum, Stainless Steel, we would now be
in a position to predict the condition that should be maintained to minimize wear. However it should be noted
that wear being highly specific to geometry, physical properties, metallurgy and a host of other factors all our
predictions will pertain to the samples used only. As such it cannot be generalized to all samples. This is
one of the major impediments to wear studies. Also as indicated wear may occur due to various reasons and
modes however we would be in a position to study only one mode i.e. erosion wear .Hence all our
predications will be made under the assumption that wear is occurring only due to erosion and no other factor or
mode is coming in to effort
REFERENCES
[1]. Effect of erodent properties on erosion wear of ductile type materials
Article
[2]. Wear, Volume 261, Issues 7-8, 20 October 2006, Pages 914-921
[3]. Girish R. Desale, Bhupendra K. Gandhi and S.C. Jain
[4]. Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes
Article
[5]. Materials Science and Engineering: A, In Press, Corrected Proof, Available online 25 September 2006,
[6]. Development and Characterization of Metal Matrix Composite using red mud and Industrial waste for
wear resistant applications. Phd Thesis submitted By Mr Naresh Prasad Under Guidance of Prof S K Acharya ,
NIT Rourkela
[7]. Erosion wear mechanisms of coal–water–slurry (CWS) ceramic nozzles in industry boilers
Short Survey
[8]. Materials Science and Engineering: A, Volume 417, Issues 1-2, 15 February 2006, Pages 1-7
[9]. Deng Jianxin, Ding Zeliang and Yuan Dongling
[10]. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine
particles
Article
[11]. Wear, Volume 257, Issues 1-2, July 2004, Pages 73-79
[12]. Bhupendra K. Gandhi and Satish V. BorseEffect of annealing and chemical strengthening on soda lime glass
erosion wear by sand blasting
Article
[13]. Journal of the European Ceramic Society, Volume 23, Issue 2, February 2003 Chabane Bousbaa, Abderrahim
Madjoubi, Mohamed Hamidouche and Nourredine Bouaouadja
[14]. Levy, A. V. The erosion corrosion behavior of protective coatings, Surf. And Coat. Techn., v. 36. p. 387 –
406, 1988
[15]. Mechanical Wear Prediction and Prevention , Raymond G Bayer
[16]. Erosion wear behaviour and model of abradable seal coating
Article
Design and Fabrication of Wear Testing Machine
| IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 47 |
[17]. Wear, Volume 252, Issues 1-2, January 2002, Pages 9-15
[18]. Yi Maozhong, Huang Baiyun and He Jiawen
[19]. FEM analysis of erosive wear
Article
[20]. Wear, Volume 250, Issues 1-12, October 2001, Pages 779-784
[21]. K. Shimizu, T. Noguchi, H. Seitoh, M. Okada and Y. Matsubara.
Photography:

More Related Content

What's hot

Fatigue of materials
Fatigue of materialsFatigue of materials
Fatigue of materialsBilal
 
Failure Mechanism In Ductile & Brittle Material
Failure Mechanism In Ductile & Brittle MaterialFailure Mechanism In Ductile & Brittle Material
Failure Mechanism In Ductile & Brittle Materialshaikhsaif
 
Impact test on metals
Impact test on metals Impact test on metals
Impact test on metals engomar84
 
Fatigue consideration in design
Fatigue consideration in designFatigue consideration in design
Fatigue consideration in designOnkarpowar3
 
Types of failure
Types of failureTypes of failure
Types of failureprthgajjar
 
Ch9 failure mechanisms
Ch9 failure mechanismsCh9 failure mechanisms
Ch9 failure mechanismsdhyun
 
Stress-Strain Curves for Metals, Ceramics and Polymers
Stress-Strain Curves for Metals, Ceramics and PolymersStress-Strain Curves for Metals, Ceramics and Polymers
Stress-Strain Curves for Metals, Ceramics and PolymersLuís Rita
 
Failure mechanics: Fatigue Failure
Failure mechanics: Fatigue FailureFailure mechanics: Fatigue Failure
Failure mechanics: Fatigue FailureKeval Patil
 
Ppt of design of machine element
Ppt of  design of machine elementPpt of  design of machine element
Ppt of design of machine elementmanish kanade
 
Failure of materials
Failure of materialsFailure of materials
Failure of materialsSakeena Mohd
 
Impact testing
Impact testingImpact testing
Impact testingGopi Nadh
 

What's hot (20)

Slip and twiniing
Slip and twiniingSlip and twiniing
Slip and twiniing
 
Wear mechanism
Wear mechanismWear mechanism
Wear mechanism
 
Fatigue of materials
Fatigue of materialsFatigue of materials
Fatigue of materials
 
Vicker hardness test
Vicker hardness testVicker hardness test
Vicker hardness test
 
Failure Mechanism In Ductile & Brittle Material
Failure Mechanism In Ductile & Brittle MaterialFailure Mechanism In Ductile & Brittle Material
Failure Mechanism In Ductile & Brittle Material
 
Fatigue
FatigueFatigue
Fatigue
 
Impact test on metals
Impact test on metals Impact test on metals
Impact test on metals
 
Tool failures
Tool failuresTool failures
Tool failures
 
Fatigue consideration in design
Fatigue consideration in designFatigue consideration in design
Fatigue consideration in design
 
Fatigue Failure
Fatigue FailureFatigue Failure
Fatigue Failure
 
Types of failure
Types of failureTypes of failure
Types of failure
 
Ch9 failure mechanisms
Ch9 failure mechanismsCh9 failure mechanisms
Ch9 failure mechanisms
 
Stress-Strain Curves for Metals, Ceramics and Polymers
Stress-Strain Curves for Metals, Ceramics and PolymersStress-Strain Curves for Metals, Ceramics and Polymers
Stress-Strain Curves for Metals, Ceramics and Polymers
 
Wear ppt
Wear pptWear ppt
Wear ppt
 
Failure mechanics: Fatigue Failure
Failure mechanics: Fatigue FailureFailure mechanics: Fatigue Failure
Failure mechanics: Fatigue Failure
 
Ppt of design of machine element
Ppt of  design of machine elementPpt of  design of machine element
Ppt of design of machine element
 
Metal fatigue ppt
Metal fatigue pptMetal fatigue ppt
Metal fatigue ppt
 
Failure of materials
Failure of materialsFailure of materials
Failure of materials
 
Impact testing
Impact testingImpact testing
Impact testing
 
Deformation of metals
Deformation of metalsDeformation of metals
Deformation of metals
 

Similar to Design and Fabrication of wear Testing Machine

Fabrication of Pin on Disc Wear Test Rig
Fabrication of Pin on Disc Wear Test RigFabrication of Pin on Disc Wear Test Rig
Fabrication of Pin on Disc Wear Test Rigijtsrd
 
EROSION BEHAVIOUR OF STAINLESS STEEL
EROSION BEHAVIOUR OF STAINLESS STEELEROSION BEHAVIOUR OF STAINLESS STEEL
EROSION BEHAVIOUR OF STAINLESS STEELIRJET Journal
 
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...Study of Tribological Properties of Textured Surfaces made by Modulation Assi...
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...Rochester Institute of Technology
 
IRJET- Review on Tribological Modeling of Worm Gear
IRJET- Review on Tribological Modeling of Worm GearIRJET- Review on Tribological Modeling of Worm Gear
IRJET- Review on Tribological Modeling of Worm GearIRJET Journal
 
Probabilistic approach to study the hydroformed sheet
Probabilistic approach to study the hydroformed sheetProbabilistic approach to study the hydroformed sheet
Probabilistic approach to study the hydroformed sheetIJERA Editor
 
CoatingsThe component of material surface is often more importan.docx
CoatingsThe component of material surface is often more importan.docxCoatingsThe component of material surface is often more importan.docx
CoatingsThe component of material surface is often more importan.docxclarebernice
 
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...Crimsonpublishers-Mechanicalengineering
 
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...IJERA Editor
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Wear In Hydrodynamic Journal Bearings: A Review
Wear In Hydrodynamic Journal Bearings: A ReviewWear In Hydrodynamic Journal Bearings: A Review
Wear In Hydrodynamic Journal Bearings: A ReviewIJMER
 
Damage equivalent test methodologies journal bearings
Damage equivalent test methodologies   journal bearingsDamage equivalent test methodologies   journal bearings
Damage equivalent test methodologies journal bearingsThiruchitrambalam M
 
Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...eSAT Publishing House
 
Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...eSAT Journals
 
Wear Rate Analysis of Hydrodynamic Journal Bearing In Different Conditions
Wear Rate Analysis of Hydrodynamic Journal Bearing In  Different ConditionsWear Rate Analysis of Hydrodynamic Journal Bearing In  Different Conditions
Wear Rate Analysis of Hydrodynamic Journal Bearing In Different ConditionsIJMER
 
An Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessAn Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessIJMER
 
Ea2645474558
Ea2645474558Ea2645474558
Ea2645474558IJMER
 
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...IRJET Journal
 

Similar to Design and Fabrication of wear Testing Machine (20)

P01226101106
P01226101106P01226101106
P01226101106
 
Fabrication of Pin on Disc Wear Test Rig
Fabrication of Pin on Disc Wear Test RigFabrication of Pin on Disc Wear Test Rig
Fabrication of Pin on Disc Wear Test Rig
 
EROSION BEHAVIOUR OF STAINLESS STEEL
EROSION BEHAVIOUR OF STAINLESS STEELEROSION BEHAVIOUR OF STAINLESS STEEL
EROSION BEHAVIOUR OF STAINLESS STEEL
 
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...Study of Tribological Properties of Textured Surfaces made by Modulation Assi...
Study of Tribological Properties of Textured Surfaces made by Modulation Assi...
 
IRJET- Review on Tribological Modeling of Worm Gear
IRJET- Review on Tribological Modeling of Worm GearIRJET- Review on Tribological Modeling of Worm Gear
IRJET- Review on Tribological Modeling of Worm Gear
 
Probabilistic approach to study the hydroformed sheet
Probabilistic approach to study the hydroformed sheetProbabilistic approach to study the hydroformed sheet
Probabilistic approach to study the hydroformed sheet
 
CoatingsThe component of material surface is often more importan.docx
CoatingsThe component of material surface is often more importan.docxCoatingsThe component of material surface is often more importan.docx
CoatingsThe component of material surface is often more importan.docx
 
unit 1 industrial tribology
unit 1 industrial tribologyunit 1 industrial tribology
unit 1 industrial tribology
 
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...
Crimson Publishers: Evolution of Fatigue Behavior Characterization of Polymer...
 
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
Study of sliding wear rate of hot rolled steel specimen subjected to Zirconia...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Wear In Hydrodynamic Journal Bearings: A Review
Wear In Hydrodynamic Journal Bearings: A ReviewWear In Hydrodynamic Journal Bearings: A Review
Wear In Hydrodynamic Journal Bearings: A Review
 
Damage equivalent test methodologies journal bearings
Damage equivalent test methodologies   journal bearingsDamage equivalent test methodologies   journal bearings
Damage equivalent test methodologies journal bearings
 
Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...
 
Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...Computational approach to contact fatigue damage initiation and deformation a...
Computational approach to contact fatigue damage initiation and deformation a...
 
Wear Rate Analysis of Hydrodynamic Journal Bearing In Different Conditions
Wear Rate Analysis of Hydrodynamic Journal Bearing In  Different ConditionsWear Rate Analysis of Hydrodynamic Journal Bearing In  Different Conditions
Wear Rate Analysis of Hydrodynamic Journal Bearing In Different Conditions
 
Surface topography assessment techniques based on an in-process monitoring ap...
Surface topography assessment techniques based on an in-process monitoring ap...Surface topography assessment techniques based on an in-process monitoring ap...
Surface topography assessment techniques based on an in-process monitoring ap...
 
An Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessAn Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking Process
 
Ea2645474558
Ea2645474558Ea2645474558
Ea2645474558
 
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...
IRJET- Effect of Particle and Target Material Characteristics on Erosion Wear...
 

More from IJMERJOURNAL

Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...IJMERJOURNAL
 
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...IJMERJOURNAL
 
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFETA New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFETIJMERJOURNAL
 
Design a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing ProcessDesign a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing ProcessIJMERJOURNAL
 
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...IJMERJOURNAL
 
Comparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil ConditionComparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil ConditionIJMERJOURNAL
 
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...IJMERJOURNAL
 
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...IJMERJOURNAL
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantIJMERJOURNAL
 
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw PumpStudy of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw PumpIJMERJOURNAL
 
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using IupqcMitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using IupqcIJMERJOURNAL
 
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...IJMERJOURNAL
 
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...IJMERJOURNAL
 
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...IJMERJOURNAL
 
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...IJMERJOURNAL
 
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...IJMERJOURNAL
 
Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.IJMERJOURNAL
 
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...IJMERJOURNAL
 
li-fi: the future of wireless communication
li-fi: the future of wireless communicationli-fi: the future of wireless communication
li-fi: the future of wireless communicationIJMERJOURNAL
 

More from IJMERJOURNAL (20)

Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
Modeling And Simulation Swash Plate Pump Response Characteristics in Load Sen...
 
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
Generation of Electricity Through A Non-Municipal Solid Waste Heat From An In...
 
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFETA New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
A New Two-Dimensional Analytical Model of Small Geometry GaAs MESFET
 
Design a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing ProcessDesign a WSN Control System for Filter Backwashing Process
Design a WSN Control System for Filter Backwashing Process
 
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
Application of Customer Relationship Management (Crm) Dimensions: A Critical ...
 
Comparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil ConditionComparisons of Shallow Foundations in Different Soil Condition
Comparisons of Shallow Foundations in Different Soil Condition
 
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
Place of Power Sector in Public-Private Partnership: A Veritable Tool to Prom...
 
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
Study of Part Feeding System for Optimization in Fms & Force Analysis Using M...
 
Investigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power PlantInvestigating The Performance of A Steam Power Plant
Investigating The Performance of A Steam Power Plant
 
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw PumpStudy of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
Study of Time Reduction in Manufacturing of Screws Used in Twin Screw Pump
 
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using IupqcMitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
Mitigation of Voltage Imbalance in A Two Feeder Distribution System Using Iupqc
 
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
Adsorption of Methylene Blue From Aqueous Solution with Vermicompost Produced...
 
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
Analytical Solutions of simultaneous Linear Differential Equations in Chemica...
 
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
Experimental Investigation of the Effect of Injection of OxyHydrogen Gas on t...
 
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
Hybrid Methods of Some Evolutionary Computations AndKalman Filter on Option P...
 
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
An Efficient Methodology To Develop A Secured E-Learning System Using Cloud C...
 
Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.Nigerian Economy and the Impact of Alternative Energy.
Nigerian Economy and the Impact of Alternative Energy.
 
CASE STUDY
CASE STUDYCASE STUDY
CASE STUDY
 
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
Validation of Maintenance Policy of Steel Plant Machine Shop By Analytic Hier...
 
li-fi: the future of wireless communication
li-fi: the future of wireless communicationli-fi: the future of wireless communication
li-fi: the future of wireless communication
 

Recently uploaded

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 

Recently uploaded (20)

Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 

Design and Fabrication of wear Testing Machine

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 36 | Design and Fabrication of wear Testing Machine Koteswaran.P.J Student, Department Of Mechanical Engineering R.M.K College Of Engineering & Technology, Thiruvallur , India I. INTRODUCTION 1.1 Wear: There are several precise definitions for wear. However, for engineering purposes the following definitions contains the essential elements. Wear is damage to a surface as a result of relative motion with respect to another substance. One key point is that wear is damage and it is not limited to loss of material from the surface. However, loss of material is definitely one way in which a part can experience wear. Another way included in this definition is by movement of material without loss of mass. An example of this would be the change of geometry or dimension of a part as a result of plastic deformation (e.g., from repeated hammering). There is also a third mode implied, which is damage to a surface that does not result in mass loss or dimensional changes. An example of this third mode might be development of network of cracks in a surface. This might be of significance in applications where maintaining optical transparency is a prime engineering concern. Lens and aircraft windows are examples where this is an appropriate definition of wear. In the older definitions of wear there used to be a greater stress on the “loss of material” , however now-a-days the newer and more general definitions of wear is very natural to the design or device engineer , who thinks of wear in terms of a change to a part that effects its performance. The focus is on the change which may be translated to damage. The implication of this generalization will be further explored in the discussion of wear measures. 1.2 Essential Study of Wear: Wear causes an enormous annual expenditure by industry and consumers. For some industries such as agriculture, as many as 40% of the components replaced on equipments have failed by wear. Estimates of direct cost of wear to industrial nations vary from 1 to 4 % of GNP and it is estimated that 10% of all energy generated by man is dissipated in various friction processes. Thus the magnitude of losses caused to mankind (which can be expressed in percentage points of GDP) makes it absolutely necessary to study ways to minimize it. Thus minimizing wear, affects the economics of production in a major way. 1.3 Wear Measures: Previously wear was defined as damaged to a surface. The most common form of that damage is loss or displacement of material and volume can be used as a measure of wear volume of material removed or volume of material displaced. For scientific purposes this is frequently the measure used to quantify wear. In many studies, particularly material investigations, mass loss is frequently the measure used instead of volume. This is done because of the relative ease of performing a weight loss measurement. However there are some problems in using mass as primary measure of wear. Direct comparison of materials can only be done if their densities are same. For bulk material this is not a major obstacle, since the density is either known or easily determined. In the case of coatings however, this can be a major problem. The other problems are more intrinsic ones. A mass measurement does not ABSTRACT: Wear is damage to a surface as a result of relative motion with respect to another substance. One key point is that wear is damage and it is not limited to loss of material from the surface. However, loss of material is definitely one way in which a part can experience wear. In the older definitions of wear there used to be a greater stress on the “loss of material” , however now-a-days the newer and more general definitions of wear is very natural to the design or device engineer , who thinks of wear in terms of a change to a part that effects its performance. The focus is on the change which may be translated to damage. The implication of this generalization will be further explored in the discussion of wear measures. A mass measurement does not measure displaced materials. In addition it is sensitive to wear debris and transferred material that becomes attached to the surface and can not be removed. This material does not necessarily have to be from the same surface; it can from the counter face as well.
  • 2. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 37 | measure displaced materials. In addition it is sensitive to wear debris and transferred material that becomes attached to the surface and can not be removed. This material does not necessarily have to be from the same surface; it can from the counter face as well. From the above it can be seen that volume is the fundamental measure for wear when wear is calculated with loss or displacement of material. However, in engineering applications, is generally with the loss of a dimension, the increase in clearance or change in contour not the volume loss. Volume, mass loss and a dimension are not the only measures for wear that are used in engineering. Life, vibration level, roughness, appearance, friction level, and degree of surface crack or crazing are some of the operational measures that are encountered. Wear & Failure Mechanisms The more we can characterize the full scale problem the easier it becomes to ensure that the bench tests we run will provide useful information. Critical to the characterization process and ultimately to the interpretation of the test results, is the determination of the mechanisms of wear at work in the contact. Wear processes must be analyzed and defined before they can be modeled, for example abrasion, erosion, corrosion or other chemical action, de-lamination or adhesive wear, the involvement of wear debris identified, the appearance of failed surfaces established (for example, cracking, phase transformations, melting, chemical layers). The type of wear process will, to a large extent, govern whether it can be modeled at reduced scale and whether accelerated testing is valid. As a general rule, contacts involving both sliding friction and wear can be modeled at reduced scale and with accelerated testing. This is because it is usually possible to increase the loading conditions in the contact without changing the wear regime. Processes involving surface fatigue can in some cases be modeled at reduced scale, but for obvious reasons, not at a reduced number of cycles. These processes include rolling contact fatigue and fretting. Abrasive and erosive wear processes, where particle size, distribution, angle of incidence and, in the case of erosive wear, particle velocity, are critical to the wear process essentially have to be modeled at full scale, but this is possible in an appropriately designed test. Bench Test Machine Categories There is no shortage of choice when it comes to friction and wear test machines. Selection will depend very much on what kind of test you wish to perform and/or the application for your product. Available test rigs can usefully be divided into four categories. Thermally Self-Regulating Continuous Energy Pulse These are machines in which the point of contact is stationary with respect to one of the specimens and subject to constant speed uni-directional sliding. It is important to recognize that there are virtually no real life applications other than perhaps braking systems in which this occurs, thus introducing a degree of unreality to the test. However, these machines are widely used because they are simple. Examples include pin on disc, block on ring, crossed cylinder and sliding 4-ball test machines. Data generated by such machines rarely correlates with known field data. In each case the specimen geometry is simple and relatively easy and cheap to manufacture. This may be an important consideration when studying new materials where batch quantities are small.
  • 3. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 38 | Uses: Historically, this type of machine has been used for fundamental wear studies of materials including metals, plastics, composites, ceramics and coatings in solid lubricated or dry conditions. They are less successful with liquid lubrication. Their principal advantage is that it is easy to cover wide load and speed ranges and therefore obtain a broad sweep of material performance. Wear mapping and parametric studies are readily performed. Limitation: For liquid lubricated tests, aimed at investigating lubricant additive performance, entrainment conditions associated with constant speed sliding result in a requirement for heavily loaded contacts in order to overcome hydrodynamic lubrication and thus promote mixed or boundary lubrication, and ultimately, film failure. Increasing the load to achieve film failure may bring to significance specimen material properties, which one may otherwise wish to eliminate from the test parameters. These machines typically do not emulate real lubricated contacts. The Energy Pulse for the fixed point of contact specimen is continuous: it lasts for the duration of the test. This highlights one of the main limitations of these machines as models of real surfaces. Instead of brief rubbing episodes frequently repeated, the machine subjects one specimen to continuous rubbing and the associated temperature field dominates. The test configuration defines the thermal conditions in the contact. The contact temperature (unlike the bulk temperature) is self-regulating and cannot be controlled as an independent variable. High contact temperatures result in a number of problems, depending on the material under test. In plastics, the limit is the melting point (this usually is given the name PV - pressure/velocity limit and is in reality the melting point). Thermal collapse limits the contact at high velocity, whereas mechanical strength limits the contact at high pressure. With ceramics, which are poor thermal conductors, the heat is locked in at the surface and the heat/quench cycle generated can result in thermal fatigue of the specimens. Standards The majority of existing standards in sliding wear use uni-directional sliding machines. For the most common, the pin on disc, there are two generic standards (ASTM G-99 and DIN 50324), giving recommendations on their use, but acknowledging that the application will actually influence the final choice of test conditions. A further, more detailed guideline is available in the form of a publication from the UK Wear and Friction Forum, which looks at aspects of methodology and rig design. Thermally Self-Regulating Cyclic Energy Pulse These are machines where the point of contact moves with respect to both contacting surfaces and there is a close approximation to the motion in actual machine components (for example, gears, cams, joints and mechanisms). These include a number of component test machines, using idealized or standardized components such as gears, cam/follower and rolling element bearings. Uses: These machines are essentially designed to emulate real contact conditions and typically operate under conditions broadly similar to those found in practical applications. To all intents and purposes these machines are "full scale" and are hence emulators of the real contact. Test piece production must be carefully controlled to ensure optimum reproducibility. These machines can usefully be divided into two subgroups:
  • 4. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 39 | Pure Rolling Machine Here two specimens (usually rollers) are loaded together and are rotated at the same speed. The motion is pure rolling and such machines are used to address particular problems in the lubrication of gears and drives in the piezo-viscous region (elastohydrodynamic). They are also used to study pitting failure (rolling contact fatigue), caused by the cyclic stressing of the surfaces. Rolling element bearing test rigs and rolling four ball machines are included under this general heading. 1.4 Abrasion: Abrasive and erosive testing of materials requires different types of machine from the primarily adhesive wear test machines discussed above, as a free body is usually involved. Although the size of test samples may be small compared with real life applications, satisfactory data can only be generated by matching conditions within the real life process, hence these are effectively ³real life´ and not scale model test devices. II. ABRASION TESTS Abrasion tests either use loose particles of a well-defined shape and size or particles bonded to a substrate in the form of abrasive paper. The former results primarily in three-body abrasion and the latter in two-body abrasion.Three body abrasion test rigs typically comprise a stationary specimen loaded against a rotating drum with abrasive particles introduced into the contact either dry or with a liquid transport medium. The use of hopper fed systems for abrasive particles improves the uniformity of supply, which in turns enhances control of the particle loading on the contact. To avoid contaminating the abrasive particles, whether dry or wet, with wear debris from the test specimens, it is normal to use a single pass system and not re-circulate the abradant. A key point to note with three body slurry abrasion is that increasing the particle loading on the contact may ultimately give rise to a two body abrasive mechanism, with abradant particles effectively trapped within the contact. In two-body abrasion rigs the principal problem is controlling the condition of the abrasive paper. If a pin-on-disc test is carried out with abrasive paper attached to the disc, the paper rapidly degrades and becomes clogged with wear particles. Indexing the pin across the disc in a spiral pattern, thus ensuring that fresh abrasive paper comes into contact with the pin at all times, overcomes this problem. 2.1 Types Of Wear:- The various types of wear, there symptoms and appearance of the worn out surfaces are given below. Table 1 TYPES OF WEAR SYMPTOMS APPEARANCE OF THE WORN OUT SURFACE Abrasive Presence of clean furrows cut out by abrasive particles Grooves Adhesive Metal transfer is a prime symptom Seizure ,catering rough and torn out surfaces Erosion Presence of abrasives in the fast moving fluid and short abrasion furrows Waves and troughs Corrosion Presence of metal corrosion products Rough pits or depressions
  • 5. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 40 | Impacts Surface fatigue , small sub micron particles or formation of spalls Fragmentation ,peeling and pitting Fatigue Presence of surface and sub surface cracks accompanied by pits and spalls Sharp and angular edges around pits Delimitation Presence of surface cracks parallel to the surface with semi dislodged or loose flakes Loose , long and thin sheet like particles Fretting Production of voluminous amount of loose debris Roughening , seizure and development of oxide ridges Electric attack Presence of micro craters or a track with evidence of smooth molten metal Smooth holes 2.2wear:- Definition: Wear has been defined as the process of metal removal due to impingement of solid particles on a surface. In this case particles are generally entrained in a fluid, such as in slurry. The wear caused in pipe lines handling abrasive slurries would be one example; another would be the wearing action caused by sand and grit in air streams. Mechanism of wear :- In erosive wear situation, particles that are normally entrained in a fluid can impact the wearing surface. The load between the particle and surface results from the momentum and kinetic energy of the particle. This difference in the loading situation results in a modification of equation used to describe the wear, which can be shown by a simple model for particle impact. In erosion it has been established that the angle at which the stream impinges the surface influences the rate at which material removed from the surface and that this dependency is also influenced by the nature of wearing material. Such a dependency is to be anticipated. This can be seen by considering the impact of a single particle with a surface. This angle determines the relative magnitude of the two velocity components of the impact, namely the component normal to the surface and the one parallel to the surface. The normal component will determine how long the impact will last i.e. the contact time, tc, and the load. The product of tc and the tangential velocity component determine the amount of sliding that takes place. 2.3 Factors Affecting Wear: The tangential velocity component also provides a shear loading to the surface, which is in addition to the normal load that the normal velocity component causes. Therefore as this angle changes, the amount of sliding that takes place also changes, as does the nature and magnitude of the stress system. Both of these aspects influence the way a material wears. These changes would also imply that different types of materials would exhibit different angular dependencies as well. Erosion Wear Situation Changes In Surface Topography As A Result Of Erosion
  • 6. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 41 | It has been demonstrated that the angle of attack between leading edge of the particle and the wearing surface determine whether or not cutting will take place. Below a critical value, deformation takes place. tan (90-Ac)=(1-µ²)/2µ Ac: Critical angle for cutting to occur µ: Coefficient of friction The angle of impact determines the two components of impact velocity. The normal component (Vn) determines the contact time (tc) and the load. The product of tc and the tangential velocity component (Vt)determine the amount of sliding that takes place. Fig 6 Effect Of Angle Of Attack As evident from the figure- The effect of angle on erosion rate is significantly different for ductile and brittle materials, particularly the angle associated with maximum erosion rate. These differences can be understood in terms of the predominant modes of damage associated with these types of materials. Brittle materials fracture tends to increase the abraded wear volume over that caused by cutting or plugging (plastic deformation). This could be as much as ten times. As a general rule, brittle materials are more likely to fracture under normal impact conditions (i.e. impacting velocity perpendicular to the surface), than ductile materials. Consequently as erosive condition moves from a more grazing situation to a more normal impact, brittle materials would experience a greater tendency to experience brittle fracture, which tends to mask the ductile or cutting contributions. For brittle materials the erosion rate would then be expected to monotonically increase with the angle. For ductile materials, cutting and ploughing (deformation) are the predominant modes and fracture is negligible. The model for abrasion indicates that the wear due to these two modes is proportional to product of load and distance. Since load increases with angle and the sliding decreases with angle, an intermediate angle should exist where the product of the two is maximum volume of wear 17 . V=K (L/p) x ------- (1) V is the volume of wear X is the distance of sliding L is the load P is the penetration hardness K is the probability that the rupture of any given junction will result in wear. Suppose L is the normal load then it can be converted to frictional load by means of Amontons law, F=µL µ is the co-efficient of friction Eqn (1) then becomes V=K (Fx)/µp Where the product Fx represents the energy dissipated by sliding during the impact. The total kinetic energy of the particle stream of total mass M, and particle velocity v, is given by E=1/2Mv 2………..(1)
  • 7. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 42 | As a result of the impact with the surface a fraction, β, of the energy is dissipated. Equating this loss to Fx the following expression is obtained V=K βMv 2 /2µp ………….. (2) This angular dependency is contained in equation (2).Assuming that β can be separated into an angular factor, φ, and a factor independent of angle β’, and combining several of the material sensitive parameters and numerical factors into one, Ke , the following expression can be obtained, V = Ke φ Mv 2 / v ……………(3) Examining this equation for erosive wear volume it can be seen that it does not provide an explicit dependency on duration. However, such a dependency is implicitly contained in M, the total mass of the particles. If Q is particle mass per unit time, then M is Qt, where t is the time of exposure to the particle stream. Including this into equation (3), the following form is obtained. Another variation of equation (3) is frequently encountered in the literature. Many investigators like to compare erosive wear situations in terms of the relative amount of material removed from the surface to the amount of abrasive particles to which it was exposed. Letting d be the density of the particles, the following equation can be obtained. V/Ve = Ke d φ v 2 /p Where Va is the volume of abrasive used to produce the wear. (Ke Values for Erosion) Table 2 TARGET MATERIAL Ke Soft Steel 8* 10^-3 To 4*10^-2 steel 1*10^-2 To 8*10^-2 Hard Steel 1*10^-2 To 1*10^-1 Aluminium 5*10^-3 To 1.5*10^-2 copper 3*10^-3 To 1.3*10^-2 Motor: Sl.No COMPONENT MATERIAL QUANTITY 1 ½ HP Motor ------ 1 2 Pulley CAST IRON 2 3 Smaller Pulley CAST IRON 1 4 V-Belt(A 41) ------- 1 5 Disc EN 8 1 6 Beam Aluminum 1 7 Beam Post MILD STEEL 1 8 Load MILD STEEL 1
  • 8. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 43 | This reversible electric motor can replace worn out or broken motors in blowers, sanders, saws, conveyor belts and other tools! Designed with a durable rigid base, this electric motor can reach speeds up to 1725 RPM to power your equipment like new. At 1/2 HP output, this electric motor can give your tools the boost they need to work at peak efficiency.  NEMA Frame: 56  Utilization Volts: 115/230  Shaft diameter: 5/8 in.  Maximum speed: 1725 RPM  Reversible Pulley:  Used to transmit motion and torque  Change speed of rotation  Stepped cone pulleys  Pulley belts used to transport products  Pulley belts used as band saws  Pulleys used for lifting. Smaller Pulley: A simple pulley basically consists of two components, the wheel and the string; the wheel may be made up of wood or metal and includes a grove cut along its circumferential periphery. The string is allowed to slide or pass through this groove with a load that is to be lifted fixed at one of its ends and an effort applied at the other end in order to lift the load. The pulley wheel is supported over a rigid frame about its central axis. The applied effort through pulling of the string rotates the pulley and pulls the load upwards, helping the load to be lifted with ease.
  • 9. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 44 | A classic example of this mechanism can be witnessed over wells where the pulley and rope are used for lifting water-filled bucket. 24 V Belt: Belts are the cheapest utility for power transmission between shafts that may not be axially aligned. Power transmission is achieved by specially designed belts and pulleys. The demands on a belt drive transmission system are large and this has led to many variations on the theme. They run smoothly and with little noise, and cushion motor and bearings against load changes, albeit with less strength than gears or chains. However, improvements in belt engineering allow use of belts in systems that only formerly allowed chains or gears Power transmitted between a belt and a pulley is expressed as the product of difference of tension and belt velocity where, T1 and T2 are tensions in the tight side and slack side of the belt respectively. They are related as: where, μ is the coefficient of friction, and α is the angle subtended by contact surface at the centre of the pulley. Disc: This study was carried out to design and fabricate a cost effective and efficient weartester (pinondisc)used in the metallurgy search field. Design and calculations were established and the machine was fabricated with well selected materials and components all sourced locally. The performance of the fabricated machine was finally evaluated against a standard wear machine in
  • 10. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 45 | He Standards Organization using statistical methods and the result showed that the locally fabricated machine is 97% effective. Fulcrum lever: The fulcrum is again placed at one end of the beam, but now the load and effort points are reversed, with the load on the opposite end of the beam from the fulcrum and the effort applied at some intermediate location. Many muscles that operate animal limbs work as type of levers. A pair of tweezers is a two-beam. Working diagram: Fig 7
  • 11. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 46 | Cost estimation: Sl.No Component Material Quantity Cost Rs 1 ½ Hp Motor --------- 1 2000 2 Pulley Cast Iron 2 750 3 Smaller Pulley Cast Iron 1 180 4 Belt(A 41) --------- 1 220 5 Disc En 19 1 720 6 Beam Aluminum 1 1800 7 Beam Post Mild Steel 1 800 8 Load --------- 1 380 9 Other Cutting Charges&Table -------- ----- 2850 Total ¤ ----- Rs.9700 Table 2 III. CONCLUSION Erosion rate with respect to angle of impact is maximum at 30degree and minimum at 90degree. Erosion rate with respect to stand of distance is maximum at 100mm and lower for 200mm. This implies that lower the stand of distance greater is the rate of erosion. Erosion rate with respect to Pressure increases as the rate of erosion increases. From the predicted mechanism it is found that the erosion behavior is valid for ductile materials. Hence our observation also follows the same rule. Having calculated the ideal angle of contact, force of impingement and the distance of fall for an Mild Steel, Aluminum, Stainless Steel, we would now be in a position to predict the condition that should be maintained to minimize wear. However it should be noted that wear being highly specific to geometry, physical properties, metallurgy and a host of other factors all our predictions will pertain to the samples used only. As such it cannot be generalized to all samples. This is one of the major impediments to wear studies. Also as indicated wear may occur due to various reasons and modes however we would be in a position to study only one mode i.e. erosion wear .Hence all our predications will be made under the assumption that wear is occurring only due to erosion and no other factor or mode is coming in to effort REFERENCES [1]. Effect of erodent properties on erosion wear of ductile type materials Article [2]. Wear, Volume 261, Issues 7-8, 20 October 2006, Pages 914-921 [3]. Girish R. Desale, Bhupendra K. Gandhi and S.C. Jain [4]. Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes Article [5]. Materials Science and Engineering: A, In Press, Corrected Proof, Available online 25 September 2006, [6]. Development and Characterization of Metal Matrix Composite using red mud and Industrial waste for wear resistant applications. Phd Thesis submitted By Mr Naresh Prasad Under Guidance of Prof S K Acharya , NIT Rourkela [7]. Erosion wear mechanisms of coal–water–slurry (CWS) ceramic nozzles in industry boilers Short Survey [8]. Materials Science and Engineering: A, Volume 417, Issues 1-2, 15 February 2006, Pages 1-7 [9]. Deng Jianxin, Ding Zeliang and Yuan Dongling [10]. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles Article [11]. Wear, Volume 257, Issues 1-2, July 2004, Pages 73-79 [12]. Bhupendra K. Gandhi and Satish V. BorseEffect of annealing and chemical strengthening on soda lime glass erosion wear by sand blasting Article [13]. Journal of the European Ceramic Society, Volume 23, Issue 2, February 2003 Chabane Bousbaa, Abderrahim Madjoubi, Mohamed Hamidouche and Nourredine Bouaouadja [14]. Levy, A. V. The erosion corrosion behavior of protective coatings, Surf. And Coat. Techn., v. 36. p. 387 – 406, 1988 [15]. Mechanical Wear Prediction and Prevention , Raymond G Bayer [16]. Erosion wear behaviour and model of abradable seal coating Article
  • 12. Design and Fabrication of Wear Testing Machine | IJMER | ISSN: 2249–6645 www.ijmer.com | Vol. 7 | Iss. 6 | June. 2017 | 47 | [17]. Wear, Volume 252, Issues 1-2, January 2002, Pages 9-15 [18]. Yi Maozhong, Huang Baiyun and He Jiawen [19]. FEM analysis of erosive wear Article [20]. Wear, Volume 250, Issues 1-12, October 2001, Pages 779-784 [21]. K. Shimizu, T. Noguchi, H. Seitoh, M. Okada and Y. Matsubara. Photography: