SlideShare a Scribd company logo
1 of 97
Download to read offline
Some Multivariate Methods Used by Ecologists
Peter Chapman
Wokingham U3A
4 October 2012
Contents
• Assumptions
• Introduction
• Notation
• Refresher on matrices
• Eigen vectors and eigen values
• Principal component analysis
• Principal coordinate analysis
• Correspondence analysis
• Redundancy analysis and canonical correspondence analysis
• R Software
Assumptions
 1 2 3
2
I am assuming that you are familiar with the following :
A sum of several numbers ............. , 1 to
The mean of several numbers
1 1
Variance ( ) , or
( 1)
n
i
i
n
i
i
n
i
i
x x x x i n
x
x
n
x x
n n
     
 
 

 


 
2
( )
1
Covariance ( )
( 1)
n
i
i
n
i i
i
x x
x x y y
n

  



Introduction
Before 1980 multivariate research tended to be theoretical. Often this
involved working on distribution theory for hypothetical but unrealistic
situations. Very rarely did anyone carry out a multivariate analysis.
Since 1980 or so, with growth of computing power, people started using
multivariate methods. This has led to further development of the old
methods, plus introduction of a lot of new methods.
Starting in the mid 1980s a lot of biologically trained people who were
also computer literate started appearing in the work place. These
people, who rarely had any formal training in mathematics or statistics
were able to run multivariate software and get results. This led to a lot
of nonsense, including some published nonsense.
1 2 3 4 5 6 7
1 3 8
2 0 9
3 13 4
4 5 5
8 19
23
77 7 3
SpeciesSites
1 2 3 4 5 6 7
1 45.8 78.6
2 32.8 98.5
3 56.1 45.0
4
77 78.3
Counts
Environmental
Sites
e.g. Soil, Climate, etc.
Real Numbers
Typical Example of Ecology Data
In pesticide research “site”
could refer to different
chemicals, or different rates
of the same chemical
Example data sets: Although this is a talk about methods used in
ecology, I shall be using data from other sources.
This is because it is easier to understand what is going on if data is
more familiar.
Also, because during my search of the web I found it quite difficult to
find suitable ecological examples.
I have also tended to use data with small numbers of dimensions
Notation
is an matrix :
I will call it an n by p matrix - which means n rows and p columns
Always in blue, and always a captital if p >1
And using the matric"style"in "Mathtype w hit
n pY
dimensions in subscripts
also represents matrix
showing generic cell member,
with subscripts but not dimensions....................not used very much
ijy  
11 12 13 1
21 22 23 2
31 32 33 3
1 2 3
. . .
. . .
. . .
. . . . . . . is another way of representing a matrix
. . . . . . .
. . . . . . .
. . .
p
p
p
n n n np
y y y y
y y y y
y y y y
y y y y
 
 
 
 
 
 
 
 
 
 
 
If matrix has only one row or only one column i will use lower case blue,e.g. n×1u
Refresher on Matrices
Generic Matrix
Square Matrix
Row Matrix Column Matrix
Vector
11 12 13 1
21 22 23 2
31 32 33 3
1 2 3
. . .
. . .
. . .
. . . . . . .
. . . . . . .
. . . . . . .
. . .
p
p
p
ij
n n n np
y y y y
y y y y
y y y y
y
y y y y

 
 
 
 
 
     
 
 
 
 
 
n pY
11 12 13
21 22 23
31 32 33
ij
y y y
y y y y
y y y

 
      
 
 
3 3Y
 11 12 11 3 1. . . . . . ny y y y pY
11
21
31
1
.
.
.
.
n
y
y
y
y

 
 
 
 
 
 
 
 
 
 
 
 
 
n 1Y
Matrix Multiplication
  3 3 3 2 2 3Q B C
11 12 13 11 12
11 12 13
21 22 23 21 22
21 22 23
31 32 33 31 32
q q q b b
c c c
q q q b b
c c c
q q q b b
   
    
     
    
   
11 11 11 12 21
12 11 12 12 22
13 11 13 12 23
33 31` 13 32 23
.
q b c b c
q b c b c
q b c b c
q b c b c
 
 
 
 
 32 32 32Q B C
11 12 11 12 11 12 11 11 12 12
21 22 21 22 21 22 21 21 22 21
31 32 31 32 31 32 31 31 32 33
q q b b c c b c b c
q q b b c c b c b c
q q b b c c b c b c
        
       
           
               
Matrix Addition
Diagonal (Square) Matrix
11
22
33
44
55
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ij
a
a
b a
a
a
 
 
 
      
 
 
 
5×5B
Identity Matrix
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
 
 
 
 
 
 
 
 
5×5I
n×n n×n n×n n×nI C C I
Norm: Normalisation
1
2
3
.
.
.
.
n
b
b
b
b
 
 
 
 
 
 
 
 
 
 
 
 
 
nb
3
4
 
 
 
4
3
 
 
 
4
3
2 2 2
21 ....... nb b b   b
2 2
3 4 5  b
Length or Norm
/ / 5  b b b b b
Normalised
/b b b
Transpose of a Matrix
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
11 21 31 41 51
12 22 32 42 52
13 23 33 43 53
14 24 34 44 54
the transpose of is
y y y y
y y y y
y y y y
y y y y
y y y y
y y y y y
y y y y y
y y y y y
y y y y y
 
 
 
 
 
 
 

 

 




 
5×4
5×4 4×5
Y
Y Y
( ) =
( ) =
 
  






n×p p×q q×p p×n
n×p p×q q×m m×q q×p p×n
A B B A
A B C C B A
Scalar Product
 1 2 3 1
2
3
. .
.
.
n
n
b c b b b b c
c
c
c
      
 
 
 
 
 
 
  
 
1 n n 1b c
1 1 2 2 3 3 .......... n nbc b c b c b c   
If b and c are orthogonal then
  length of length of cos b c
cos cos90 0  
 1 2 3 1
2
3
. .
.
.
n
n
b c b b b b b
b
b
b
    
 
 
 
 
 
 
 


 
1×n n×1b b
1 1 2 2 3 3 .......... n nbb b b b b b c   
0  1 n n 1b cso
  length of length of cos0 b b
 
2
length of b
1 if is normalised b
Determinant
11 12
11 22 12 21
21 22
b b
b b b b
b b
 
   
 
B
11 12 13
21 22 23
31 32 33
22 23 21 23 21 221 1 1 2 1 3
11 12 13
32 33 31 33 31 32
( 1) ( 1) ( 1)
b b b
b b b
b b b
b b b b b b
b b b
b b b b b b
  
 
 
  
 
 
     
          
     
B
Scalar
Rank of a Square Matrix
1 1 1
3 0 2
4 1 3
  
 
 
 
 
(-2*Col 1) = col 2 + (3*col3)
row 1 = row 2 – row 3
Only two linearly independent
(orthogonal) rows so rank = 2.
2 1 4
2 1 4
2 1 4
 
 
 
  
(-2*col1) = (4*col2) = col 3
row 1 = row 2 = row 3
Rank = 1
Order of a square matrix is number of rows/columns
Rank of a square matrix is the number of linearly independent rows/columns
A square matrix whose rank is less than its order has a determinant of zero.
If a square matrix has a non-zero determinant it has full rank = number of rows or columns
A full rank square matrix is called non-singular
Inverse of a Square Matrix
If is non singular then  -1 -1
B BB B B I
is called theinverse of-1
B B
1 1
1 0
3 1
 
 
  
  
32B
1 3 1
2 5 1
 
   
 
23 23 32 22 32 23 33C C B I B C I
4 15 4
7 25 6
 
   
 
23 23 32 22 32 23 33C C B I B C I
C is not unique
http://www.mathwords.com/i/inverse_of_a_matrix.htm
http://mathworld.wolfram.com/MatrixInverse.html
http://www.purplemath.com/modules/mtrxinvr.htm
Association Matrices
Association Matrices Q-Mode
11 1
1
p
n np
y y
y y
 
 
  
 
 
npY
 11 12 13 1. . . . . . py y y y
 21 22 23 2. . . . . . py y y y
Row 1
Row 2
       
2 2 2 2
12 21 11 21 11 21 11 21 11 21.......a a y y y y y y y y         
Euclidean Distance
Correlation
  
   
1 1. 2 2.
1
12 21
2 2
1 1. 2 2.
p
j j
j
j j
y y y y
a a
y y y y

 
 
          

11 12 13 1
21 22 23 2
31 32 33 3
1 2 3
. . .
. . .
. . .
. . . . . . .
. . . . . . .
. . . . . . .
. . .
n
n
n
n
i
n n
n j
n nn
a a a a
a a a a
a a a a
a
a a a a

 
 
 
 
 
     
 
 
 
 
 
A
11 1
1
p
n np
y y
y y
 
 
  
 
 
npY
11
21
31
1
.
.
.
.
n
y
y
y
y
 
 
 
 
 
 
 
 
 
 
 
 
 
12
22
32
2
.
.
.
.
n
y
y
y
y
 
 
 
 
 
 
 
 
 
 
 
 
 
11 12 13 1
21 22 23 2
31 32 33 3
1 2 3
. . .
. . .
. . .
. . . . . . .
. . . . . . .
. . . . . . .
. . .
p
p
p
ij
p p p pp
a a a a
a a a a
a a a a
a
a a a a
 
 
 
 
 
     
 
 
 
 
 
nnA
Compute
12 21a a
Association Matrices R-Mode
Summary: Q and R Mode
Descriptors Objects
Objects
e.g. Sites
Descriptors
e.g. Species
n pY n nA
p pA
R mode
association
matrix
Q mode
association
matrix
Original
data
matrix
Eigen Values and Eigen Vectors
Ecological data sets usually include a large number of variables that are associated to one
another (e.g. linearly correlated). The basic idea underlying several methods of data analysis is
to reduce this large number of inter-correlated variables to a smaller number of composite, but
linearly independent variables, each explaining a different fraction of the observed variation.
One of the main goals of numerical data analysis is to generate a small number of variables,
each explaining a large proportion of the variation, and to ascertain that these new variables
explain different aspects of the phenomena under study.
Eigen analysis is a key tool in helping us achieve this aim.
Eigen Values and Eigenvectors
For any square matrix the following relationship always exists
Where the colums of are orthonormal

n×n
-1
n×n n×n n×n n×n n×n n×n n×n
n×n
A
A U Λ U U Λ U
U
11 12 13
21 22 23
31 32 33
. . .
. . .
. . .
. . . . . .
. . . . . .
ij
a a a
a a a
a a a a
 
 
 
    
 
 
 
 
n×nA
1
2
3
0 0 . .
0 0 . .
0 0 . .
. . . . .
. . . . .



 
 
 
 
 
 
 
 
n×nΛ
11 12 13 1
21 22 23 2
31 32 33 3
1 2 3
. .
. .
. .
. . . . . .
. .
n
n
ij n
n n n nn
u u u u
u u u u
u u u u u
u u u u
 
 
 
      
 
 
 
n×nU
Matrix is known as the canonical form ofn×n n×nΛ A
Any square matrix
Eigenvalues
Some may be zero
Some may be equal
Lagrange multipliers
Columns are eigenvectors
Columns orthonormal
Eigen Values and Eigenvectors
We compute eigen values of square matrix by solving n equations:
i
i iAu u i = 1 to n
i i iAu λ u 0
( )i i A I u 0
n*n matrix n*1 vector
n*1 vector
0i A Iare found by solving
i a polynomial of degree n
iu are then easily found characteristic equation
n×nA
Singular Value Decomposition
Singular Value Decomposition (SVD)
Any matrix can be factorised as follows:
Columns of are the left singular vectors of
is a diagonal matrix containing (non -negative) singular value




n×p
n×p n×p p×p p×p
n×p n×n n×p p×p
n×n n×p
n×p
Y
Y V W U
Y V W U
V Y
W s
Columns of are the right singular vectors ofp×p n×pU Y
Lack of consistency in literature
SVD can be applied to any m × n matrix.
Eigenvalue decomposition can only be applied to certain classes of square matrices.
Nevertheless, the two decompositions are related.
Given an SVD of M, as described above, the following holds:
)(
   
   
p×n n×p p×p p×n n×n n×n n×p p×p
p×p p×n n×p p×p p×p p×p p×p
Y Y U W V V W U
U W W U U Λ U
SVD
Transpose
of SVD
   n×p p×n n×n n×p p×n n×n n×n n×n n×nY Y V (W W )V V Λ Valso
eigenvectors eigenvalues
Principal Component Analysis
Karl Pearson, 1901
Harold Hotelling, 1933, 1936
11
21
1
We have a matrix with variance-covariance matrix
We transform as follows
Now consider the first column of
:
.
or .
.
.
n
z
z
z

 











n×p p p
n×p n×p n×p p×p
n×p n×1 n×p n×1
Y S
Y Z Y U
Z z Y u
11 12 1 11 11 11 12 21 1 1
21 22 2 21 21 11 22 21 2 1
1 1 1 11 2 21
. . .....
. . .....
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . .....
p p p
p p p
n np p n n
y y y u y u y u y u
y y y u y u y u y u
y y u y u y u y
     
         
   
   
    
   
   
   
            1np pu
 
 
 
 
 
 
 
 
 
 
 
 
 
2
1 .
1
2
1 11 2 21 1 .1 11 .2 21 . 1
1
2
1 .1 11 2 .2 21 21 1
1
2 2
1 .1 11 1 .1 2 .2 11 21
1
( )
1
..... ( ..... )
1
( ) ( ) ..... ( )
1
( ) ( )( ) ..............
n
i p
n
i i ip p p p
n
i i ip ip p
i i i
Var z z
n
y u y u y u y u y u y u
n
y y u y y u u y y u
n
y y u y y y y u u
n
 
       
        
     



n×1z
1
..........
and so on
n

  


1×p p×p p×1u S u
1
1
Now we need to find that maximises var[ ]subject to =1
Let be a Lagrange multiplier
Then maximise = ( -1)

 

 
p×1 p×1 1×p p×1
1×p p×p p×1 1×p p×1
u z u u
u S u u u
1
1
1
0
( ) 0
We find first by solving the polynomial



 


 
p×p p×1 p×1
p×p p×p p×1
p
S u (1)u
u (2S I
S
)
1
1
1
1
0 (degree p)
We then substitute into to find
From we can show that var[ ] , subject to =1
is the first eig
(
e
1)







 
×p p×p
p×1
1×p p×p p×1 p×1 1×p p×1
I
u
u S u z u
(2)
u
n value of and is the first eigen vectorp×p p×1S u
To compute 2nd,3rd, and higher eigen values and eigen vectors is an identical process
Additional constraints are needed
Notably ( ) = 0 equivalent to Cov( ) = 0
where and are d
,
i
1×p p×1 p×1 p×1
p×1 p×1
u v u v
u v fferent eigen vectors
Burglary Violence Robbery
Bath 3 5.7 0.4
Birmingham 7.2 11.6 4.1
Brighton 4.5 7.6 1.5
Bristol 9.8 10.4 2.9
Cambridge 7.6 7.6 1.6
Canterbury 2.7 6.3 0.5
Cardiff 6 8.6 1.1
Coventry 7.4 11.2 2.2
Lancaster 2.5 7.7 0.4
Leeds 12 7.5 1.7
Leicester 8.6 11.7 2.6
Liverpool 9.1 7.7 2.3
Manchester 13.2 11.5 5.1
Newcastle 5.2 8.6 0.9
Nottingham 11.7 15.1 4.3
Oxford 5.2 8.3 1.7
Sheffield 6.9 7.5 1.2
Southampton 4.9 14.6 1.8
Swansea 4.7 7.3 0.4
York 4.4 6.7 0.5
Bournemouth 5.2 12.9 0.9
Plymouth 4 10.7 0.7
Norwich 3.9 8.9 1.1
Lincoln 6 9.8 0.9
Objects
Source: http://www.thecompleteuniversityguide.co.uk/preparing-to-go/staying-safe-and-secure/how-safe-is-your-city/
Descriptors
Robbery
Violence
Violence
Burglary
Burglary
Robbery
3.0 5.7 6.5 9.4 3.49 3.70
7.2 11.6 6.5 9.4 0.71 2.20
4.5 7.6. . . 1.99. 1.80
. . . . . .
=
. . . . . .
. . . . . .
. . . . . .
6.0 9.8 6.5 9.4 0.49 0.40
     
   
   
     
   
    
   
   
   
   
           
24×2 24×2 24×2 24×2Y Y Y Y-

 
 
 
 
 
 
 
 
 
  

Burglary Violence
Let’s start with two variables
8.799 3.0361
3.036 6.5051n
             
24×2 24×2 24×2 24×2 24×2S Y Y Y - Y
R-Mode
08.799 3.036
0 1 2
03.036 6.505
k
k
k
k or



  
     


  
24×2 24×2S I
Eigen Values = 10.898 = 4.407
1 2
-0.8226264 0.5685823
-0.5685823 -0.8226264
 
  
 
2×2UEigen Vectors
Variance-covariance matrix
3.49 3.70
0.71 2.20
1.99. 1.80
. . -0.8226264 0.5685823
. . -0.5685823 -0.8226264
. .
. .
0.49 0
(
.
)
40
  
 
 
  
 
         
 
 
 
   
24×2 24×2 24×2 2×2Z Y Y U
1 0.8226264 0.5685823z Burglary Violence    
Accounting for 10.898*100/(10.898+4.407) = 71.2 % of variance
2 0.5685823 0.8226264z Burglary Violence   
Accounting for 28.8% of Variance
Violence
2 0.5685823 0.8226264Z Burglary Violence   
Plots of 1st and 2nd Components
Robbery
Violence
Plots of 1st and 2nd Components
Robbery
1Z
2Z

2 2 2 2
1 2
2 2 2 2
1 2
1 1 1 1
1 2
1 1 1 1
variance( ) variance( ) variance( ) variance( )
n n n n
Robbery Violence Z Z
Robbery Violence Z Z
n n n n
Robbery Violence Z Z
  
  
  
   
The PCA rotation
maximises variance of Z1
relative to Z2
It also maximises
relative to
1
2
Now three variables
2 3
3.0 5.7 0.4 6.5 9.4 1.7 3.49 3.70 1
7.2 11.6 4.1 6.5 9.4 1.7
4.5 7.6. 1.5 6.5 9.4 1.7
. . . . . .
=
. . . . . .
. . . . . .
. . . . . .
6.0 9.8 0.9 6.5 9.4 1.7
     
   
   
   
   
    
   
   
   
   
      
   
4× 24×3 24×3 24×3Y Y Y Y-
.3
0.71 2.20 2.4
1.99. 1.80 0.2
. . .
. . .
. . .
. . .
0.49 0.40 0.8
 
 
 
   
 
 
 
 
 
 
    
Burglary Violence Robbery
8.799 3.036 3.121
1
3.036 6.505 2.005
1
3.121 2.005 1.689
n
 
           

 


24×3 24×3 24×3 24×3 24×3S Y Y Y Y
8.799 3.036 3.121 0 0
3.036 6.505 2.005 0 0 0 1,2, 3
3.121 2.005 1.689 0 0
k
k k
k
k

 

   
   
      
   
   
24×3 24×3S I
Eigen Values = 12.205 = 4.411 = 0.378
0.7788 0.5562 0.2900
0.5318 0.8307 0.1648
0.3325 0.0259 0.9427
 
 
   
 
 
3×3UEigen Vectors
1 2 3
3.49 3.70 1.3
0.71 2.20 2.4
1.99. 1.80 0.2
0.7788 0.5562 0.2900
. . .
0.5318 0.8307 0.1648
. . .
0.3325 0.0259 0.9427
. . .
. . .
0.49 0.40 0.
( )
8
   
 
 
   
  
        
    
 
 
    
24×3 24×3 24×3 3×3Z Y Y U
1 0.7788 0.5318 0.3325z Burglary Violence Robbery     
Accounting for 12.205*100/(12.205+4.411+0.378) = 71.8 % of variance
2 0.5562 0.8307 0.0259z Burglary Violence Robbery     
Accounting for 26.0% of Variance
3 0.2900 0.1648 0.9427z Burglary Violence Robbery      
Accounting for 2.2% of Variance
-6
-4
-2
0
2
4
6
-6 -4 -2 0 2 4 6 8 10
High
Crime
High Burglary/ Lower Violence
Low
Crime
High Violence/ Lower Burglary
Bath
Canterbury
Lancaster
Leeds
Liverpool
Nottingham
Manchester
Bournemouth
Southampton
2Z
1Z
Violence
2 0.5685823 0.8226264Z Burglary Violence   
Plots of 1st and 2nd Components
Robbery
Bi-Plot
Ordination in 2 dimensions
Original 3-dimensions
Projection of 3 dimensions into 2 dimensions
Bi-Plot





















Both the direction and length of the vectors can be interpreted. So, for
these data, where the vectors represent judges, and the points cars, a
group of vectors pointing in the same direction correspond to a group
of judges who have the same preference opinions about the
automobiles
In a biplot, the length of the lines approximates the variances of the variables.
The longer the line, the higher is the variance.
The angle between the lines, or, to be more precise, the cosine of the angle
between the lines, approximates the correlation between the variables they
represent. The closer the angle is to 90, or 270 degrees, the smaller the
correlation. An angle of 0 or 180 degrees reflects a correlation of 1 or −1,
respectively.
Taken from
The Stata Journal (2005) 5, Number 2, pp. 208–223
Data inspection using biplots.
Ulrich Kohler, Wissenschaftszentrum Berlin
kohler@wz-berlin.de,Magdalena Luniak, Wissenschaftszentrum Berlin
luniak@wz-berlin.de
http://onlinelibrary.wiley.com/doi/10.1002/9780470238004.app2/pdf
Hardcover: 476 pages
Publisher: Wiley-Blackwell (24 Dec 2010)
Language: English
ISBN-10: 0470012552
ISBN-13: 978-0470012550
Bi-Plot
Ordination in 2 dimensions
Original 3-dimensions
Projection of 3 dimensions into 2 dimensions
US Agricultural Exports: 1990 to 2010
Country
Value (million dollars)
1990 1995 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Canada 4,214 5,796 7,060 7,643 8,124 8,662 9,315 9,733 10,618 11,951 14,062 16,253 15,725 16,856
Mexico 2,560 3,522 5,625 6,410 7,407 7,238 7,891 8,510 9,429 10,881 12,692 15,508 12,932 14,575
Caribbean 1,015 1,281 1,493 1,408 1,400 1,518 1,590 1,850 1,913 2,114 2,575 3,592 3,082 3,192
Central America 483 871 1,100 1,121 1,234 1,252 1,338 1,429 1,589 1,832 2,363 3,106 2,553 2,923
Brazil 177 522 212 264 221 329 384 279 228 287 411 677 386 575
Colombia 120 464 441 417 453 521 513 594 680 868 1,223 1,675 907 832
Japan 8,142 11,149 8,893 9,292 8,884 8,384 8,906 8,147 7,931 8,390 10,159 13,223 11,072 11,819
Korea, South 2,650 3,742 2,449 2,546 2,588 2,673 2,886 2,489 2,233 2,851 3,528 5,561 3,917 5,308
Taiwan 3 1,663 2,591 1,945 1,996 2,010 1,966 2,025 2,065 2,301 2,477 3,097 3,419 2,988 3,190
China 3 4 818 2,633 854 1,716 1,939 2,068 5,017 5,542 5,233 6,711 8,314 12,115 13,109 17,522
Hong Kong 702 1,503 1,209 1,264 1,228 1,091 1,114 913 872 977 1,168 1,715 2,008 2,808
India 108 194 145 210 353 274 317 257 295 365 475 489 691 755
Indonesia 275 816 531 668 907 810 996 925 958 1,102 1,542 2,195 1,796 2,246
Philippines 381 765 783 901 794 776 626 695 798 888 1,112 1,734 1,294 1,634
Thailand 275 590 409 493 570 611 684 686 675 703 885 1,063 1,046 1,152
Australia 226 339 320 317 292 339 412 410 463 520 662 826 840 928
European Union 5 7,474 8,789 6,858 6,515 6,676 6,398 6,736 6,953 7,052 7,408 8,754 10,080 7,445 8,894
USSR 2,248 1,233 839 670 1,060 695 740 1,112 1,227 1,025 1,665 2,304 1,736 1,454
Saudi Arabia 482 517 447 477 429 343 332 364 350 426 710 890 694 840
Turkey 226 516 502 658 571 675 921 944 1,062 1,030 1,496 1,696 1,499 2,112
Egypt 687 1,309 966 1,050 1,022 863 967 935 819 1,022 1,801 2,050 1,354 2,092
South Africa 81 267 173 134 99 148 149 169 146 126 291 393 162 292
Oceania 343 506 486 490 473 512 621 601 742 760 963 1,189 1,282 1,394
(1) 55418724 (2) 26490533 (3) 13560738 (4) 8083174 (5) 6362753 (6) 3097378.91
(7) 1717442 (8) 1214768 (9) 344449 (10) 137884 (11) 67213 (12) 49836 (13) 11222 (14) 6340
Eigenvalues
Principal Coordinate Analysis
Gower, 1966
Start with a matrix with n rows (objects) and p columns (descriptors)
Compute the Euclidean distance (between rows) matrix [ ]
Transform into new matrix = [a ], such that :
hi
hi
d
n×p
n×n
n×n n×n
Y
D
D A
21
= -
2
Then compute centred matrix [ ]: . . ..
Finally, scale eigen vectors so that
If eigen vectors are arranged as columns. Rows of the
hi hi
hi hi hi h i
k
a d
a a a a 

    

n×p
k k
Δ
u u
resulting table are the
coordinates of the objects in the space of principal coordinates.
Oxford Newcastle Plymouth Dover Glasgow Bristol
Oxford 0 258 187 144 363 72
Newcastle 258 0 408 368 145 297
Plymouth 187 408 0 287 484 118
Dover 144 368 287 0 498 194
Glasgow 363 145 484 498 0 372
Bristol 72 297 118 194 372 0
Distances Between British Cities
Q-Mode
0 258 187 144 363 72
258 0 408 368 145 297
187 408 0 287 484 118
144 144 287 0 498 194
363 363 484 498 0 372
72 72 118 194 372 0
 
 
 
 
  
 
 
  
 
6×6D
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.1473475 0.1128741 0.04538458 0.4082483 0.81339727 0.3677045
[2,] -0.4335791 0.2304177 0.65857972 0.4082483 -0.30873244 0.2514103
[3,] 0.3970476 -0.6344915 0.35761362 0.4082483 -0.03729046 -0.3792480
[4,] 0.3754683 0.6761005 -0.15553511 0.4082483 -0.16408006 -0.4291055
[5,] -0.6752523 -0.1782828 -0.42405981 0.4082483 0.13883744 -0.3827275
[6,] 0.1889680 -0.2066181 -0.48198299 0.4082483 -0.44213175 0.5719662
Distances computed from Google
maps – road distances are not
straight – so ordination will have 3 or
more dimensions but should be
dominated by 2-dimensions
1.931479e+05 = 19314.97
4.733022e+04 = 4733.022
3.820062e+03 = 382.0062
4.820322e-11
-4.952561e+02
-6.316731e+03
Eigenvalues
Can be ignored
Eigen vectors
Ordination Plot: First Two Eigen Vectors
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Angouleme 4.2 4.9 7.9 10.4 13.6 17.0 18.7 18.4 16.1 11.7 7.6 4.9
Angers 4.6 5.4 8.9 11.3 14.5 17.2 19.5 19.4 16.9 12.5 8.1 5.3
Besancon 1.1 2.2 6.4 9.7 13.6 16.9 18.7 18.3 15.5 10.4 5.7 2.0
Biarritz 7.6 8.0 10.8 12.0 14.7 17.8 19.7 19.9 18.5 14.8 10.9 8.2
Bordeaux 5.6 6.6 10.3 12.8 15.8 19.3 20.9 21.0 18.6 13.8 9.1 6.2
Brest 6.1 5.8 7.8 9.2 11.6 14.4 15.6 16.0 14.7 12.0 9.0 7.0
Cler-Ferr 2.6 3.7 7.5 10.3 13.8 17.3 19.4 19.1 16.2 11.2 6.6 3.6
Dijon 1.3 2.6 6.9 10.4 14.3 17.7 19.6 19.0 15.9 10.5 5.7 2.1
Grenoble 1.5 3.2 7.7 10.6 14.5 17.8 20.1 19.5 16.7 11.4 6.5 2.3
Lille 2.4 2.9 6.0 8.9 12.4 15.3 17.1 17.1 14.7 10.4 6.1 3.5
Limoges 3.1 3.9 7.4 9.9 13.3 16.8 18.4 17.8 15.3 10.7 6.7 3.8
Lyon 2.1 3.3 7.7 10.9 14.9 18.5 20.7 20.1 16.9 11.4 6.7 3.1
Marseille 5.5 6.6 10.0 13.0 16.8 20.8 23.3 22.8 19.9 15.0 10.2 6.9
Montpellier 5.6 6.7 9.9 12.8 16.2 20.1 22.7 22.3 19.3 14.6 10.0 6.5
Nancy 0.8 1.6 5.5 9.2 13.3 16.5 18.3 17.7 14.7 9.4 5.2 1.8
Nantes 5.0 5 3 8.4 10.8 13.9 17.2 18.8 18.6 16.4 12.2 8.2 5.5
Nice 7.5 8.5 10.8 13.3 16.7 20.1 22.7 22.5 20.3 16.0 11.5 8.2
Nimes 5.7 6.8 10.1 13.0 16.6 20.8 23.6 22.9 19.7 14.6 9.8 6.5
Orleans 2.7 3.6 6.9 9.8 13.4 16.6 18.4 18.2 15.6 10.9 6.6 3.6
Paris 3.4 4.1 7.6 10.7 14.3 17.5 19.1 18.7 16.0 11.4 7.1 4.3
Perpignan 7.5 8.4 11.3 13.9 17.1 21.1 23.8 23.3 20.5 15.9 11.5 8.6
Reims 1.9 2.8 6.2 9.4 13.3 16.4 18.3 17.9 15.1 10.3 6.1 3.0
Rennes 4.8 5.3 7.9 10.1 13.1 16.2 17.9 17.8 15.7 11.6 7.8 5.4
Rouen 3.4 3.9 6.8 9.5 12.9 15.7 17.6 17.2 15.0 11.0 6.8 4.3
St-Quent 2.0 2.9 6.3 9.2 12.7 15.6 17.4 17.4 15.0 10.5 6.1 3.1
Strasbourg 0.4 1.5 5.6 9.8 14.0 17.2 19.0 18.3 15.1 9.5 4.9 1.3
Toulon 8.6 9.1 11.2 13.4 16.6 20.2 22.6 22.4 20.5 16.5 12.6 9.7
Toulouse 4.7 5.6 9.2 11.6 14.9 18.7 20.9 20.9 18.3 13.3 8.6 5.5
Tours 3.5 4.4 7.7 10.6 13.9 17.4 19.1 18.7 16.2 11.7 7.2 4.3
Vichy 2.4 3.4 7.1 9.9 13.6 17.1 19.3 18.8 16.0 11.0 6.6 3.4
Monthly Average Temperatures: 30 French Cities
Eigen values
1113.8
170.4
4.6
2.7
1.2
0.6
0.5
0.3
0.2
0.1
0.1
0
In practice only 2 dimensions in these data
30 in total
Mediterranean
Coast
Brittany Coast
Southwest
South and West of Paris
North and East of Paris – Belgian Border
South East of Paris
North and East of Paris –
Belgian Border
Brittany Coast
Mediterranean Coast
South East of Paris
South and West of Paris
Correspondence Analysis
Many people stretching back to 1933
11 12 13
21 22 23
31 32 33
41 42 43
O O O
O O O
O O O
O O O
 
 
 
 
 
 
 
11 12 13
21 22 23
31 32 33
41 42 43
E E E
E E E
E E E
E E E
 
 
 
 
 
 
Matrix of
observed
counts
Matrix of
expectations
ij ij ijij
j i ji
ij ij
i jij ij ij
i j i j i j
O O OO
E O
O O O
    
   
      
   
   
  

  
Under hypothesis that
row and column are
independent
2
2 2
( 1) ( 1) 3 2
( )ij ij
n p
i j ij
O E
E
    

  and
follows a chi-squared
distribution
10 50 90
20 60 100
30 70 110
40 80 120
 
 
 
 
 
 
19.23 50.00 80.77
23.08 60.00 96.92
26.92 70.00 113.08
30.77 80.00 129.23
X-squared = 9.8576,
df = 3*2=6, p-value = 0.1308
non-significant
rows and columns independent
10 50 120
20 60 110
30 70 100
40 80 90
 
 
 
 
 
 
12.82 33.33 53.85
14.10 36.67 59.23
15.38 40.00 64.62
16.67 43.33 70.00
X-squared = 36.7282,
df = 3*26, p-value = 1.989e-06
significant result
Rows, columns not independent
ijE
ijO
Marsh Lotus Open
Swamp Swamp Water
Purple swamphen 798 78 25
Yellow-vented bulbul 690 101 129
Pink-necked green pigeon 614 150 90
Peaceful dove 462 101 84
Spotted dove 386 56 67
Pacific swallow 208 39 85
White-breasted waterhen 200 38 25
Baya weaver 173 7 52
Common myna 166 17 51
Purple heron 164 52 22
Yellow bittern 162 42 11
Jungle myna 154 15 117
White-throated kingfisher 128 51 42
Scaly-breasted munia 125 36 49
Relative abundance of bird species recorded
at three habitats of Paya IndahWetland
Reserve, Peninsular Malaysia.
Chi-squared = 505.9142,
df = 13*2=26, p-value < 2.2e-16
International Journal of Zoology
Volume 2011, Article ID 758573, 17
pages doi:10.1155/2011/758573
Bird Species Abundance and Their
Correlationship with Microclimate
and Habitat Variables at Natural
Wetland Reserve, Peninsular
Malaysia
2
2
( 1) ( 1)
( )
Earlier we saw that ij ij
n p
i j ij
O E
E
   

 
( )1
Now we start with ij ij
ij
ij ij
i j
O E
O E

 
 
      
  

r×cQ
:Apply SVD to r×c r×c r×r r×c c×cQ Q V W U
orthonormal orthonormal
diagonal
c×c
We know from an earlier discussion that
are the eigen vectors of
are the eigen vectors of
Diagonal elements of W are square roots of eigenvalues, ii iw 


c×c c×r r×c
r×r r×c c×r
U Q Q
V Q Q
We will also need : [ ] ij
ij
ij
i j
O
p
O
 
 
   
  

r×cP
Matrices and can be used to plot the positions
of the row and column vectors in two seperate scatter diagrams
c×c r×rU V
Eigen Values (1) 2.506575e-01 (2) 1.436226e-01 (3) 2.032566e-17
For joint plots a number of different scalings have been proposed :
For example:
Where is a diagonal matrix in which the diagonals are the
reciprocals of the square roots of the
 -1/2
c×c c×c c×c
-1/2
c×c
X D U
D
column totals of
And
Where is a diagonal matrix in which the diagonals are the
reciprocals of row totals of
And
Finally, plot column1of against c
r r


r×c
-1
r×c r×r r×c c×c
-1
×
r×c
c×c c×c c×c
r×c
P
F D P X
D
P
G X W
F olumn2 of :on same graph
plot column1of against column 2 of
r×c
c×c c×c
F
G G
H+ H- A+ A- "+" "-" GD
1 Manchester City 55 12 38 17 93 29 64
2 Manchester United 52 19 37 14 89 33 56
3 Arsenal 39 17 35 32 74 49 25
4 Tottenham Hotspur 39 17 27 24 66 41 25
5 Newcastle United 29 17 27 34 56 51 5
6 Chelsea 41 24 24 22 65 46 19
7 Everton 28 15 22 25 50 40 10
8 Liverpool 24 16 23 24 47 40 7
9 Fulham 36 26 12 25 48 51 -3
10 West Bromwich Albion 21 22 24 30 45 52 -7
11 Swansea City 27 18 17 33 44 51 -7
12 Norwich City 28 30 24 36 52 66 -14
13 Sunderland 26 17 19 29 45 46 -1
14 Stoke City 25 20 11 33 36 53 -17
15 Wigan Athletic 22 27 20 35 42 62 -20
16 Aston Villa 20 25 17 28 37 53 -16
17 Queens Park Rangers 24 25 19 41 43 66 -23
18 Bolton Wanderers 23 39 23 38 46 77 -31
19 Blackburn Rovers 26 33 22 45 48 78 -30
20
Wolverhampton
Wndrs
19 43 21 39
40 82 -42
Premier League Final Table 2011-2012
Data used
Principal inertias (eigenvalues):
1 2 3
Value 0.053538 0.008691 0.00678
Percentage 77.58% 12.59% 9.82%
Redundancy Analysis and Canonical
Correspondence Analysis
In this context canonical means that we have two matrices or, alternatively,
two sets of descriptors for one set of objects
Rao, 1964 Ter Braak, 1986
1 2 3 4 5 6 7
1 3 8
2 0 9
3 13 4
4 5 5
8 19
23
77 7 3
SpeciesSites
1 2 3 4 5 6 7
1 45.8 78.6
2 32.8 98.5
3 56.1 45.0
4
77 78.3
Counts
Environmental
Sites
e.g. Soil, Climate, etc.
Real Numbers
Typical Example of Ecology Data
Indirect Comparison: The matrix of explanatory variables, , does not
intervene in the in the calculation that produces the ordination of .
Correlation or regression of the ordination vectors on are carried
out first and the ordination is carried out on a modified .
In a direct comparison the matrix X intervenes in the calculation , forcing
the ordination vectors, , to be maximally related to combinations of the
columns of .
In mathematics more generally, a canonical form is the simplest and most
comprehensive form to which certain functions , relations, or expressions
can be reduced without loss of generality. For example, the canonical form
of a covariance matrix is its matrix of eigenvalues
n×pY
n×pX
n×pXn×pY
n×pX
n×pY
n×pY
n×pY
n×pY
n×mXn×1y
n×mX
Simple ordination
Principal Components
Correspondence Analysis
Ordination of under constrained
Multiple regression
n×1y n×pX
Ordination of under constrained
Redundancy Analysis
Canonical Correspondence Analysis
n×pXn×pY
1 1 1 1 1 1
1 1
1 1 1 1 1 1
1 1 1
, , , ,
, , , ,
, , , ,
, , , ,
. . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . .
. . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . .
p m
p p p p p m
p m
p m m m m
y y y y y x y x
y y y y y x y x
x y x y x x x x
x y x y x x x x
S S S S
S S S S
S S S S
S S S S








 






Y+XS







   
    
   




 




YY YX YY YX
XY XX YX XX
S S S S
S S S S
Variance covariance matrix of
n×pY
Variance covariance matrix of n×pX
Covariances amongst descriptors of
X and Y
Covariances amongst descriptors of
X and Y
 
 
In principal component analysis the eigen analysis equation was :
In redundancy analysis it is
0
:
0
k
k


 
 
YY k
-1 T
YX XX YX k
S I u
S S S I u
An Aside on Multiple Linear Regression
 2
0 1 1 2 2 .... ,y b b x b x e e N      
1 0 1 11 2 12
2 0 1 21 2 22
3 0 1 31 2 32
0 1 1 2 2
.......
.......
.......
.
.
.......n n n
y b b x b x
y b b x b x
y b b x b x
y b b x b x
   
   
   
   
1 11 12
2 21 22 0
3 31 32 1
3
1 2
1 . .
1 . .
1 . .
. . . . . .
. . . . . . .
. . . . . . .
1 . .n n n
y x x
y x x b
y x x b
b
y x x
   
   
    
    
    
    
    
     
    
   
   
ˆ
ˆ
ˆ
ˆ
ˆ
 
   
 
 
-1 -1
-1
-1
y = Xb
X y = (X X)b
(X X) X y = (X X) (X X)b
(X X) X y = Ib
(X X) X y = bLeast squares solution
Coefficients to be
estimated Data
The Algebra of Redundancy Analysis
Centre both response matrix and matrix of independent variables
by subtracting the column means from the column values / elements
For each column in compute , giving
Fo
.
ˆ ˆ
r
    -1 -1
Y X
Y b (X X) X y B (X X) X Y
ˆ ˆ
ˆ ˆ ˆˆ ,
ˆ ˆ
each column of compute fitted values giving =
[1/ (1 )]
= [1/ (1 )]
[1/ (1 )]
= [1/ (1 )
=
]
n
n
n
n

 

  


   

 
  

-1
XX
Y Y
-1 -1
-1
-1
YX
Y y Xb Y XB X(X X) X Y
S X X
S Y Y
Y X(X X) X X(X X) X Y
Y X(X X) X Y
S S
   ˆ ˆSo, perform redundancy analysis by solving : 0k k 

  
XX YX
-1
k YX XX YX kY Y
S
S I u S S S I u
Burglary Violence Robbery
Pop
Density
Bath 3 5.7 0.4 5
Birmingham 7.2 11.6 4.1 39
Brighton 4.5 7.6 1.5 31
Bristol 9.8 10.4 2.9 40
Cambridge 7.6 7.6 1.6 31
Canterbury 2.7 6.3 0.5 5
Cardiff 6 8.6 1.1 24
Coventry 7.4 11.2 2.2 32
Lancaster 2.5 7.7 0.4 2
Leeds 12 7.5 1.7 14
Leicester 8.6 11.7 2.6 42
Liverpool 9.1 7.7 2.3 40
Manchester 13.2 11.5 5.1 43
Newcastle 5.2 8.6 0.9 26
Nottingham 11.7 15.1 4.3 41
Oxford 5.2 8.3 1.7 34
Sheffield 6.9 7.5 1.2 15
Southampton 4.9 14.6 1.8 48
Swansea 4.7 7.3 0.4 6
York 4.4 6.7 0.5 7
Bournemouth 5.2 12.9 0.9 36
Plymouth 4 10.7 0.7 32
Norwich 3.9 8.9 1.1 37
Lincoln 6 9.8 0.9 25
Objects
Source: http://www.thecompleteuniversityguide.co.uk/preparing-to-go/staying-safe-and-secure/how-safe-is-your-city/
Descriptors
http://www.guardian.co.uk/news/datablog/interactive/2011/jun/30/uk-population-mapped
Population density /ha Population density /ha
Population density /ha
Burglary Violence
Robbery
Eigen values (1) 6.612048e+00 (2) 2.664535e-15 (3) -1.110223e-16
1 1 1 2 1 3
2 1 2 2 2 3
3 1 3 2 3 3
1 2 3
ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ˆ ˆ
. . .
. . .
. . .
ˆ ˆ ˆ
n n n
x b x b x b
x b x b x b
x b x b x b
x b x b x b
 
 
 
 
 
 
 
 
 
 
 
 
11 12 13
21 22 23
31 32 33
1 2 3
. . .
. . .
. . .
n n n
y y y
y y y
y y y
y y y
 
 
 
 
 
 
 
 
 
 
 
 
1 1 1 2 1 311 12 13 1
21 22 23 2 2 1 2 2 2 3
31 32 33 3 3 1 3 2 3 3
1 2 3
1 2 3
1 2 3
ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ˆ ˆ
ˆ ˆ ˆ. . . . . .
. . . . . .
. . . . . .
ˆ ˆ ˆn n n n
n n n
x b x b x by y y x
y y y x x b x b x b
y y y x x b x b x b
b b b
y y y x x b x b x b
                                                        

Regression model fitted
Matrix used in PCA, Rank = 3 Matrix used in Redundancy Analysis, Rank = 1
Eigen Values: (1) 6.706016e+00 (2) 7.439234e-02 (3) 6.071489e-18
Second attempt: fitting a quadratic instead of a straight line
11 12 13
1 2 321 22 23
11 21 3131 32 33
12 22 3241 42 43
11 21 31
12 22 32
1 1 0 1 0
ˆ ˆ ˆ1 1 0 0 1
ˆ ˆ ˆ1 0 1 1 0
ˆ ˆ ˆ1 0 1 0 1
ˆ ˆ ˆ. . . . . . . .
ˆ ˆ ˆ. . . . . . . .
. . . . . . . .
ˆ
y y y
y y y
y y y
y y y
  
  
  
  
  
   
    
    
    
        
    
    
    
   
   

1 11 11 2 21 21 3 31 31
1 11 12 2 21 22 3 31 32
1 12 11 2 22 21 3 32 31
1 12 12 2 22 22 3 32 32
ˆ ˆ ˆˆ ˆ ˆˆ ˆ
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ
. . .
. . .
. . .
        
        
        
        
      
 
      
 
      
 
      
 
 
 
 
 
1st replicate of a 2
by 2 factorial
Used in
redundancy
analysis
R Software
http://www.r-project.org/index.html
Some Multivariate Methods Used by Ecologists

More Related Content

What's hot

WCS Specialist Maths An Introduction to Matrices PowerPoint
WCS Specialist Maths An Introduction to Matrices PowerPointWCS Specialist Maths An Introduction to Matrices PowerPoint
WCS Specialist Maths An Introduction to Matrices PowerPointKingp18
 
My Lecture Notes from Linear Algebra
My Lecture Notes fromLinear AlgebraMy Lecture Notes fromLinear Algebra
My Lecture Notes from Linear AlgebraPaul R. Martin
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationJonathan Templin
 
System of equations
System of equationsSystem of equations
System of equationsmariacadena
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsDiler4
 
Linear equations
Linear equationsLinear equations
Linear equationsNisarg Amin
 
Graphs linear equations and functions
Graphs linear equations and functionsGraphs linear equations and functions
Graphs linear equations and functionsanwarsalamappt
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebramath260
 
Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Jimbo Lamb
 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebraspark21
 
Lecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airLecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airatutor_te
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptrushikumar17
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessKhan Tanjeel Ahmed
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantssom allul
 

What's hot (20)

WCS Specialist Maths An Introduction to Matrices PowerPoint
WCS Specialist Maths An Introduction to Matrices PowerPointWCS Specialist Maths An Introduction to Matrices PowerPoint
WCS Specialist Maths An Introduction to Matrices PowerPoint
 
My Lecture Notes from Linear Algebra
My Lecture Notes fromLinear AlgebraMy Lecture Notes fromLinear Algebra
My Lecture Notes from Linear Algebra
 
Solution of linear system of equations
Solution of linear system of equationsSolution of linear system of equations
Solution of linear system of equations
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplication
 
System of equations
System of equationsSystem of equations
System of equations
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
algebra
algebra algebra
algebra
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Linear equations
Linear equationsLinear equations
Linear equations
 
Graphs linear equations and functions
Graphs linear equations and functionsGraphs linear equations and functions
Graphs linear equations and functions
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
 
Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5Integrated Math 2 Section 8-5
Integrated Math 2 Section 8-5
 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebra
 
Lecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airLecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.air
 
Lesson 1 matrix
Lesson 1 matrixLesson 1 matrix
Lesson 1 matrix
 
Matrices
MatricesMatrices
Matrices
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 

Viewers also liked

Webinar gwava webiste
Webinar gwava webisteWebinar gwava webiste
Webinar gwava webisteAlice Vibert
 
Fever - Summary deck
Fever - Summary deckFever - Summary deck
Fever - Summary deckangelcaride
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian InferencePeter Chapman
 
Boots hair care sales solution harsh mansuriya
Boots hair care sales solution harsh mansuriyaBoots hair care sales solution harsh mansuriya
Boots hair care sales solution harsh mansuriyaHarsh Mansuriya
 
Dapan dethi cuoi hoc ky
 Dapan dethi cuoi hoc ky Dapan dethi cuoi hoc ky
Dapan dethi cuoi hoc kyTuan Levan
 
Gapp presentation
Gapp presentationGapp presentation
Gapp presentationWorstell
 
Examining Actors in Privately-led Extension in Developing Countries
Examining Actors in Privately-led Extension in Developing CountriesExamining Actors in Privately-led Extension in Developing Countries
Examining Actors in Privately-led Extension in Developing CountriesKathryn Heinz
 
Bai giang ve thong tin ve tinh
Bai giang ve thong tin ve tinhBai giang ve thong tin ve tinh
Bai giang ve thong tin ve tinhTuan Levan
 
Assignment-1 Harsh Mansuriya-GCET
Assignment-1 Harsh Mansuriya-GCETAssignment-1 Harsh Mansuriya-GCET
Assignment-1 Harsh Mansuriya-GCETHarsh Mansuriya
 
"Just gym food"- App Overview Prepared by Harsh Mansuriya
"Just gym food"- App Overview Prepared by Harsh Mansuriya"Just gym food"- App Overview Prepared by Harsh Mansuriya
"Just gym food"- App Overview Prepared by Harsh MansuriyaHarsh Mansuriya
 

Viewers also liked (14)

Webinar gwava webiste
Webinar gwava webisteWebinar gwava webiste
Webinar gwava webiste
 
Fever - Summary deck
Fever - Summary deckFever - Summary deck
Fever - Summary deck
 
Agro venture
Agro ventureAgro venture
Agro venture
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian Inference
 
Posao u sfi
Posao u sfiPosao u sfi
Posao u sfi
 
Boots hair care sales solution harsh mansuriya
Boots hair care sales solution harsh mansuriyaBoots hair care sales solution harsh mansuriya
Boots hair care sales solution harsh mansuriya
 
Amit_Resume
Amit_ResumeAmit_Resume
Amit_Resume
 
Dapan dethi cuoi hoc ky
 Dapan dethi cuoi hoc ky Dapan dethi cuoi hoc ky
Dapan dethi cuoi hoc ky
 
H g-publications
H g-publicationsH g-publications
H g-publications
 
Gapp presentation
Gapp presentationGapp presentation
Gapp presentation
 
Examining Actors in Privately-led Extension in Developing Countries
Examining Actors in Privately-led Extension in Developing CountriesExamining Actors in Privately-led Extension in Developing Countries
Examining Actors in Privately-led Extension in Developing Countries
 
Bai giang ve thong tin ve tinh
Bai giang ve thong tin ve tinhBai giang ve thong tin ve tinh
Bai giang ve thong tin ve tinh
 
Assignment-1 Harsh Mansuriya-GCET
Assignment-1 Harsh Mansuriya-GCETAssignment-1 Harsh Mansuriya-GCET
Assignment-1 Harsh Mansuriya-GCET
 
"Just gym food"- App Overview Prepared by Harsh Mansuriya
"Just gym food"- App Overview Prepared by Harsh Mansuriya"Just gym food"- App Overview Prepared by Harsh Mansuriya
"Just gym food"- App Overview Prepared by Harsh Mansuriya
 

Similar to Some Multivariate Methods Used by Ecologists

Chapter 3: Linear Systems and Matrices - Part 2/Slides
Chapter 3: Linear Systems and Matrices - Part 2/SlidesChapter 3: Linear Systems and Matrices - Part 2/Slides
Chapter 3: Linear Systems and Matrices - Part 2/SlidesChaimae Baroudi
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...wafahop
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptMichealMicheal11
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.pptSauravDash10
 
Matematicas multivariables de ciencia de los datos
Matematicas multivariables de ciencia de los datosMatematicas multivariables de ciencia de los datos
Matematicas multivariables de ciencia de los datosodus260295
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinantPankaj Das
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfTGBSmile
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equationsMohamed Mohamed El-Sayed
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIADheeraj Kataria
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfRahulUkhande
 
Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...Dimas Ruliandi
 
Dealing with Constraints in Estimation of Distribution Algorithms
Dealing with Constraints in Estimation of Distribution AlgorithmsDealing with Constraints in Estimation of Distribution Algorithms
Dealing with Constraints in Estimation of Distribution AlgorithmsFacultad de Informática UCM
 
Simple Correspondence Analysis
Simple Correspondence AnalysisSimple Correspondence Analysis
Simple Correspondence AnalysisVarun Gangadhar
 
Lecture 02 a algebraic expressions
Lecture 02 a  algebraic expressionsLecture 02 a  algebraic expressions
Lecture 02 a algebraic expressionsHazel Joy Chong
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & AnswersSantoshTamadaddi
 
Solution to linear equhgations
Solution to linear equhgationsSolution to linear equhgations
Solution to linear equhgationsRobin Singh
 

Similar to Some Multivariate Methods Used by Ecologists (20)

Chapter 3: Linear Systems and Matrices - Part 2/Slides
Chapter 3: Linear Systems and Matrices - Part 2/SlidesChapter 3: Linear Systems and Matrices - Part 2/Slides
Chapter 3: Linear Systems and Matrices - Part 2/Slides
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Matematicas multivariables de ciencia de los datos
Matematicas multivariables de ciencia de los datosMatematicas multivariables de ciencia de los datos
Matematicas multivariables de ciencia de los datos
 
Determinants
DeterminantsDeterminants
Determinants
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equations
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Ch9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdfCh9-Gauss_Elimination4.pdf
Ch9-Gauss_Elimination4.pdf
 
Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...Direct solution of sparse network equations by optimally ordered triangular f...
Direct solution of sparse network equations by optimally ordered triangular f...
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 
Dealing with Constraints in Estimation of Distribution Algorithms
Dealing with Constraints in Estimation of Distribution AlgorithmsDealing with Constraints in Estimation of Distribution Algorithms
Dealing with Constraints in Estimation of Distribution Algorithms
 
Simple Correspondence Analysis
Simple Correspondence AnalysisSimple Correspondence Analysis
Simple Correspondence Analysis
 
Lecture 02 a algebraic expressions
Lecture 02 a  algebraic expressionsLecture 02 a  algebraic expressions
Lecture 02 a algebraic expressions
 
Matrices Questions & Answers
Matrices Questions & AnswersMatrices Questions & Answers
Matrices Questions & Answers
 
Solution to linear equhgations
Solution to linear equhgationsSolution to linear equhgations
Solution to linear equhgations
 

Recently uploaded

Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 

Recently uploaded (20)

Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 

Some Multivariate Methods Used by Ecologists

  • 1. Some Multivariate Methods Used by Ecologists Peter Chapman Wokingham U3A 4 October 2012
  • 2. Contents • Assumptions • Introduction • Notation • Refresher on matrices • Eigen vectors and eigen values • Principal component analysis • Principal coordinate analysis • Correspondence analysis • Redundancy analysis and canonical correspondence analysis • R Software
  • 4.  1 2 3 2 I am assuming that you are familiar with the following : A sum of several numbers ............. , 1 to The mean of several numbers 1 1 Variance ( ) , or ( 1) n i i n i i n i i x x x x i n x x n x x n n                  2 ( ) 1 Covariance ( ) ( 1) n i i n i i i x x x x y y n       
  • 6. Before 1980 multivariate research tended to be theoretical. Often this involved working on distribution theory for hypothetical but unrealistic situations. Very rarely did anyone carry out a multivariate analysis. Since 1980 or so, with growth of computing power, people started using multivariate methods. This has led to further development of the old methods, plus introduction of a lot of new methods. Starting in the mid 1980s a lot of biologically trained people who were also computer literate started appearing in the work place. These people, who rarely had any formal training in mathematics or statistics were able to run multivariate software and get results. This led to a lot of nonsense, including some published nonsense.
  • 7. 1 2 3 4 5 6 7 1 3 8 2 0 9 3 13 4 4 5 5 8 19 23 77 7 3 SpeciesSites 1 2 3 4 5 6 7 1 45.8 78.6 2 32.8 98.5 3 56.1 45.0 4 77 78.3 Counts Environmental Sites e.g. Soil, Climate, etc. Real Numbers Typical Example of Ecology Data In pesticide research “site” could refer to different chemicals, or different rates of the same chemical
  • 8.
  • 9. Example data sets: Although this is a talk about methods used in ecology, I shall be using data from other sources. This is because it is easier to understand what is going on if data is more familiar. Also, because during my search of the web I found it quite difficult to find suitable ecological examples. I have also tended to use data with small numbers of dimensions
  • 11. is an matrix : I will call it an n by p matrix - which means n rows and p columns Always in blue, and always a captital if p >1 And using the matric"style"in "Mathtype w hit n pY dimensions in subscripts also represents matrix showing generic cell member, with subscripts but not dimensions....................not used very much ijy   11 12 13 1 21 22 23 2 31 32 33 3 1 2 3 . . . . . . . . . . . . . . . . is another way of representing a matrix . . . . . . . . . . . . . . . . . p p p n n n np y y y y y y y y y y y y y y y y                       If matrix has only one row or only one column i will use lower case blue,e.g. n×1u
  • 13. Generic Matrix Square Matrix Row Matrix Column Matrix Vector 11 12 13 1 21 22 23 2 31 32 33 3 1 2 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p p p ij n n n np y y y y y y y y y y y y y y y y y                            n pY 11 12 13 21 22 23 31 32 33 ij y y y y y y y y y y               3 3Y  11 12 11 3 1. . . . . . ny y y y pY 11 21 31 1 . . . . n y y y y                            n 1Y
  • 14. Matrix Multiplication   3 3 3 2 2 3Q B C 11 12 13 11 12 11 12 13 21 22 23 21 22 21 22 23 31 32 33 31 32 q q q b b c c c q q q b b c c c q q q b b                         11 11 11 12 21 12 11 12 12 22 13 11 13 12 23 33 31` 13 32 23 . q b c b c q b c b c q b c b c q b c b c          32 32 32Q B C 11 12 11 12 11 12 11 11 12 12 21 22 21 22 21 22 21 21 22 21 31 32 31 32 31 32 31 31 32 33 q q b b c c b c b c q q b b c c b c b c q q b b c c b c b c                                              Matrix Addition
  • 15. Diagonal (Square) Matrix 11 22 33 44 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ij a a b a a a                    5×5B Identity Matrix 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1                 5×5I n×n n×n n×n n×nI C C I
  • 16. Norm: Normalisation 1 2 3 . . . . n b b b b                           nb 3 4       4 3       4 3 2 2 2 21 ....... nb b b   b 2 2 3 4 5  b Length or Norm / / 5  b b b b b Normalised /b b b
  • 17. Transpose of a Matrix 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53 54 11 21 31 41 51 12 22 32 42 52 13 23 33 43 53 14 24 34 44 54 the transpose of is y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y                           5×4 5×4 4×5 Y Y Y ( ) = ( ) =            n×p p×q q×p p×n n×p p×q q×m m×q q×p p×n A B B A A B C C B A
  • 18. Scalar Product  1 2 3 1 2 3 . . . . n n b c b b b b c c c c                         1 n n 1b c 1 1 2 2 3 3 .......... n nbc b c b c b c    If b and c are orthogonal then   length of length of cos b c cos cos90 0    1 2 3 1 2 3 . . . . n n b c b b b b b b b b                        1×n n×1b b 1 1 2 2 3 3 .......... n nbb b b b b b c    0  1 n n 1b cso   length of length of cos0 b b   2 length of b 1 if is normalised b
  • 19. Determinant 11 12 11 22 12 21 21 22 b b b b b b b b         B 11 12 13 21 22 23 31 32 33 22 23 21 23 21 221 1 1 2 1 3 11 12 13 32 33 31 33 31 32 ( 1) ( 1) ( 1) b b b b b b b b b b b b b b b b b b b b b b b b                                      B Scalar
  • 20. Rank of a Square Matrix 1 1 1 3 0 2 4 1 3            (-2*Col 1) = col 2 + (3*col3) row 1 = row 2 – row 3 Only two linearly independent (orthogonal) rows so rank = 2. 2 1 4 2 1 4 2 1 4          (-2*col1) = (4*col2) = col 3 row 1 = row 2 = row 3 Rank = 1 Order of a square matrix is number of rows/columns Rank of a square matrix is the number of linearly independent rows/columns A square matrix whose rank is less than its order has a determinant of zero. If a square matrix has a non-zero determinant it has full rank = number of rows or columns A full rank square matrix is called non-singular
  • 21. Inverse of a Square Matrix If is non singular then  -1 -1 B BB B B I is called theinverse of-1 B B 1 1 1 0 3 1           32B 1 3 1 2 5 1         23 23 32 22 32 23 33C C B I B C I 4 15 4 7 25 6         23 23 32 22 32 23 33C C B I B C I C is not unique http://www.mathwords.com/i/inverse_of_a_matrix.htm http://mathworld.wolfram.com/MatrixInverse.html http://www.purplemath.com/modules/mtrxinvr.htm
  • 23. Association Matrices Q-Mode 11 1 1 p n np y y y y            npY  11 12 13 1. . . . . . py y y y  21 22 23 2. . . . . . py y y y Row 1 Row 2         2 2 2 2 12 21 11 21 11 21 11 21 11 21.......a a y y y y y y y y          Euclidean Distance Correlation        1 1. 2 2. 1 12 21 2 2 1 1. 2 2. p j j j j j y y y y a a y y y y                  11 12 13 1 21 22 23 2 31 32 33 3 1 2 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n n n n i n n n j n nn a a a a a a a a a a a a a a a a a                            A
  • 24. 11 1 1 p n np y y y y            npY 11 21 31 1 . . . . n y y y y                           12 22 32 2 . . . . n y y y y                           11 12 13 1 21 22 23 2 31 32 33 3 1 2 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p p p ij p p p pp a a a a a a a a a a a a a a a a a                           nnA Compute 12 21a a Association Matrices R-Mode
  • 25. Summary: Q and R Mode Descriptors Objects Objects e.g. Sites Descriptors e.g. Species n pY n nA p pA R mode association matrix Q mode association matrix Original data matrix
  • 26. Eigen Values and Eigen Vectors
  • 27. Ecological data sets usually include a large number of variables that are associated to one another (e.g. linearly correlated). The basic idea underlying several methods of data analysis is to reduce this large number of inter-correlated variables to a smaller number of composite, but linearly independent variables, each explaining a different fraction of the observed variation. One of the main goals of numerical data analysis is to generate a small number of variables, each explaining a large proportion of the variation, and to ascertain that these new variables explain different aspects of the phenomena under study. Eigen analysis is a key tool in helping us achieve this aim.
  • 28. Eigen Values and Eigenvectors For any square matrix the following relationship always exists Where the colums of are orthonormal  n×n -1 n×n n×n n×n n×n n×n n×n n×n n×n A A U Λ U U Λ U U 11 12 13 21 22 23 31 32 33 . . . . . . . . . . . . . . . . . . . . . ij a a a a a a a a a a                    n×nA 1 2 3 0 0 . . 0 0 . . 0 0 . . . . . . . . . . . .                    n×nΛ 11 12 13 1 21 22 23 2 31 32 33 3 1 2 3 . . . . . . . . . . . . . . n n ij n n n n nn u u u u u u u u u u u u u u u u u                    n×nU Matrix is known as the canonical form ofn×n n×nΛ A Any square matrix Eigenvalues Some may be zero Some may be equal Lagrange multipliers Columns are eigenvectors Columns orthonormal
  • 29. Eigen Values and Eigenvectors We compute eigen values of square matrix by solving n equations: i i iAu u i = 1 to n i i iAu λ u 0 ( )i i A I u 0 n*n matrix n*1 vector n*1 vector 0i A Iare found by solving i a polynomial of degree n iu are then easily found characteristic equation n×nA
  • 31. Singular Value Decomposition (SVD) Any matrix can be factorised as follows: Columns of are the left singular vectors of is a diagonal matrix containing (non -negative) singular value     n×p n×p n×p p×p p×p n×p n×n n×p p×p n×n n×p n×p Y Y V W U Y V W U V Y W s Columns of are the right singular vectors ofp×p n×pU Y Lack of consistency in literature
  • 32. SVD can be applied to any m × n matrix. Eigenvalue decomposition can only be applied to certain classes of square matrices. Nevertheless, the two decompositions are related. Given an SVD of M, as described above, the following holds: )(         p×n n×p p×p p×n n×n n×n n×p p×p p×p p×n n×p p×p p×p p×p p×p Y Y U W V V W U U W W U U Λ U SVD Transpose of SVD    n×p p×n n×n n×p p×n n×n n×n n×n n×nY Y V (W W )V V Λ Valso eigenvectors eigenvalues
  • 33. Principal Component Analysis Karl Pearson, 1901 Harold Hotelling, 1933, 1936
  • 34. 11 21 1 We have a matrix with variance-covariance matrix We transform as follows Now consider the first column of : . or . . . n z z z               n×p p p n×p n×p n×p p×p n×p n×1 n×p n×1 Y S Y Z Y U Z z Y u 11 12 1 11 11 11 12 21 1 1 21 22 2 21 21 11 22 21 2 1 1 1 1 11 2 21 . . ..... . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... p p p p p p n np p n n y y y u y u y u y u y y y u y u y u y u y y u y u y u y                                                      1np pu                      
  • 35.     2 1 . 1 2 1 11 2 21 1 .1 11 .2 21 . 1 1 2 1 .1 11 2 .2 21 21 1 1 2 2 1 .1 11 1 .1 2 .2 11 21 1 ( ) 1 ..... ( ..... ) 1 ( ) ( ) ..... ( ) 1 ( ) ( )( ) .............. n i p n i i ip p p p n i i ip ip p i i i Var z z n y u y u y u y u y u y u n y y u y y u u y y u n y y u y y y y u u n                             n×1z 1 .......... and so on n       1×p p×p p×1u S u
  • 36. 1 1 Now we need to find that maximises var[ ]subject to =1 Let be a Lagrange multiplier Then maximise = ( -1)       p×1 p×1 1×p p×1 1×p p×p p×1 1×p p×1 u z u u u S u u u 1 1 1 0 ( ) 0 We find first by solving the polynomial          p×p p×1 p×1 p×p p×p p×1 p S u (1)u u (2S I S ) 1 1 1 1 0 (degree p) We then substitute into to find From we can show that var[ ] , subject to =1 is the first eig ( e 1)          ×p p×p p×1 1×p p×p p×1 p×1 1×p p×1 I u u S u z u (2) u n value of and is the first eigen vectorp×p p×1S u
  • 37. To compute 2nd,3rd, and higher eigen values and eigen vectors is an identical process Additional constraints are needed Notably ( ) = 0 equivalent to Cov( ) = 0 where and are d , i 1×p p×1 p×1 p×1 p×1 p×1 u v u v u v fferent eigen vectors
  • 38. Burglary Violence Robbery Bath 3 5.7 0.4 Birmingham 7.2 11.6 4.1 Brighton 4.5 7.6 1.5 Bristol 9.8 10.4 2.9 Cambridge 7.6 7.6 1.6 Canterbury 2.7 6.3 0.5 Cardiff 6 8.6 1.1 Coventry 7.4 11.2 2.2 Lancaster 2.5 7.7 0.4 Leeds 12 7.5 1.7 Leicester 8.6 11.7 2.6 Liverpool 9.1 7.7 2.3 Manchester 13.2 11.5 5.1 Newcastle 5.2 8.6 0.9 Nottingham 11.7 15.1 4.3 Oxford 5.2 8.3 1.7 Sheffield 6.9 7.5 1.2 Southampton 4.9 14.6 1.8 Swansea 4.7 7.3 0.4 York 4.4 6.7 0.5 Bournemouth 5.2 12.9 0.9 Plymouth 4 10.7 0.7 Norwich 3.9 8.9 1.1 Lincoln 6 9.8 0.9 Objects Source: http://www.thecompleteuniversityguide.co.uk/preparing-to-go/staying-safe-and-secure/how-safe-is-your-city/ Descriptors
  • 40. 3.0 5.7 6.5 9.4 3.49 3.70 7.2 11.6 6.5 9.4 0.71 2.20 4.5 7.6. . . 1.99. 1.80 . . . . . . = . . . . . . . . . . . . . . . . . . 6.0 9.8 6.5 9.4 0.49 0.40                                                          24×2 24×2 24×2 24×2Y Y Y Y-                        Burglary Violence Let’s start with two variables
  • 41. 8.799 3.0361 3.036 6.5051n               24×2 24×2 24×2 24×2 24×2S Y Y Y - Y R-Mode 08.799 3.036 0 1 2 03.036 6.505 k k k k or                  24×2 24×2S I Eigen Values = 10.898 = 4.407 1 2 -0.8226264 0.5685823 -0.5685823 -0.8226264        2×2UEigen Vectors Variance-covariance matrix
  • 42. 3.49 3.70 0.71 2.20 1.99. 1.80 . . -0.8226264 0.5685823 . . -0.5685823 -0.8226264 . . . . 0.49 0 ( . ) 40                                 24×2 24×2 24×2 2×2Z Y Y U 1 0.8226264 0.5685823z Burglary Violence     Accounting for 10.898*100/(10.898+4.407) = 71.2 % of variance 2 0.5685823 0.8226264z Burglary Violence    Accounting for 28.8% of Variance
  • 43. Violence 2 0.5685823 0.8226264Z Burglary Violence    Plots of 1st and 2nd Components Robbery
  • 44. Violence Plots of 1st and 2nd Components Robbery 1Z 2Z  2 2 2 2 1 2 2 2 2 2 1 2 1 1 1 1 1 2 1 1 1 1 variance( ) variance( ) variance( ) variance( ) n n n n Robbery Violence Z Z Robbery Violence Z Z n n n n Robbery Violence Z Z              The PCA rotation maximises variance of Z1 relative to Z2 It also maximises relative to 1 2
  • 45. Now three variables 2 3 3.0 5.7 0.4 6.5 9.4 1.7 3.49 3.70 1 7.2 11.6 4.1 6.5 9.4 1.7 4.5 7.6. 1.5 6.5 9.4 1.7 . . . . . . = . . . . . . . . . . . . . . . . . . 6.0 9.8 0.9 6.5 9.4 1.7                                                       4× 24×3 24×3 24×3Y Y Y Y- .3 0.71 2.20 2.4 1.99. 1.80 0.2 . . . . . . . . . . . . 0.49 0.40 0.8                            Burglary Violence Robbery
  • 46. 8.799 3.036 3.121 1 3.036 6.505 2.005 1 3.121 2.005 1.689 n                    24×3 24×3 24×3 24×3 24×3S Y Y Y Y 8.799 3.036 3.121 0 0 3.036 6.505 2.005 0 0 0 1,2, 3 3.121 2.005 1.689 0 0 k k k k k                            24×3 24×3S I Eigen Values = 12.205 = 4.411 = 0.378 0.7788 0.5562 0.2900 0.5318 0.8307 0.1648 0.3325 0.0259 0.9427             3×3UEigen Vectors 1 2 3
  • 47. 3.49 3.70 1.3 0.71 2.20 2.4 1.99. 1.80 0.2 0.7788 0.5562 0.2900 . . . 0.5318 0.8307 0.1648 . . . 0.3325 0.0259 0.9427 . . . . . . 0.49 0.40 0. ( ) 8                                       24×3 24×3 24×3 3×3Z Y Y U
  • 48. 1 0.7788 0.5318 0.3325z Burglary Violence Robbery      Accounting for 12.205*100/(12.205+4.411+0.378) = 71.8 % of variance 2 0.5562 0.8307 0.0259z Burglary Violence Robbery      Accounting for 26.0% of Variance 3 0.2900 0.1648 0.9427z Burglary Violence Robbery       Accounting for 2.2% of Variance
  • 49. -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 8 10 High Crime High Burglary/ Lower Violence Low Crime High Violence/ Lower Burglary Bath Canterbury Lancaster Leeds Liverpool Nottingham Manchester Bournemouth Southampton 2Z 1Z
  • 50. Violence 2 0.5685823 0.8226264Z Burglary Violence    Plots of 1st and 2nd Components Robbery
  • 51. Bi-Plot Ordination in 2 dimensions Original 3-dimensions Projection of 3 dimensions into 2 dimensions
  • 53.
  • 54. Both the direction and length of the vectors can be interpreted. So, for these data, where the vectors represent judges, and the points cars, a group of vectors pointing in the same direction correspond to a group of judges who have the same preference opinions about the automobiles
  • 55. In a biplot, the length of the lines approximates the variances of the variables. The longer the line, the higher is the variance. The angle between the lines, or, to be more precise, the cosine of the angle between the lines, approximates the correlation between the variables they represent. The closer the angle is to 90, or 270 degrees, the smaller the correlation. An angle of 0 or 180 degrees reflects a correlation of 1 or −1, respectively. Taken from The Stata Journal (2005) 5, Number 2, pp. 208–223 Data inspection using biplots. Ulrich Kohler, Wissenschaftszentrum Berlin kohler@wz-berlin.de,Magdalena Luniak, Wissenschaftszentrum Berlin luniak@wz-berlin.de http://onlinelibrary.wiley.com/doi/10.1002/9780470238004.app2/pdf
  • 56. Hardcover: 476 pages Publisher: Wiley-Blackwell (24 Dec 2010) Language: English ISBN-10: 0470012552 ISBN-13: 978-0470012550
  • 57. Bi-Plot Ordination in 2 dimensions Original 3-dimensions Projection of 3 dimensions into 2 dimensions
  • 58. US Agricultural Exports: 1990 to 2010 Country Value (million dollars) 1990 1995 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Canada 4,214 5,796 7,060 7,643 8,124 8,662 9,315 9,733 10,618 11,951 14,062 16,253 15,725 16,856 Mexico 2,560 3,522 5,625 6,410 7,407 7,238 7,891 8,510 9,429 10,881 12,692 15,508 12,932 14,575 Caribbean 1,015 1,281 1,493 1,408 1,400 1,518 1,590 1,850 1,913 2,114 2,575 3,592 3,082 3,192 Central America 483 871 1,100 1,121 1,234 1,252 1,338 1,429 1,589 1,832 2,363 3,106 2,553 2,923 Brazil 177 522 212 264 221 329 384 279 228 287 411 677 386 575 Colombia 120 464 441 417 453 521 513 594 680 868 1,223 1,675 907 832 Japan 8,142 11,149 8,893 9,292 8,884 8,384 8,906 8,147 7,931 8,390 10,159 13,223 11,072 11,819 Korea, South 2,650 3,742 2,449 2,546 2,588 2,673 2,886 2,489 2,233 2,851 3,528 5,561 3,917 5,308 Taiwan 3 1,663 2,591 1,945 1,996 2,010 1,966 2,025 2,065 2,301 2,477 3,097 3,419 2,988 3,190 China 3 4 818 2,633 854 1,716 1,939 2,068 5,017 5,542 5,233 6,711 8,314 12,115 13,109 17,522 Hong Kong 702 1,503 1,209 1,264 1,228 1,091 1,114 913 872 977 1,168 1,715 2,008 2,808 India 108 194 145 210 353 274 317 257 295 365 475 489 691 755 Indonesia 275 816 531 668 907 810 996 925 958 1,102 1,542 2,195 1,796 2,246 Philippines 381 765 783 901 794 776 626 695 798 888 1,112 1,734 1,294 1,634 Thailand 275 590 409 493 570 611 684 686 675 703 885 1,063 1,046 1,152 Australia 226 339 320 317 292 339 412 410 463 520 662 826 840 928 European Union 5 7,474 8,789 6,858 6,515 6,676 6,398 6,736 6,953 7,052 7,408 8,754 10,080 7,445 8,894 USSR 2,248 1,233 839 670 1,060 695 740 1,112 1,227 1,025 1,665 2,304 1,736 1,454 Saudi Arabia 482 517 447 477 429 343 332 364 350 426 710 890 694 840 Turkey 226 516 502 658 571 675 921 944 1,062 1,030 1,496 1,696 1,499 2,112 Egypt 687 1,309 966 1,050 1,022 863 967 935 819 1,022 1,801 2,050 1,354 2,092 South Africa 81 267 173 134 99 148 149 169 146 126 291 393 162 292 Oceania 343 506 486 490 473 512 621 601 742 760 963 1,189 1,282 1,394
  • 59. (1) 55418724 (2) 26490533 (3) 13560738 (4) 8083174 (5) 6362753 (6) 3097378.91 (7) 1717442 (8) 1214768 (9) 344449 (10) 137884 (11) 67213 (12) 49836 (13) 11222 (14) 6340 Eigenvalues
  • 60.
  • 62. Start with a matrix with n rows (objects) and p columns (descriptors) Compute the Euclidean distance (between rows) matrix [ ] Transform into new matrix = [a ], such that : hi hi d n×p n×n n×n n×n Y D D A 21 = - 2 Then compute centred matrix [ ]: . . .. Finally, scale eigen vectors so that If eigen vectors are arranged as columns. Rows of the hi hi hi hi hi h i k a d a a a a         n×p k k Δ u u resulting table are the coordinates of the objects in the space of principal coordinates.
  • 63. Oxford Newcastle Plymouth Dover Glasgow Bristol Oxford 0 258 187 144 363 72 Newcastle 258 0 408 368 145 297 Plymouth 187 408 0 287 484 118 Dover 144 368 287 0 498 194 Glasgow 363 145 484 498 0 372 Bristol 72 297 118 194 372 0 Distances Between British Cities Q-Mode
  • 64. 0 258 187 144 363 72 258 0 408 368 145 297 187 408 0 287 484 118 144 144 287 0 498 194 363 363 484 498 0 372 72 72 118 194 372 0                     6×6D [,1] [,2] [,3] [,4] [,5] [,6] [1,] 0.1473475 0.1128741 0.04538458 0.4082483 0.81339727 0.3677045 [2,] -0.4335791 0.2304177 0.65857972 0.4082483 -0.30873244 0.2514103 [3,] 0.3970476 -0.6344915 0.35761362 0.4082483 -0.03729046 -0.3792480 [4,] 0.3754683 0.6761005 -0.15553511 0.4082483 -0.16408006 -0.4291055 [5,] -0.6752523 -0.1782828 -0.42405981 0.4082483 0.13883744 -0.3827275 [6,] 0.1889680 -0.2066181 -0.48198299 0.4082483 -0.44213175 0.5719662 Distances computed from Google maps – road distances are not straight – so ordination will have 3 or more dimensions but should be dominated by 2-dimensions 1.931479e+05 = 19314.97 4.733022e+04 = 4733.022 3.820062e+03 = 382.0062 4.820322e-11 -4.952561e+02 -6.316731e+03 Eigenvalues Can be ignored Eigen vectors
  • 65. Ordination Plot: First Two Eigen Vectors
  • 66. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Angouleme 4.2 4.9 7.9 10.4 13.6 17.0 18.7 18.4 16.1 11.7 7.6 4.9 Angers 4.6 5.4 8.9 11.3 14.5 17.2 19.5 19.4 16.9 12.5 8.1 5.3 Besancon 1.1 2.2 6.4 9.7 13.6 16.9 18.7 18.3 15.5 10.4 5.7 2.0 Biarritz 7.6 8.0 10.8 12.0 14.7 17.8 19.7 19.9 18.5 14.8 10.9 8.2 Bordeaux 5.6 6.6 10.3 12.8 15.8 19.3 20.9 21.0 18.6 13.8 9.1 6.2 Brest 6.1 5.8 7.8 9.2 11.6 14.4 15.6 16.0 14.7 12.0 9.0 7.0 Cler-Ferr 2.6 3.7 7.5 10.3 13.8 17.3 19.4 19.1 16.2 11.2 6.6 3.6 Dijon 1.3 2.6 6.9 10.4 14.3 17.7 19.6 19.0 15.9 10.5 5.7 2.1 Grenoble 1.5 3.2 7.7 10.6 14.5 17.8 20.1 19.5 16.7 11.4 6.5 2.3 Lille 2.4 2.9 6.0 8.9 12.4 15.3 17.1 17.1 14.7 10.4 6.1 3.5 Limoges 3.1 3.9 7.4 9.9 13.3 16.8 18.4 17.8 15.3 10.7 6.7 3.8 Lyon 2.1 3.3 7.7 10.9 14.9 18.5 20.7 20.1 16.9 11.4 6.7 3.1 Marseille 5.5 6.6 10.0 13.0 16.8 20.8 23.3 22.8 19.9 15.0 10.2 6.9 Montpellier 5.6 6.7 9.9 12.8 16.2 20.1 22.7 22.3 19.3 14.6 10.0 6.5 Nancy 0.8 1.6 5.5 9.2 13.3 16.5 18.3 17.7 14.7 9.4 5.2 1.8 Nantes 5.0 5 3 8.4 10.8 13.9 17.2 18.8 18.6 16.4 12.2 8.2 5.5 Nice 7.5 8.5 10.8 13.3 16.7 20.1 22.7 22.5 20.3 16.0 11.5 8.2 Nimes 5.7 6.8 10.1 13.0 16.6 20.8 23.6 22.9 19.7 14.6 9.8 6.5 Orleans 2.7 3.6 6.9 9.8 13.4 16.6 18.4 18.2 15.6 10.9 6.6 3.6 Paris 3.4 4.1 7.6 10.7 14.3 17.5 19.1 18.7 16.0 11.4 7.1 4.3 Perpignan 7.5 8.4 11.3 13.9 17.1 21.1 23.8 23.3 20.5 15.9 11.5 8.6 Reims 1.9 2.8 6.2 9.4 13.3 16.4 18.3 17.9 15.1 10.3 6.1 3.0 Rennes 4.8 5.3 7.9 10.1 13.1 16.2 17.9 17.8 15.7 11.6 7.8 5.4 Rouen 3.4 3.9 6.8 9.5 12.9 15.7 17.6 17.2 15.0 11.0 6.8 4.3 St-Quent 2.0 2.9 6.3 9.2 12.7 15.6 17.4 17.4 15.0 10.5 6.1 3.1 Strasbourg 0.4 1.5 5.6 9.8 14.0 17.2 19.0 18.3 15.1 9.5 4.9 1.3 Toulon 8.6 9.1 11.2 13.4 16.6 20.2 22.6 22.4 20.5 16.5 12.6 9.7 Toulouse 4.7 5.6 9.2 11.6 14.9 18.7 20.9 20.9 18.3 13.3 8.6 5.5 Tours 3.5 4.4 7.7 10.6 13.9 17.4 19.1 18.7 16.2 11.7 7.2 4.3 Vichy 2.4 3.4 7.1 9.9 13.6 17.1 19.3 18.8 16.0 11.0 6.6 3.4 Monthly Average Temperatures: 30 French Cities
  • 67.
  • 69. Mediterranean Coast Brittany Coast Southwest South and West of Paris North and East of Paris – Belgian Border South East of Paris
  • 70. North and East of Paris – Belgian Border Brittany Coast Mediterranean Coast South East of Paris South and West of Paris
  • 71. Correspondence Analysis Many people stretching back to 1933
  • 72. 11 12 13 21 22 23 31 32 33 41 42 43 O O O O O O O O O O O O               11 12 13 21 22 23 31 32 33 41 42 43 E E E E E E E E E E E E             Matrix of observed counts Matrix of expectations ij ij ijij j i ji ij ij i jij ij ij i j i j i j O O OO E O O O O                                Under hypothesis that row and column are independent 2 2 2 ( 1) ( 1) 3 2 ( )ij ij n p i j ij O E E         and follows a chi-squared distribution
  • 73. 10 50 90 20 60 100 30 70 110 40 80 120             19.23 50.00 80.77 23.08 60.00 96.92 26.92 70.00 113.08 30.77 80.00 129.23 X-squared = 9.8576, df = 3*2=6, p-value = 0.1308 non-significant rows and columns independent 10 50 120 20 60 110 30 70 100 40 80 90             12.82 33.33 53.85 14.10 36.67 59.23 15.38 40.00 64.62 16.67 43.33 70.00 X-squared = 36.7282, df = 3*26, p-value = 1.989e-06 significant result Rows, columns not independent ijE ijO
  • 74. Marsh Lotus Open Swamp Swamp Water Purple swamphen 798 78 25 Yellow-vented bulbul 690 101 129 Pink-necked green pigeon 614 150 90 Peaceful dove 462 101 84 Spotted dove 386 56 67 Pacific swallow 208 39 85 White-breasted waterhen 200 38 25 Baya weaver 173 7 52 Common myna 166 17 51 Purple heron 164 52 22 Yellow bittern 162 42 11 Jungle myna 154 15 117 White-throated kingfisher 128 51 42 Scaly-breasted munia 125 36 49 Relative abundance of bird species recorded at three habitats of Paya IndahWetland Reserve, Peninsular Malaysia. Chi-squared = 505.9142, df = 13*2=26, p-value < 2.2e-16 International Journal of Zoology Volume 2011, Article ID 758573, 17 pages doi:10.1155/2011/758573 Bird Species Abundance and Their Correlationship with Microclimate and Habitat Variables at Natural Wetland Reserve, Peninsular Malaysia
  • 75. 2 2 ( 1) ( 1) ( ) Earlier we saw that ij ij n p i j ij O E E        ( )1 Now we start with ij ij ij ij ij i j O E O E                 r×cQ :Apply SVD to r×c r×c r×r r×c c×cQ Q V W U orthonormal orthonormal diagonal c×c We know from an earlier discussion that are the eigen vectors of are the eigen vectors of Diagonal elements of W are square roots of eigenvalues, ii iw    c×c c×r r×c r×r r×c c×r U Q Q V Q Q We will also need : [ ] ij ij ij i j O p O             r×cP
  • 76. Matrices and can be used to plot the positions of the row and column vectors in two seperate scatter diagrams c×c r×rU V Eigen Values (1) 2.506575e-01 (2) 1.436226e-01 (3) 2.032566e-17
  • 77. For joint plots a number of different scalings have been proposed : For example: Where is a diagonal matrix in which the diagonals are the reciprocals of the square roots of the  -1/2 c×c c×c c×c -1/2 c×c X D U D column totals of And Where is a diagonal matrix in which the diagonals are the reciprocals of row totals of And Finally, plot column1of against c r r   r×c -1 r×c r×r r×c c×c -1 × r×c c×c c×c c×c r×c P F D P X D P G X W F olumn2 of :on same graph plot column1of against column 2 of r×c c×c c×c F G G
  • 78.
  • 79.
  • 80. H+ H- A+ A- "+" "-" GD 1 Manchester City 55 12 38 17 93 29 64 2 Manchester United 52 19 37 14 89 33 56 3 Arsenal 39 17 35 32 74 49 25 4 Tottenham Hotspur 39 17 27 24 66 41 25 5 Newcastle United 29 17 27 34 56 51 5 6 Chelsea 41 24 24 22 65 46 19 7 Everton 28 15 22 25 50 40 10 8 Liverpool 24 16 23 24 47 40 7 9 Fulham 36 26 12 25 48 51 -3 10 West Bromwich Albion 21 22 24 30 45 52 -7 11 Swansea City 27 18 17 33 44 51 -7 12 Norwich City 28 30 24 36 52 66 -14 13 Sunderland 26 17 19 29 45 46 -1 14 Stoke City 25 20 11 33 36 53 -17 15 Wigan Athletic 22 27 20 35 42 62 -20 16 Aston Villa 20 25 17 28 37 53 -16 17 Queens Park Rangers 24 25 19 41 43 66 -23 18 Bolton Wanderers 23 39 23 38 46 77 -31 19 Blackburn Rovers 26 33 22 45 48 78 -30 20 Wolverhampton Wndrs 19 43 21 39 40 82 -42 Premier League Final Table 2011-2012 Data used
  • 81. Principal inertias (eigenvalues): 1 2 3 Value 0.053538 0.008691 0.00678 Percentage 77.58% 12.59% 9.82%
  • 82. Redundancy Analysis and Canonical Correspondence Analysis In this context canonical means that we have two matrices or, alternatively, two sets of descriptors for one set of objects Rao, 1964 Ter Braak, 1986
  • 83. 1 2 3 4 5 6 7 1 3 8 2 0 9 3 13 4 4 5 5 8 19 23 77 7 3 SpeciesSites 1 2 3 4 5 6 7 1 45.8 78.6 2 32.8 98.5 3 56.1 45.0 4 77 78.3 Counts Environmental Sites e.g. Soil, Climate, etc. Real Numbers Typical Example of Ecology Data
  • 84. Indirect Comparison: The matrix of explanatory variables, , does not intervene in the in the calculation that produces the ordination of . Correlation or regression of the ordination vectors on are carried out first and the ordination is carried out on a modified . In a direct comparison the matrix X intervenes in the calculation , forcing the ordination vectors, , to be maximally related to combinations of the columns of . In mathematics more generally, a canonical form is the simplest and most comprehensive form to which certain functions , relations, or expressions can be reduced without loss of generality. For example, the canonical form of a covariance matrix is its matrix of eigenvalues n×pY n×pX n×pXn×pY n×pX n×pY n×pY
  • 85. n×pY n×pY n×mXn×1y n×mX Simple ordination Principal Components Correspondence Analysis Ordination of under constrained Multiple regression n×1y n×pX Ordination of under constrained Redundancy Analysis Canonical Correspondence Analysis n×pXn×pY
  • 86. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , , , , , , , , , , , , , , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p m p p p p p m p m p m m m m y y y y y x y x y y y y y x y x x y x y x x x x x y x y x x x x S S S S S S S S S S S S S S S S                 Y+XS                               YY YX YY YX XY XX YX XX S S S S S S S S Variance covariance matrix of n×pY Variance covariance matrix of n×pX Covariances amongst descriptors of X and Y Covariances amongst descriptors of X and Y
  • 87.     In principal component analysis the eigen analysis equation was : In redundancy analysis it is 0 : 0 k k       YY k -1 T YX XX YX k S I u S S S I u
  • 88. An Aside on Multiple Linear Regression  2 0 1 1 2 2 .... ,y b b x b x e e N       1 0 1 11 2 12 2 0 1 21 2 22 3 0 1 31 2 32 0 1 1 2 2 ....... ....... ....... . . .......n n n y b b x b x y b b x b x y b b x b x y b b x b x                 1 11 12 2 21 22 0 3 31 32 1 3 1 2 1 . . 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . 1 . .n n n y x x y x x b y x x b b y x x                                                     ˆ ˆ ˆ ˆ ˆ           -1 -1 -1 -1 y = Xb X y = (X X)b (X X) X y = (X X) (X X)b (X X) X y = Ib (X X) X y = bLeast squares solution Coefficients to be estimated Data
  • 89. The Algebra of Redundancy Analysis Centre both response matrix and matrix of independent variables by subtracting the column means from the column values / elements For each column in compute , giving Fo . ˆ ˆ r     -1 -1 Y X Y b (X X) X y B (X X) X Y ˆ ˆ ˆ ˆ ˆˆ , ˆ ˆ each column of compute fitted values giving = [1/ (1 )] = [1/ (1 )] [1/ (1 )] = [1/ (1 ) = ] n n n n                     -1 XX Y Y -1 -1 -1 -1 YX Y y Xb Y XB X(X X) X Y S X X S Y Y Y X(X X) X X(X X) X Y Y X(X X) X Y S S    ˆ ˆSo, perform redundancy analysis by solving : 0k k      XX YX -1 k YX XX YX kY Y S S I u S S S I u
  • 90. Burglary Violence Robbery Pop Density Bath 3 5.7 0.4 5 Birmingham 7.2 11.6 4.1 39 Brighton 4.5 7.6 1.5 31 Bristol 9.8 10.4 2.9 40 Cambridge 7.6 7.6 1.6 31 Canterbury 2.7 6.3 0.5 5 Cardiff 6 8.6 1.1 24 Coventry 7.4 11.2 2.2 32 Lancaster 2.5 7.7 0.4 2 Leeds 12 7.5 1.7 14 Leicester 8.6 11.7 2.6 42 Liverpool 9.1 7.7 2.3 40 Manchester 13.2 11.5 5.1 43 Newcastle 5.2 8.6 0.9 26 Nottingham 11.7 15.1 4.3 41 Oxford 5.2 8.3 1.7 34 Sheffield 6.9 7.5 1.2 15 Southampton 4.9 14.6 1.8 48 Swansea 4.7 7.3 0.4 6 York 4.4 6.7 0.5 7 Bournemouth 5.2 12.9 0.9 36 Plymouth 4 10.7 0.7 32 Norwich 3.9 8.9 1.1 37 Lincoln 6 9.8 0.9 25 Objects Source: http://www.thecompleteuniversityguide.co.uk/preparing-to-go/staying-safe-and-secure/how-safe-is-your-city/ Descriptors http://www.guardian.co.uk/news/datablog/interactive/2011/jun/30/uk-population-mapped
  • 91. Population density /ha Population density /ha Population density /ha Burglary Violence Robbery
  • 92. Eigen values (1) 6.612048e+00 (2) 2.664535e-15 (3) -1.110223e-16
  • 93. 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . . . . . . . . . ˆ ˆ ˆ n n n x b x b x b x b x b x b x b x b x b x b x b x b                         11 12 13 21 22 23 31 32 33 1 2 3 . . . . . . . . . n n n y y y y y y y y y y y y                         1 1 1 2 1 311 12 13 1 21 22 23 2 2 1 2 2 2 3 31 32 33 3 3 1 3 2 3 3 1 2 3 1 2 3 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. . . . . . . . . . . . . . . . . . ˆ ˆ ˆn n n n n n n x b x b x by y y x y y y x x b x b x b y y y x x b x b x b b b b y y y x x b x b x b                                                           Regression model fitted Matrix used in PCA, Rank = 3 Matrix used in Redundancy Analysis, Rank = 1
  • 94. Eigen Values: (1) 6.706016e+00 (2) 7.439234e-02 (3) 6.071489e-18 Second attempt: fitting a quadratic instead of a straight line
  • 95. 11 12 13 1 2 321 22 23 11 21 3131 32 33 12 22 3241 42 43 11 21 31 12 22 32 1 1 0 1 0 ˆ ˆ ˆ1 1 0 0 1 ˆ ˆ ˆ1 0 1 1 0 ˆ ˆ ˆ1 0 1 0 1 ˆ ˆ ˆ. . . . . . . . ˆ ˆ ˆ. . . . . . . . . . . . . . . . ˆ y y y y y y y y y y y y                                                                    1 11 11 2 21 21 3 31 31 1 11 12 2 21 22 3 31 32 1 12 11 2 22 21 3 32 31 1 12 12 2 22 22 3 32 32 ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ . . . . . . . . .                                                                                 1st replicate of a 2 by 2 factorial Used in redundancy analysis