SlideShare a Scribd company logo
1 of 61
Download to read offline
Mechanics of structuresMechanics of structures
Stresses in 2D plane,
ColumnsColumns
Dr. Rajesh K. N.
Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKN
1
Module IV
Transformation of stresses and strains (two dimensional case only)
Module IV
Transformation of stresses and strains (two-dimensional case only) -
equations of transformation - principal stresses - mohr's circles of
stress and strain - strain rosettes - compound stresses - superposition
d it li it tiand its limitations –
Eccentrically loaded members - columns - theory of columns -
buckling theory - Euler's formula - effect of end conditions -
eccentric loads and secant formula
Dept. of CE, GCE Kannur Dr.RajeshKN
2
Analysis of plane stress and plane strainy p p
cosnA A θ=
P
L
AA
θ
P
A
σ = cos
n
n
A
A
θ
=
AAn
A
2
2cos cos
cosn
P P
A A
θ θ
σ σ θ= = =
cosP θ
θ
nA A
sin sin cos sin2P Pθ θ θ σ θ
τ
P
θ
sinP θAn
θ
Dept. of CE, GCE Kannur Dr.RajeshKN
3
2
n
nA A
τ = = =
2 2
σ σ τ+
( ) ( )
2 22
cos sin cos
R n nσ σ τ
σ θ σ θ θ
= +
= +
Resultant stress on inclined plane
2 2
cos cos sin
cos
σ θ θ θ
σ θ
= +
=
0 2 cos sin 0nd
d
σ
σ θ θ
θ
= ⇒ =For maximum normal stress,
0
sin2 0 0σ θ θ= ⇒ =
0
When 0
P
θ σ σ= = =
0 2 0ndτ
θFor maximum shear stress
,maxWhen 0 , n
A
θ σ σ= = =
0 0
0 cos2 0
2 90 45
n
d
σ θ
θ
θ θ
= ⇒ =
⇒ = ⇒ =
For maximum shear stress,
Dept. of CE, GCE Kannur Dr.RajeshKN
4
0
,maxWhen 45 ,
2 2
n
P
A
σ
θ τ= = =
nσ σ
nτ σ
Rσ 2 2
n nσ τ+
σ
,maxnτ
σ
Dept. of CE, GCE Kannur Dr.RajeshKN
5
Element under pure shear
τ
B
θ σ
nτ
τ
θ
τ
θ nσ
ττ θ
cos sinBC AC ABσ τ θ τ θ= − −
A C
ττ
. .cos . .sin
sin cos cos sin
sin2
n
n
BC AC ABσ τ θ τ θ
σ τ θ θ τ θ θ
σ τ θ
= − −
= − −
. . .sin . .cosn BC AC AB
AC AB
τ τ θ τ θ= − +
sin2nσ τ θ= −
2 2
. .sin . .cos
cos sin
n
n
AC AB
BC BC
τ τ θ τ θ
τ τ θ τ θ
= − +
= −
Dept. of CE, GCE Kannur Dr.RajeshKN
6
cos2
n
nτ τ θ=
Element under biaxial normal stress
B
nτ
yσ
θ nσ
n
σ
xσθxσ
A C
xσ
yσ
sin cosBC AB ACτ σ θ σ θ= −cos sinBC AB ACσ σ θ σ θ= +
yσ
. . .sin . .cos
. .sin . .cos
n x y
n x y
BC AB AC
AB AC
BC BC
τ σ θ σ θ
τ σ θ σ θ
=
= −
. .cos . .sin
. .cos . .sin
n x y
n x y
BC AB AC
AB AC
BC BC
σ σ θ σ θ
σ σ θ σ θ
= +
= +
( )
cos sin sin cos
sin2
n x y
BC BC
τ σ θ θ σ θ θ
θ
= −2 2
cos sin
y
n x y
BC BC
σ σ θ σ θ= +
Dept. of CE, GCE Kannur Dr.RajeshKN
7
( ) 2
n x yτ σ σ= −
Element under a general two-dimensional stress
xyτ
xyτ
B
nτ
τ
σ
θ θ nσ
xσ
xyτ
xσ
xyτ
xyτ
A C
x
xyτ
. .cos . .sin . .cos . .sinn x y xy xyBC AB AC AC ABσ σ θ σ θ τ θ τ θ= + − −
yσ
xy
yσ
. .cos . .sin . .cos . .sinn x y xy xy
AB AC AC AB
BC BC BC BC
σ σ θ σ θ τ θ τ θ= + − −
2 2
cos sin sin2n x y xyσ σ θ σ θ τ θ= + −
+
Dept. of CE, GCE Kannur Dr.RajeshKN
8
cos2 sin2
2 2
x y x y
n xy
σ σ σ σ
σ θ τ θ
+ −
= + −
i iBC AB AC AB ACθ θ θ θ. . .sin . .cos . .cos . .sin
sin cos cos sin
n x y xy xyBC AB AC AB AC
AB AC AB AC
τ σ θ σ θ τ θ τ θ
τ σ θ σ θ τ θ τ θ
= − + −
= − + −
2 2
. .sin . .cos . .cos . .sin
cos sin sin cos cos sin
n x y xy xy
n x y xy xy
BC BC BC BC
τ σ θ σ θ τ θ τ θ
τ σ θ θ σ θ θ τ θ τ θ
= − + −
= − + −n x y xy xy
sin2 cos2
2
x y
n xy
σ σ
τ θ τ θ
−
= +
2
n xy
Note: In the above derivations,
Sign convention for θ: Anticlockwise angle is +ve.g g
Sign convention for shear stress: With respect to a point inside
the element, clockwise shear stress is +ve.
Dept. of CE, GCE Kannur Dr.RajeshKN
9
the element, clockwise shear stress is +ve.
σ σ σ σ+ −
cos2 sin2
2 2
x y x y
n xy
σ σ σ σ
σ θ τ θ
+
= + −
σ σ−
Th b ti i th l d t ti l ( h ) t
sin2 cos2
2
x y
n xy
σ σ
τ θ τ θ= +
The above equations give the normal and tangential (shear) stresses on
any plane inclined at θ with the vertical.
To find maximum/minimum value of normal stress
σ∂
( )0nσ
θ
∂
=
∂
( )sin2 2 cos2 0x y xyσ σ θ τ θ⇒ − − − =
2
tan2 xyτ
θ
−
⇒
( )
tan2 y
x y
θ
σ σ
⇒ =
−
Dept. of CE, GCE Kannur Dr.RajeshKN
10
2
σ σ−⎛ ⎞ sin2 xyτ
θ
−
=
xyτ−
( )
2
2
x y
xy
σ σ
τ
⎛ ⎞
+⎜ ⎟
⎝ ⎠
2θ
2
2
sin2
2
y
x y
xy
θ
σ σ
τ
=
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
( )
2
x yσ σ−
2
cos2 x yσ σ
θ
−
=
2
2
2
2
x y
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
cos2 sin2
2 2
x y x y
n xy
σ σ σ σ
σ θ τ θ
+ −
= + −
2
2
max
2 2
x y x y
xy
σ σ σ σ
σ τ
+ −⎛ ⎞
⇒ = + +⎜ ⎟
⎝ ⎠⎝ ⎠
2
2
i
x y x yσ σ σ σ
σ τ
+ −⎛ ⎞
= − +⎜ ⎟
Dept. of CE, GCE Kannur Dr.RajeshKN
11
min
2 2
xyσ τ+⎜ ⎟
⎝ ⎠
222
2
max,min 1,3
2 2
x y x y
xy
σ σ σ σ
σ σ τ
+ −⎛ ⎞
= = ± +⎜ ⎟
⎝ ⎠
( )
2
tan2 xy
x y
τ
θ
σ σ
−
=
−
2
2
max,min 1,3
2 2
x y x y
xy
σ σ σ σ
σ σ τ
+ −⎛ ⎞
= = ± +⎜ ⎟
⎝ ⎠
( )
2
tan2 xy
x y
τ
θ
σ σ
−
=
−
Principal stresses Principal planes
σ σ−
Maximum shear stress
We know, sin2 cos2
2
x y
n xy
σ σ
τ θ τ θ= +
F i h t 0nτ∂
For maximum shear stress, 0n
θ
=
∂
( )cos2 2 sin2 0x y xyσ σ θ τ θ⇒ − − =( )x y xy
( )tan2
x yσ σ
θ
−
⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
12
tan2
2 xy
θ
τ
⇒
2
( )
2
For max normal stress, tan2 xy
n
x y
τ
θ
σ σ
−
=
−
( )For max shear stress, tan2
2
x y
s
σ σ
θ
τ
−
=
1
tan2θ
−
=
2 xyτ tan2 nθ
( )0
cot 2 tan 2 90n nθ θ= − = ±( )n n
0
2 2 90s nθ θ= ±s n
0
45s nθ θ= ±
Hence, planes of maximum shear stress are at 450 to the principal
planes
Dept. of CE, GCE Kannur Dr.RajeshKN
13
p
To get maximum shear stress
( )
2
2
2
x y
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
2
2
cos2 xy
s
x y
τ
θ
σ σ
τ
=
−⎛ ⎞
+⎜ ⎟
g
τ
( )
2
x yσ σ− 2
y⎜ ⎟
⎝ ⎠
2 sθ
2
y
xyτ+⎜ ⎟
⎝ ⎠
sin2 x yσ σ
θ
−
=xyτ 2
2
sin2
2
2
s
x y
xy
θ
σ σ
τ
=
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
,max 2 2
2 2
2
2
x y x y xy
n xy
x y x y
σ σ σ σ τ
τ τ
σ σ σ σ
τ τ
− −
= +
− −⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
2
σ σ−⎛ ⎞
2
2 2
xy xyτ τ+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
2
σ σ⎛ ⎞2
,max
2
x y
n xy
σ σ
τ τ
⎛ ⎞
= +⎜ ⎟
⎝ ⎠
2
,max,min
2
x y
n xy
σ σ
τ τ
−⎛ ⎞
= ± +⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
14
2
⎛ ⎞ 2
1,3
2
We kno
2
w, x y x y
xy
σ σ σ σ
σ τ
+ −⎛ ⎞
= ± +⎜ ⎟
⎝ ⎠
2
2
1 3 ,max2 2
2
x y
xy n
σ σ
σ σ τ τ
−⎛ ⎞
− = + =⎜ ⎟
⎝ ⎠
1 3
,max
2
n
σ σ
τ
−
=
2
To get normal stress on planes of maximum shear stress
2 2
2 2
2 2
x y x y xy x y
n xy
x y x y
σ σ σ σ τ σ σ
σ τ
σ σ σ σ
+ − −
= + −
− −⎛ ⎞ ⎛ ⎞2 2
2
2 2
x y x y
xy xy
σ σ σ σ
τ τ
⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
x yσ σ+
th l f h t
Dept. of CE, GCE Kannur Dr.RajeshKN
15
2
x y
nσ = , on the planes of max shear stressaverageσ=
Problem: Find the principal stresses (including principal planes) and
maximum shear stress (including its plane)
2
60 N
2
80 N mm
Principal stresses
2
120 N mm
2
60 N mm
2
120 N mm
2
2
max,min 1,3
2 2
x y x y
xy
σ σ σ σ
σ σ τ
+ −⎛ ⎞
= = ± +⎜ ⎟
⎝ ⎠
Principal stresses
2
80 N mm
2
60 N mm
⎝ ⎠
2
2
max min 1 3
120 80 120 80
60σ σ
− − − +⎛ ⎞
= = ± +⎜ ⎟
⎝ ⎠
max,min 1,3 60
2 2
σ σ ± +⎜ ⎟
⎝ ⎠
100 63 24σ σ= = − ±max,min 1,3 100 63.24σ σ= = ±
2
max 1 163.24 N mmσ σ∴ = = −max 1
2
min 3and 36.75 N mmσ σ= = −
Dept. of CE, GCE Kannur Dr.RajeshKN
16
2
tan2 xyτ
θ
−
=Principal planes
2 60− ×
= 3=
( )
tan2
x y
θ
σ σ
=
−
Principal planes
( )120 80
=
− +
3=
( )1
2 tan 3 71 57θ −
= = 35 78θ∴ =( )2 tan 3 71.57θ = = 35.78θ∴ =
1 35.78θ∴ =1
3 35.78 90 125.78θ = + =
xyτ
xyτ
35 78
xσ
xyτ 3σ
1σ
35.78
yσ
xyτ
Dept. of CE, GCE Kannur Dr.RajeshKN
17
Maximum shear stress
1 3
,max
2
n
σ σ
τ
−
=
Maximum shear stress
163.25 36.75
2
− +
= 2
63.25 N mm= −
2 2
Planes of maximum shear stress
( )tan2
x yσ σ
θ
−
=
120 80− +
=tan2
2
s
xy
θ
τ
=
2 60
=
×
xyτ
xyτ 1 120 80
2 tθ − − +⎛ ⎞
⎜ ⎟
18.43= −σ
xy
9.22
1
2 tan
2 60
θ
⎛ ⎞
= ⎜ ⎟
×⎝ ⎠
18.43xσ
xyτ
xyτ ,maxnτ
9.22θ = −
Dept. of CE, GCE Kannur Dr.RajeshKN
18
yσ
xy
cos2 sin2x y x yσ σ σ σ
σ θ τ θ
+ −
= +
Mohr’s circle
cos2 sin2
2 2
n xyσ θ τ θ= + −
cos2 sin2x y x yσ σ σ σ
σ θ τ θ
+ −
= i
sin2 cos2
2
x y
n xy
σ σ
τ θ τ θ
−
= +
cos2 sin2
2 2
n xyσ θ τ θ− = − i
ii2
n xy
Squaring and adding the above equations,
( ) ( )
2 2
22
2 2
x y x y
n n xy
σ σ σ σ
σ τ τ
+ −⎛ ⎞ ⎛ ⎞
− + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠2 2⎝ ⎠ ⎝ ⎠
( ) ( )
2 2 2
0n av n Rσ σ τ− + − =
This is equation of a circle with centre and radius ( )
2
2
2
x y
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
( ),0avσ
Dept. of CE, GCE Kannur Dr.RajeshKN
19
Let us draw this circle!
Mohr’s circle
xyτ
( ),y xyσ τ
xσ
xyτ
xy
xyτ
2
2
2
y x
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
yσ
xyτ
σy
τxyτ
2
y xσ σ+
y
σx σσ3 σ1
α
2
y xσ σ−
τxy
( ),x xyσ τ− 1 2
tan 2xy
y x
τ
α θ
σ σ
− −
= =
−
Dept. of CE, GCE Kannur Dr.RajeshKN
20: Principal stressesσ1, σ3
measured clockwiseα
Mohr’s circle
xyτ
xσ
xyτ
y
xyτ
( ),x xyσ τ
yσ
xyτ
τ
2
2
2
y x
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠
σyσx
τxyτ
σ3
αx
σ
3
σ1
2
y xσ σ+
2
y xσ σ−
τxy
2
1 2
tan 2xy
y x
τ
α θ
σ σ
−
= =
−( ),y xyσ τ−
Dept. of CE, GCE Kannur Dr.RajeshKN
21
y
measured anticlockwiseα
•Mohr’s circle is a graphical representation of the state of stress in an•Mohr s circle is a graphical representation of the state of stress in an
element.
E i h i l h l d h•Every point on the circle represents the normal and shear stress on a
plane.
•While x-coordinate of a point on the circle represents the normal
stress on a plane, y-coordinate represents the shear stress on that plane.
•Procedure for construction of Mohr’s circle
Dept. of CE, GCE Kannur Dr.RajeshKN
22
Maximum shear stress from Mohr’s circle
xyτ
( ),y xyσ τ
xσ
xyτ
xy
xyτ
Max shear
2
2
2
y x
xy
σ σ
τ
−⎛ ⎞
+⎜ ⎟
⎝ ⎠ yσ
xyτ
Max shear
stress
1 3
max
2
n
σ σ
τ
−
=
σy
τxyτ
,max
2
n
y
σx σσ3 σ1
2θ
τxy
( ),x xyσ τ−
Dept. of CE, GCE Kannur Dr.RajeshKN
23
Principal planes from Mohr’s circle
xyτ( ),y xyσ τ
xy
xyτ
θ
σ
τxyτ
σ
σy
σx
τxy
σσ3 σ1
( )
2θ
3σ1σ
xσ
xyτ( ),x xyσ τ−
σ
yσ
xyτ
3σ
1σ
3σ
Dept. of CE, GCE Kannur Dr.RajeshKN
24
3
1σ
2
60 N
2
80 N mmProblem: Find principal stresses, principal
2
120 N mm
2
60 N mm
2
120 N mm
planes and max shear stress analytically. Draw
Mohr’s circle and verify graphically.
2
80 N mm
2
60 N mm
( )( )120,60−
τ60 18.44
2
71 56
θ
80120
60
σ σ3σ1
3σ
1σ
35.78
71.56=
τ
9.22
60 1
,maxnτ
Dept. of CE, GCE Kannur Dr.RajeshKN
25
( )80, 60− −
Problems: Find principal stresses, principal planes and max shear stress
analytically. Draw Mohr’s circle and verify graphically.analytically. Draw Mohr s circle and verify graphically.
1510
80
5015
15
15
50
50
10
10
10
50
50
30
15
30
15
80
10
10
15
50
5
20
20
20
50
5
50
20
Dept. of CE, GCE Kannur Dr.RajeshKN
26
Transformation of strains
σ σ σ σ+ − sin2 cos2x yσ σ
τ θ τ θ
−
+cos2 sin2
2 2
x y x y
n xy
σ σ σ σ
σ θ τ θ
+
= + −
sin2 cos2
2
y
n xyτ θ τ θ= +
The above equations, which give the normal and tangential (shear) stresses on
any plane inclined at θ with the vertical, are called stress transformation
equations.equations.
Similarly strain transformation equations can be derived as follows:
2 2
cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + −
cos2 sin2
2 2 2
x y x y xy
n
ε ε ε ε γ
ε θ θ
+ −
= + −OR,
Dept. of CE, GCE Kannur Dr.RajeshKN
27
sin2 cos2
2 2 2
x y xyn
ε ε γγ
θ θ
−
= +and,
Principal strains:
Planes on which
i i l t i tPrincipal strains: principal strains act:
2 2
max min 1 3
x y x y xyε ε ε ε γ
ε ε
+ −⎛ ⎞ ⎛ ⎞
= = ± +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ( )
tan2 xyγ
β
−
=
max,min 1,3
2 2 2⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ( )x yε ε−
Strain Rosettes
M t f l t i i i l• Measurement of normal strains is simple.
• Strain gages are placed as a cluster, along several gage lines through
a pointa point
• This arrangement of strain gages is called a strain rosette
• If three measurements are taken at a rosette (in three directions), the
information is sufficient to get the complete state of plane strain at a
point
Dept. of CE, GCE Kannur Dr.RajeshKN
p
0
3 90θ =
1 2 3, ,θ θ θε ε ε are measured from strain gages
0
2 45θ =
1 2 3, ,θ θ θε ε ε are measured from strain gages
0 45 90ε ε ε45 degree rosette:
1 0θ =
0 45 90, ,ε ε ε45 degree rosette:
0 60 120, ,ε ε ε60 degree rosette:
Rectangular strain rosette
From strain transformation equations,
g
(45 degree rosette)2 2
cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + −
Hence, for a 45 degree rosette, 0 0 0x xε ε ε= + − =
45 0.5 0.5 0.5x y xyε ε ε γ= + −y y
90 0 0y yε ε ε= + − =
Dept. of CE, GCE Kannur Dr.RajeshKN
From the above, we can get , ,x y xyε ε γ
Problem: Using a 60 degree rosette, the following strains are obtained at
i t D t i t i t d i i l t ia point. Determine strain components and principal strains.
0 60 12040 , 980 , 330ε μ ε μ ε μ= = =
, ,x y xyε ε γ
We have, 2 2
cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + −
2 2
0 cos 0 sin 0 sin cos0x y xyε ε ε γ θ∴ = + −
i.e., 40 0 0 40x xε ε= + − ⇒ =
0 x y xyγ
60 980 0.25 0.75 0.433x y xyε ε ε γ⇒ = + −
120 330 0.25 0.75 0.433x y xyε ε ε γ⇒ = + +
40 , 860 , 750x y xyε μ ε μ γ μ= = = −
y y
From the above, we can get
Principal strains and their planes can be obtained from:
2 2
ε ε ε ε γ+ −⎛ ⎞ ⎛ ⎞ tan2 xyγ
β
−
=
Dept. of CE, GCE Kannur Dr.RajeshKN
max,min 1,3
2 2 2
x y x y xyε ε ε ε γ
ε ε
+ ⎛ ⎞ ⎛ ⎞
= = ± +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
( )
tan2
x y
β
ε ε
=
−
Theory of columnsy
Compression member: A structural member loaded in compression
Column: A vertical compression member
Strut: An inclined compression member – as in roof trusses
Stanchion: A compression member made of rolled steel section
Classification of columns based on mode of failure
Short columns: Failure by crushing under axial
compression
L ( l d ) l F il b l l b di
Intermediate (medium length) columns: Failure by
Long (slender) columns: Failure by lateral bending
(buckling)
Dept. of CE, GCE Kannur Dr.RajeshKN
31
Intermediate (medium length) columns: Failure by
combination of buckling and crushing
Equilibrium:qu b u :
Stable, neutral, unstable
Dept. of CE, GCE Kannur Dr.RajeshKN
32
L d th t b i d b th b b f f il
Critical load
Load that can be carried by the member before failure
Least load that causes elastic instability
depends on
dimensions of the member end conditions
modulus of elasticity
Slenderness ratio: Ratio of length to the least radius of gyration.
Buckling tendency varies with slenderness ratio
modulus of elasticity
Buckling tendency varies with slenderness ratio.
Dept. of CE, GCE Kannur Dr.RajeshKN
33
Euler’s theory – Leonhard Euler (1757)y ( )
2
d y
Both ends hinged PEI
M
R
=
2
d y
EI P
2
d y
2
d y
EI M
dx
⇒ = A2
y
EI Py
dx
⇒ = −
2
0
d y
EI Py
dx
+ =
2
2
0
d y P
y+ =2
y
dx EI
P P⎛ ⎞ ⎛ ⎞
Solution for the above differential equation is:
y
XX
l1 2cos sin
P P
y C x C x
EI EI
⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
When 0, 0x y= = 1 0C⇒ =
B
x
When 0, 0x y 1
When , 0x l y= = 20 sin
P
C l
EI
⎛ ⎞
⇒ = ⎜ ⎟
⎝ ⎠
P
B⎝ ⎠
sin 0 0, ,2 ,3 ,4 ...
P P
l l
EI EI
π π π π
⎛ ⎞
= ⇒ =⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
34
P
,where 0,1,2,3,4...
P
l n n
EI
π= =
2 2
2
n EI
P
l
π
=
2 sin
P
y C x
EI
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
2 sin
n x
C
L
π⎛ ⎞
= ⎜ ⎟
⎝ ⎠
The least practical
2
EI
P
π
The least practical
value for P is:
Critical load2cr
EI
P
l
π
=
sin
x
y C
π⎛ ⎞
= ⎜ ⎟The corresponding mode shape is:
Dept. of CE, GCE Kannur Dr.RajeshKN
35
2 siny C
L
= ⎜ ⎟
⎝ ⎠
The corresponding mode shape is:
Assumptions in Euler’s theoryAssumptions in Euler s theory
• Material is homogeneous and isotropic
• Axis of column is perfectly straight when unloaded
• Line of thrust coincides exactly with the unstrained axis of the column
• Column fails by buckling alone
• Flexural rigidity EI is uniform
S lf h f l l d• Self weight of column is neglected
• Stresses are within elastic limit
Dept. of CE, GCE Kannur Dr.RajeshKN
36
Euler’s theory
P
y
2
d y
EI M
One end fixed and the other end free
( )
2
d y
EI P yδ⇒ = −
P
A
δ
2
y
EI M
dx
= ( )2
EI P y
dx
δ⇒ =
2
d y
EI P Pδ
2
d y P P
y
δ
+ = y2
y
EI Py P
dx
δ+ = 2
y
dx EI EI
+ = y
lSolution for the above differential equation is:
1 2cos sin
P P
y C x C x
EI EI
δ
⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
xEI EI⎝ ⎠ ⎝ ⎠
When 0, 0x y= = 1C δ⇒ = −
x
B
Dept. of CE, GCE Kannur Dr.RajeshKN
37
dy P P P P⎛ ⎞ ⎛ ⎞
dy P
1 2sin cos
dy P P P P
C x C x
dx EI EI EI EI
⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
When 0, 0
dy
x
dx
= = 2 20 0 0
P
C C
EI
⇒ = = ⇒ =
When x l y δ= = cos
P
lδ δ δ
⎛ ⎞
⇒ +⎜ ⎟
3 5
cos 0
P P
l l
π π π⎛ ⎞
⇒⎜ ⎟
When ,x l y δ= = cos l
EI
δ δ δ⇒ = − +⎜ ⎟
⎝ ⎠
cos 0 , , ...
2 2 2
l l
EI EI
= ⇒ =⎜ ⎟
⎝ ⎠
P
l
π
Th l t ti l l i
2
P
l
EI
π
=
2
EI
P
π 2
EI
P
π
The least practical value is:
2el l= Effective length
2
4
EI
P
l
π
= 2
e
EI
P
l
π
=
P⎛ ⎞ ⎛ ⎞
e Effective length
Dept. of CE, GCE Kannur Dr.RajeshKN
38
cos 1 cos
2 e
P x
y x
EI l
π
δ δ δ
⎛ ⎞ ⎛ ⎞
= − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
Euler’s theory Py
( )
2
d y
EI M P H l
One end fixed and the other hinged
H
A
( )2
y
EI M Py H l x
dx
= = − + −
( )
2
d y
EI P H l y( )2
y
EI Py H l x
dx
+ = −
( )cos sin
P P H
C C l
⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
y
l
( )1 2cos siny C x C x l x
EI EI P
= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
x
⎛ ⎞ ⎛ ⎞
x
1 2sin cos
dy P P P P H
C x C x
dx EI EI EI EI P
⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
When 0 0x y= = 1 10
H H
C l C l⇒ = + ⇒ = −
B
M
Dept. of CE, GCE Kannur Dr.RajeshKN
39
When 0, 0x y 1 1
P P
P
M
When 0, 0
dy
x
dx
= = 2 20
P H H EI
C C
EI P P P
⇒ = − ⇒ =
When 0x l y= = 0 cos sin
H P H EI P
l l l
⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟
tan
P P
l l
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
When , 0x l y= = 0 cos sinl l l
P EI P P EI
+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
tan l l
EI EI
=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
P
2
20.25 2EI EI
P
π
4.5 radians
P
l
EI
= 2 2
P
l l
= ≈
2
EI
P
π l
l2
e
EI
P
l
π
=
2
el =
Dept. of CE, GCE Kannur Dr.RajeshKN
40
Euler’s theory
P
y
2
d y
EI M M P
Both ends fixed A M0
02
y
EI M M Py
dx
= = −
2
d y
EI P M
y2
0d y P M
02
y
EI Py M
dx
+ =
0P P M⎛ ⎞ ⎛ ⎞
y
l
0
2
y
y
dx EI EI
+ =
0
1 2cos sin
P P M
y C x C x
EI EI P
⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
x
1 2sin cos
dy P P P P
C x C x
dx EI EI EI EI
⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
x
When 0 0x y= =
0 0
1 10
M M
C C⇒ = + ⇒ = −
B
M
Dept. of CE, GCE Kannur Dr.RajeshKN
41
When 0, 0x y 1 1
P P
P
M0
When 0, 0
dy
x
dx
= = 2 20 0
P
C C
EI
⇒ = ⇒ =
When 0x l y= =
0 0
0 cos
M P M
l
P EI P
⎛ ⎞
= − +⎜ ⎟ 0
1 cos 0
M P
l
⎡ ⎤⎛ ⎞
⇒ − =⎢ ⎥⎜ ⎟
cos 1
P
l
⎛ ⎞
⎜ ⎟
When , 0x l y= = P EI P
⎜ ⎟
⎝ ⎠ P EI
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
0 2 4 6
P
l π π π⇒ =cos 1l
EI
=⎜ ⎟
⎝ ⎠
2
4 EI
P
π
0,2 ,4 ,6 ...l
EI
π π π⇒ =
2
P
l π
2
P
l
=
2
EI l
2l
EI
π=
2
2
e
EI
P
l
π
=
2
e
l
l =
Dept. of CE, GCE Kannur Dr.RajeshKN
42
Effective lengthEnd conditions
Both ends hinged
g
l
One end fixed and the
other end free 2l
B th d fi d
One end fixed and the
other hinged 2l
Both ends fixed 2l
Dept. of CE, GCE Kannur Dr.RajeshKN
43
Limitations of Euler’s theoryLimitations of Euler s theory
• Applicable to ideal cases only. There may be imperfections in the
l th l d t tl th h th t id f th
2
column, the load may not pass exactly through the centroid of the
column section
• Direct stress is not taken into account
2
2E
e
EI
P
l
π
=• Strength of the material is not taken into account
2
2
E
E
e
P EI
A Al
π
σ = =
2 2 2
EAr Eπ π
22E
e e
EAr E
Al l
r
π π
σ⇒ = =
⎛ ⎞
⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
44
σEσE
l /
Validity limits of Euler’s formula
le /r
Dept. of CE, GCE Kannur Dr.RajeshKN
45
Critical stress for mild steel with E=2x105 MPa
2
l Eπe
E
l E
OD
r
π
σ
= =
5 2
2 10 NEL t
2
250 N mmPLσ =Stress at limit of proportionality
5 2
2 10 N mmE = ×Let
( )2 5
2 10
89
250
el
r
π ×
∴ = =
250r
i.e., Euler’s theory is applicable for 89el
> for mild steel
r
Dept. of CE, GCE Kannur Dr.RajeshKN
46
Rankine’s theoryy
2
2Euler
EI
P
π
=
c cP Aσ=For short compression members,
For long columns, 2Euler
el
g ,
Rankine proposed a general empirical formula:
1 1 1
Rankine c EulerP P P
= + For a short compression member, PE is very large.
P P∴ ≈Rankine cP P∴ ≈
For long columns, 1/PEuler is very large.
2
2
1 el
P EIπ
=
Rankine EulerP P≈
EulerP EIπ
2
1 1 1
R ki
EIP A πσ
= + 2
I Ar=
Dept. of CE, GCE Kannur Dr.RajeshKN
47
2
Rankine c
e
EIP A
l
πσ
1 1 1
2
2 r
Eπ σ
⎛ ⎞
+⎜ ⎟
2
2
1 1 1
Rankine cP A r
EA
l
σ
π
= +
⎛ ⎞
⎜ ⎟
⎝ ⎠
2
2
c
e
Rankine
c
E
lA
P r
E
l
π σ
σ π
+⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠
2 2
c c
Rankine
A A
P
l l
σ σ
σ
= =
⎛ ⎞ ⎛ ⎞
c
a
σ
=
el⎝ ⎠ c
el⎜ ⎟
⎝ ⎠
2
1 1c e el l
a
E r r
σ
π
⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
2
a
Eπ
2 2
Crushing loadc
Rankine
A
P
l l
σ
= =
⎛ ⎞ ⎛ ⎞
2
1 el
a
r
⎛ ⎞
+ ⎜ ⎟
⎝ ⎠1 1e el l
a a
r r
⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
r⎝ ⎠
Factor that accounts
for bucklingg
Dept. of CE, GCE Kannur Dr.RajeshKN
48
Find the length of the column for which Rankine’s and Euler’s formulae
give the same buckling load:
Rankine EulerP P=
2
A EIσ π 1/2
2 2
⎛ ⎞2 2
1
c
ee
A EI
ll
a
r
σ π
=
⎛ ⎞
+ ⎜ ⎟
⎝ ⎠
1/2
2 2
2e
c
Er
l
Ea
π
σ π
⎛ ⎞
= ⎜ ⎟
−⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
49
Problem: Compare the buckling (crippling) loads given by Rankine’sProblem: Compare the buckling (crippling) loads given by Rankine s
and Euler’s formulae for a tubular strut hinged at both ends, 6 m long
having outer diameter 15 cm and thickness 2 cm. Given,
4 2 2 1
8 10 N mm , 567 N mm ,
1600
cE aσ= × = =
For what length of the column does the Euler’s formula cease to apply?For what length of the column does the Euler s formula cease to apply?
2
2Euler
EI
P
l
π
=
( )4 4 4
150 110 17663604.69 mm
64
I
π
= − =
el
6 m 6000 mmel l= = =( )64
e
2
2
387406.2 NEuler
EI
P
l
π
= = 387.4 kN=
2Euler
el
( )2 2 2π
Dept. of CE, GCE Kannur Dr.RajeshKN
50
( )2 2 2
150 110 8168.141 mm
4
A
π
= − =
c A
P
σ
2
1
c
Rankine
e
P
l
a
r
σ
=
⎛ ⎞
+ ⎜ ⎟
⎝ ⎠
2 4
17663604.69 mmI Ar= = 17663604.69
46.503 mm
8168.141
I
r
A
= = =
567 8168.141
406097 78 NP
×
406 098 kN=2
406097.78 N
1 6000
1
1600 46.503
RankineP = =
⎛ ⎞
+ ⎜ ⎟
⎝ ⎠
406.098 kN=
2
2E
Eπ
σ = ( )2 4
8 10
37 317el π ×
∴ = =
2
EP EIπ
σ = =
To find the length of the column above which Euler’s formula is applicable
2E
el
r
σ
⎛ ⎞
⎜ ⎟
⎝ ⎠
37.317
567r
∴ = =2E
eA Al
σ = =
46 503 37 317l 1735 34 mm 1 735 m
Dept. of CE, GCE Kannur Dr.RajeshKN
51
46.503 37.317el∴ = × 1735.34 mm 1.735 m= =
Long column under eccentric loading P
σ =For short columns
P
A
σ =
M P e=
For short columns,
e
.M P e
Z Z
σ = =
.M P e=
.P P e
y
A I
σ = ±
Z Z A I
. .
1
P P e y P ey⎛ ⎞
± +⎜ ⎟2 2
1
y y
A Ar A r
σ ⎛ ⎞
= ± = +⎜ ⎟
⎝ ⎠
Aσ
2
1
A
P
ey
r
σ
=
⎛ ⎞
+⎜ ⎟
⎝ ⎠
2
A
P
al ey
σ
=
⎛ ⎞⎛ ⎞
For long columns,
Dept. of CE, GCE Kannur Dr.RajeshKN
52
2 2
1 1eal ey
r r
⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
Secant formula P
A
e
2
2
0
d y
EI Py⇒ + =
2
2
d y
EI Py= −
Both ends hinged
2
y
dx
2
2
0
d y P
y
d EI
+ =
2
y
dx
y
l
2
dx EI
P P⎛ ⎞ ⎛ ⎞
Solution for the above differential equation is:
y
x
1 2cos sin
P P
y C x C x
EI EI
⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
When 0,x y e= = 1C e⇒ =
B
When 0,x y e 1C e⇒
2sin cos
dy P P P P
e x C x
dx EI EI EI EI
⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠dx EI EI EI EI⎝ ⎠ ⎝ ⎠
When 0
l dy
x = =
sin
2
l P
EI
C e
⎛ ⎞
⎜ ⎟
⎝ ⎠=
Dept. of CE, GCE Kannur Dr.RajeshKN
53
When , 0
2
x
dx
= = 2
cos
2
C e
l P
EI
=
⎛ ⎞
⎜ ⎟
⎝ ⎠
l P⎡ ⎤⎛ ⎞
sin
2
cos sin
cos
l P
EIP P
y e x x
EI EIl P
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎛ ⎞ ⎛ ⎞⎝ ⎠⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟
2
sin
2
l P
EI
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎛ ⎞
cos
2 EI
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
l P⎛ ⎞
max
2
When , cos
2 2
cos
2
EIl l P
x y y e
EI l P
EI
⎢ ⎥⎜ ⎟
⎛ ⎞ ⎝ ⎠⎢ ⎥= = = +⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
max .sec
2
l P
y e
EI
⎛ ⎞
⇒ = ⎜ ⎟
⎝ ⎠
max max . .sec
2
l P
M Py P e
EI
⎛ ⎞
= = ⎜ ⎟
⎝ ⎠2 EI⎝ ⎠
P My P Pey l P P ey l P⎡ ⎤⎛ ⎞ ⎛ ⎞
max 2
sec 1 sec
2 2
c c cP My P Pey l P P ey l P
A I A I EI A r EI
σ
⎡ ⎤⎛ ⎞ ⎛ ⎞
= + = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
54
Secant formula P
δ
One end fixed and the other end free
A
δ e
( )
2
2
d y
EI P e yδ= + −
( )
2
2
d y P P
y e
d EI EI
δ+ = +
y
( )2
y
dx
( )2
dx EI EI
P P⎛ ⎞ ⎛ ⎞
Solution for the above differential equation is:
l
( )1 2cos sin
P P
y C x C x e
EI EI
δ
⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
When 0, 0x y= = ( )1C eδ⇒ = − +
x
When 0, 0x y ( )1
( ) 2sin cos
dy P P P P
e x C x
dx EI EI EI EI
δ
⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
B
dx EI EI EI EI⎝ ⎠ ⎝ ⎠
When 0 0
dy
x = = 0C⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
55
When 0, 0x
dx
= = 2 0C⇒ =
When x l y δ= = ( ) ( )cos
P
e l eδ δ δ
⎛ ⎞
⇒ = + + +⎜ ⎟When ,x l y δ= = ( ) ( )cose l e
EI
δ δ δ⇒ = − + + +⎜ ⎟
⎝ ⎠
( ) 1
P
lδ δ
⎡ ⎤⎛ ⎞
⇒ + ⎢ ⎥⎜ ⎟( ) 1 cose l
EI
δ δ⇒ = + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
( )cos
P
e l eδ
⎛ ⎞
⇒ + ⎜ ⎟( )cose l e
EI
δ⇒ + =⎜ ⎟
⎝ ⎠
( ) sec
P
e e lδ
⎛ ⎞
⇒ + = ⎜ ⎟
( )
P
M P P lδ
⎛ ⎞
+ ⎜ ⎟
( ) .sece e l
EI
δ⇒ + = ⎜ ⎟
⎝ ⎠
( )max . .secM P e P e l
EI
δ= + = ⎜ ⎟
⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞
max 2
sec 1 secc c cP My P Pey P P ey P
l l
A I A I EI A r EI
σ
⎡ ⎤⎛ ⎞ ⎛ ⎞
= + = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
Dept. of CE, GCE Kannur Dr.RajeshKN
56
max . .sec
2
el P
M P e
EI
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
In general,
2 EI⎝ ⎠
max 2
1 sec
2
c eP ey l P
A r EI
σ
⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦2A r EI⎢ ⎥⎝ ⎠⎣ ⎦
For short compression members (no buckling), max .M P e=
For long columns (with buckling) el P
M P
⎛ ⎞
⎜ ⎟For long columns (with buckling),
max . .sec
2
e
M P e
EI
= ⎜ ⎟
⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
57
Problem: A hollow mild steel column with internal diameter 80 mm
and external diameter 100 mm is 2.4 m long, hinged at both ends,
carries a load of 60 kN at an eccentricity of 16mm from the geometrical
axis. Calculate the maximum and minimum stresses in the column.
Also find the maximum eccentricity so that no tension is induced in the
section. 5 2
2 10 N mmE = ×
( )4 4 4
100 80 2898119 mmI
π
= − = ( )2 2 2
100 80 2827 4 mmA
π
= − =( )100 80 2898119 mm
64
I
2400 mml l
( )100 80 2827.4 mm
4
A
2898119
32 015 mm
I
r 2400 mmel l= =32.015 mm
2827.4
r
A
= = =
Dept. of CE, GCE Kannur Dr.RajeshKN
58
sec el P
M P e
⎛ ⎞
= ⎜ ⎟
3
3 2400 60 10
60 10 16 secM
⎛ ⎞×
× × × ⎜ ⎟ 0 96 kN
max . .sec
2
e
M P e
EI
= ⎜ ⎟
⎝ ⎠
max 5 6
60 10 16 sec
2 2 10 2.898 10
M = × × × ⎜ ⎟
⎜ ⎟× × ×⎝ ⎠
0.96 kNm=
3 6
⎧max
max
min
cP M y
A I
σ = ±
3 6
max
min
37.78 MPa60 10 0.96 10 50
4.69 MPa2827.4 2898119
σ
⎧× × ×
= ± = ⎨
⎩
To find the maximum eccentricity so that no tension is induced
in the section
max
0cP M y
A I
− =
.
.sec 0
2
e
c
P P l
y
I
e P
A EI
⎛ ⎞
− =⎜ ⎟
⎝ ⎠
20.5 mme =
Dept. of CE, GCE Kannur Dr.RajeshKN
59
SummarySummary
Transformation of stresses and strains (two dimensional case only)Transformation of stresses and strains (two-dimensional case only) -
equations of transformation - principal stresses - mohr's circles of
stress and strain - strain rosettes - compound stresses - superposition
d it li it tiand its limitations –
Eccentrically loaded members - columns - theory of columns -
buckling theory - Euler's formula - effect of end conditions -
eccentric loads and secant formula
Dept. of CE, GCE Kannur Dr.RajeshKN
60
"A teacher is one who makes himself
progressively unnecessary "progressively unnecessary."
Thomas Carruthers
Dept. of CE, GCE Kannur Dr.RajeshKN
61

More Related Content

What's hot

Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2SHAMJITH KM
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirSHAMJITH KM
 
Module1 c - rajesh sir
Module1 c - rajesh sirModule1 c - rajesh sir
Module1 c - rajesh sirSHAMJITH KM
 
Part (1) basics of plastic analysis
Part (1) basics of plastic analysisPart (1) basics of plastic analysis
Part (1) basics of plastic analysisAshraf Sabbagh
 
Module1 rajesh sir
Module1 rajesh sirModule1 rajesh sir
Module1 rajesh sirSHAMJITH KM
 
Sd i-module3- rajesh sir
Sd i-module3- rajesh sirSd i-module3- rajesh sir
Sd i-module3- rajesh sirSHAMJITH KM
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeanujajape
 
Module2 rajesh sir
Module2 rajesh sirModule2 rajesh sir
Module2 rajesh sirSHAMJITH KM
 
Structural Analysis
Structural AnalysisStructural Analysis
Structural Analysisatizaz512
 
Numerical analysis m3 l6slides
Numerical analysis m3 l6slidesNumerical analysis m3 l6slides
Numerical analysis m3 l6slidesSHAMJITH KM
 
Redistribution of moments-Part-1
Redistribution of moments-Part-1Redistribution of moments-Part-1
Redistribution of moments-Part-1Subhash Patankar
 

What's hot (14)

Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2
 
flexibility method
flexibility methodflexibility method
flexibility method
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 
Module1 c - rajesh sir
Module1 c - rajesh sirModule1 c - rajesh sir
Module1 c - rajesh sir
 
Part (1) basics of plastic analysis
Part (1) basics of plastic analysisPart (1) basics of plastic analysis
Part (1) basics of plastic analysis
 
Module1 rajesh sir
Module1 rajesh sirModule1 rajesh sir
Module1 rajesh sir
 
Sd i-module3- rajesh sir
Sd i-module3- rajesh sirSd i-module3- rajesh sir
Sd i-module3- rajesh sir
 
Flexibility ppt 1
Flexibility ppt 1Flexibility ppt 1
Flexibility ppt 1
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 
Module2 rajesh sir
Module2 rajesh sirModule2 rajesh sir
Module2 rajesh sir
 
Structural Analysis
Structural AnalysisStructural Analysis
Structural Analysis
 
Numerical analysis m3 l6slides
Numerical analysis m3 l6slidesNumerical analysis m3 l6slides
Numerical analysis m3 l6slides
 
Redistribution of moments-Part-1
Redistribution of moments-Part-1Redistribution of moments-Part-1
Redistribution of moments-Part-1
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 

Similar to Mechanics of structures module4

Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :DQuimm Lee
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式zoayzoay
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sirSHAMJITH KM
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formulaShani Qasmi
 
51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8Carlos Fuentes
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationAhmed Hamed
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planesPRAJWAL SHRIRAO
 
the note of axial loading using in NCKU course
the note of axial loading using in NCKU coursethe note of axial loading using in NCKU course
the note of axial loading using in NCKU course313122
 
stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdfShikhaSingla15
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 

Similar to Mechanics of structures module4 (20)

Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Power Series
Power SeriesPower Series
Power Series
 
Ge i-module4-rajesh sir
Ge i-module4-rajesh sirGe i-module4-rajesh sir
Ge i-module4-rajesh sir
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Bsc maths derivative_formula
Bsc maths derivative_formulaBsc maths derivative_formula
Bsc maths derivative_formula
 
51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
the note of axial loading using in NCKU course
the note of axial loading using in NCKU coursethe note of axial loading using in NCKU course
the note of axial loading using in NCKU course
 
stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 

More from SHAMJITH KM

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSHAMJITH KM
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesSHAMJITH KM
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesSHAMJITH KM
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsSHAMJITH KM
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsSHAMJITH KM
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study NotesSHAMJITH KM
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളുംSHAMJITH KM
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileSHAMJITH KM
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad proSHAMJITH KM
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)SHAMJITH KM
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)SHAMJITH KM
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasserySHAMJITH KM
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)SHAMJITH KM
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)SHAMJITH KM
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions SHAMJITH KM
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPTSHAMJITH KM
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only noteSHAMJITH KM
 

More from SHAMJITH KM (20)

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdf
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture Notes
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture Notes
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture Notes
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture Notes
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - Polytechnics
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - Polytechnics
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study Notes
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc file
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad pro
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - Kalamassery
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions
 
Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPT
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only note
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 

Mechanics of structures module4

  • 1. Mechanics of structuresMechanics of structures Stresses in 2D plane, ColumnsColumns Dr. Rajesh K. N. Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN 1
  • 2. Module IV Transformation of stresses and strains (two dimensional case only) Module IV Transformation of stresses and strains (two-dimensional case only) - equations of transformation - principal stresses - mohr's circles of stress and strain - strain rosettes - compound stresses - superposition d it li it tiand its limitations – Eccentrically loaded members - columns - theory of columns - buckling theory - Euler's formula - effect of end conditions - eccentric loads and secant formula Dept. of CE, GCE Kannur Dr.RajeshKN 2
  • 3. Analysis of plane stress and plane strainy p p cosnA A θ= P L AA θ P A σ = cos n n A A θ = AAn A 2 2cos cos cosn P P A A θ θ σ σ θ= = = cosP θ θ nA A sin sin cos sin2P Pθ θ θ σ θ τ P θ sinP θAn θ Dept. of CE, GCE Kannur Dr.RajeshKN 3 2 n nA A τ = = =
  • 4. 2 2 σ σ τ+ ( ) ( ) 2 22 cos sin cos R n nσ σ τ σ θ σ θ θ = + = + Resultant stress on inclined plane 2 2 cos cos sin cos σ θ θ θ σ θ = + = 0 2 cos sin 0nd d σ σ θ θ θ = ⇒ =For maximum normal stress, 0 sin2 0 0σ θ θ= ⇒ = 0 When 0 P θ σ σ= = = 0 2 0ndτ θFor maximum shear stress ,maxWhen 0 , n A θ σ σ= = = 0 0 0 cos2 0 2 90 45 n d σ θ θ θ θ = ⇒ = ⇒ = ⇒ = For maximum shear stress, Dept. of CE, GCE Kannur Dr.RajeshKN 4 0 ,maxWhen 45 , 2 2 n P A σ θ τ= = =
  • 5. nσ σ nτ σ Rσ 2 2 n nσ τ+ σ ,maxnτ σ Dept. of CE, GCE Kannur Dr.RajeshKN 5
  • 6. Element under pure shear τ B θ σ nτ τ θ τ θ nσ ττ θ cos sinBC AC ABσ τ θ τ θ= − − A C ττ . .cos . .sin sin cos cos sin sin2 n n BC AC ABσ τ θ τ θ σ τ θ θ τ θ θ σ τ θ = − − = − − . . .sin . .cosn BC AC AB AC AB τ τ θ τ θ= − + sin2nσ τ θ= − 2 2 . .sin . .cos cos sin n n AC AB BC BC τ τ θ τ θ τ τ θ τ θ = − + = − Dept. of CE, GCE Kannur Dr.RajeshKN 6 cos2 n nτ τ θ=
  • 7. Element under biaxial normal stress B nτ yσ θ nσ n σ xσθxσ A C xσ yσ sin cosBC AB ACτ σ θ σ θ= −cos sinBC AB ACσ σ θ σ θ= + yσ . . .sin . .cos . .sin . .cos n x y n x y BC AB AC AB AC BC BC τ σ θ σ θ τ σ θ σ θ = = − . .cos . .sin . .cos . .sin n x y n x y BC AB AC AB AC BC BC σ σ θ σ θ σ σ θ σ θ = + = + ( ) cos sin sin cos sin2 n x y BC BC τ σ θ θ σ θ θ θ = −2 2 cos sin y n x y BC BC σ σ θ σ θ= + Dept. of CE, GCE Kannur Dr.RajeshKN 7 ( ) 2 n x yτ σ σ= −
  • 8. Element under a general two-dimensional stress xyτ xyτ B nτ τ σ θ θ nσ xσ xyτ xσ xyτ xyτ A C x xyτ . .cos . .sin . .cos . .sinn x y xy xyBC AB AC AC ABσ σ θ σ θ τ θ τ θ= + − − yσ xy yσ . .cos . .sin . .cos . .sinn x y xy xy AB AC AC AB BC BC BC BC σ σ θ σ θ τ θ τ θ= + − − 2 2 cos sin sin2n x y xyσ σ θ σ θ τ θ= + − + Dept. of CE, GCE Kannur Dr.RajeshKN 8 cos2 sin2 2 2 x y x y n xy σ σ σ σ σ θ τ θ + − = + −
  • 9. i iBC AB AC AB ACθ θ θ θ. . .sin . .cos . .cos . .sin sin cos cos sin n x y xy xyBC AB AC AB AC AB AC AB AC τ σ θ σ θ τ θ τ θ τ σ θ σ θ τ θ τ θ = − + − = − + − 2 2 . .sin . .cos . .cos . .sin cos sin sin cos cos sin n x y xy xy n x y xy xy BC BC BC BC τ σ θ σ θ τ θ τ θ τ σ θ θ σ θ θ τ θ τ θ = − + − = − + −n x y xy xy sin2 cos2 2 x y n xy σ σ τ θ τ θ − = + 2 n xy Note: In the above derivations, Sign convention for θ: Anticlockwise angle is +ve.g g Sign convention for shear stress: With respect to a point inside the element, clockwise shear stress is +ve. Dept. of CE, GCE Kannur Dr.RajeshKN 9 the element, clockwise shear stress is +ve.
  • 10. σ σ σ σ+ − cos2 sin2 2 2 x y x y n xy σ σ σ σ σ θ τ θ + = + − σ σ− Th b ti i th l d t ti l ( h ) t sin2 cos2 2 x y n xy σ σ τ θ τ θ= + The above equations give the normal and tangential (shear) stresses on any plane inclined at θ with the vertical. To find maximum/minimum value of normal stress σ∂ ( )0nσ θ ∂ = ∂ ( )sin2 2 cos2 0x y xyσ σ θ τ θ⇒ − − − = 2 tan2 xyτ θ − ⇒ ( ) tan2 y x y θ σ σ ⇒ = − Dept. of CE, GCE Kannur Dr.RajeshKN 10
  • 11. 2 σ σ−⎛ ⎞ sin2 xyτ θ − = xyτ− ( ) 2 2 x y xy σ σ τ ⎛ ⎞ +⎜ ⎟ ⎝ ⎠ 2θ 2 2 sin2 2 y x y xy θ σ σ τ = −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ ( ) 2 x yσ σ− 2 cos2 x yσ σ θ − = 2 2 2 2 x y xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ cos2 sin2 2 2 x y x y n xy σ σ σ σ σ θ τ θ + − = + − 2 2 max 2 2 x y x y xy σ σ σ σ σ τ + −⎛ ⎞ ⇒ = + +⎜ ⎟ ⎝ ⎠⎝ ⎠ 2 2 i x y x yσ σ σ σ σ τ + −⎛ ⎞ = − +⎜ ⎟ Dept. of CE, GCE Kannur Dr.RajeshKN 11 min 2 2 xyσ τ+⎜ ⎟ ⎝ ⎠
  • 12. 222 2 max,min 1,3 2 2 x y x y xy σ σ σ σ σ σ τ + −⎛ ⎞ = = ± +⎜ ⎟ ⎝ ⎠ ( ) 2 tan2 xy x y τ θ σ σ − = − 2 2 max,min 1,3 2 2 x y x y xy σ σ σ σ σ σ τ + −⎛ ⎞ = = ± +⎜ ⎟ ⎝ ⎠ ( ) 2 tan2 xy x y τ θ σ σ − = − Principal stresses Principal planes σ σ− Maximum shear stress We know, sin2 cos2 2 x y n xy σ σ τ θ τ θ= + F i h t 0nτ∂ For maximum shear stress, 0n θ = ∂ ( )cos2 2 sin2 0x y xyσ σ θ τ θ⇒ − − =( )x y xy ( )tan2 x yσ σ θ − ⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN 12 tan2 2 xy θ τ ⇒
  • 13. 2 ( ) 2 For max normal stress, tan2 xy n x y τ θ σ σ − = − ( )For max shear stress, tan2 2 x y s σ σ θ τ − = 1 tan2θ − = 2 xyτ tan2 nθ ( )0 cot 2 tan 2 90n nθ θ= − = ±( )n n 0 2 2 90s nθ θ= ±s n 0 45s nθ θ= ± Hence, planes of maximum shear stress are at 450 to the principal planes Dept. of CE, GCE Kannur Dr.RajeshKN 13 p
  • 14. To get maximum shear stress ( ) 2 2 2 x y xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ 2 2 cos2 xy s x y τ θ σ σ τ = −⎛ ⎞ +⎜ ⎟ g τ ( ) 2 x yσ σ− 2 y⎜ ⎟ ⎝ ⎠ 2 sθ 2 y xyτ+⎜ ⎟ ⎝ ⎠ sin2 x yσ σ θ − =xyτ 2 2 sin2 2 2 s x y xy θ σ σ τ = −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ ,max 2 2 2 2 2 2 x y x y xy n xy x y x y σ σ σ σ τ τ τ σ σ σ σ τ τ − − = + − −⎛ ⎞ ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ 2 σ σ−⎛ ⎞ 2 2 2 xy xyτ τ+ +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 2 σ σ⎛ ⎞2 ,max 2 x y n xy σ σ τ τ ⎛ ⎞ = +⎜ ⎟ ⎝ ⎠ 2 ,max,min 2 x y n xy σ σ τ τ −⎛ ⎞ = ± +⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 14
  • 15. 2 ⎛ ⎞ 2 1,3 2 We kno 2 w, x y x y xy σ σ σ σ σ τ + −⎛ ⎞ = ± +⎜ ⎟ ⎝ ⎠ 2 2 1 3 ,max2 2 2 x y xy n σ σ σ σ τ τ −⎛ ⎞ − = + =⎜ ⎟ ⎝ ⎠ 1 3 ,max 2 n σ σ τ − = 2 To get normal stress on planes of maximum shear stress 2 2 2 2 2 2 x y x y xy x y n xy x y x y σ σ σ σ τ σ σ σ τ σ σ σ σ + − − = + − − −⎛ ⎞ ⎛ ⎞2 2 2 2 2 x y x y xy xy σ σ σ σ τ τ ⎛ ⎞ ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ x yσ σ+ th l f h t Dept. of CE, GCE Kannur Dr.RajeshKN 15 2 x y nσ = , on the planes of max shear stressaverageσ=
  • 16. Problem: Find the principal stresses (including principal planes) and maximum shear stress (including its plane) 2 60 N 2 80 N mm Principal stresses 2 120 N mm 2 60 N mm 2 120 N mm 2 2 max,min 1,3 2 2 x y x y xy σ σ σ σ σ σ τ + −⎛ ⎞ = = ± +⎜ ⎟ ⎝ ⎠ Principal stresses 2 80 N mm 2 60 N mm ⎝ ⎠ 2 2 max min 1 3 120 80 120 80 60σ σ − − − +⎛ ⎞ = = ± +⎜ ⎟ ⎝ ⎠ max,min 1,3 60 2 2 σ σ ± +⎜ ⎟ ⎝ ⎠ 100 63 24σ σ= = − ±max,min 1,3 100 63.24σ σ= = ± 2 max 1 163.24 N mmσ σ∴ = = −max 1 2 min 3and 36.75 N mmσ σ= = − Dept. of CE, GCE Kannur Dr.RajeshKN 16
  • 17. 2 tan2 xyτ θ − =Principal planes 2 60− × = 3= ( ) tan2 x y θ σ σ = − Principal planes ( )120 80 = − + 3= ( )1 2 tan 3 71 57θ − = = 35 78θ∴ =( )2 tan 3 71.57θ = = 35.78θ∴ = 1 35.78θ∴ =1 3 35.78 90 125.78θ = + = xyτ xyτ 35 78 xσ xyτ 3σ 1σ 35.78 yσ xyτ Dept. of CE, GCE Kannur Dr.RajeshKN 17
  • 18. Maximum shear stress 1 3 ,max 2 n σ σ τ − = Maximum shear stress 163.25 36.75 2 − + = 2 63.25 N mm= − 2 2 Planes of maximum shear stress ( )tan2 x yσ σ θ − = 120 80− + =tan2 2 s xy θ τ = 2 60 = × xyτ xyτ 1 120 80 2 tθ − − +⎛ ⎞ ⎜ ⎟ 18.43= −σ xy 9.22 1 2 tan 2 60 θ ⎛ ⎞ = ⎜ ⎟ ×⎝ ⎠ 18.43xσ xyτ xyτ ,maxnτ 9.22θ = − Dept. of CE, GCE Kannur Dr.RajeshKN 18 yσ xy
  • 19. cos2 sin2x y x yσ σ σ σ σ θ τ θ + − = + Mohr’s circle cos2 sin2 2 2 n xyσ θ τ θ= + − cos2 sin2x y x yσ σ σ σ σ θ τ θ + − = i sin2 cos2 2 x y n xy σ σ τ θ τ θ − = + cos2 sin2 2 2 n xyσ θ τ θ− = − i ii2 n xy Squaring and adding the above equations, ( ) ( ) 2 2 22 2 2 x y x y n n xy σ σ σ σ σ τ τ + −⎛ ⎞ ⎛ ⎞ − + = +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠2 2⎝ ⎠ ⎝ ⎠ ( ) ( ) 2 2 2 0n av n Rσ σ τ− + − = This is equation of a circle with centre and radius ( ) 2 2 2 x y xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ ( ),0avσ Dept. of CE, GCE Kannur Dr.RajeshKN 19 Let us draw this circle!
  • 20. Mohr’s circle xyτ ( ),y xyσ τ xσ xyτ xy xyτ 2 2 2 y x xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ yσ xyτ σy τxyτ 2 y xσ σ+ y σx σσ3 σ1 α 2 y xσ σ− τxy ( ),x xyσ τ− 1 2 tan 2xy y x τ α θ σ σ − − = = − Dept. of CE, GCE Kannur Dr.RajeshKN 20: Principal stressesσ1, σ3 measured clockwiseα
  • 21. Mohr’s circle xyτ xσ xyτ y xyτ ( ),x xyσ τ yσ xyτ τ 2 2 2 y x xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ σyσx τxyτ σ3 αx σ 3 σ1 2 y xσ σ+ 2 y xσ σ− τxy 2 1 2 tan 2xy y x τ α θ σ σ − = = −( ),y xyσ τ− Dept. of CE, GCE Kannur Dr.RajeshKN 21 y measured anticlockwiseα
  • 22. •Mohr’s circle is a graphical representation of the state of stress in an•Mohr s circle is a graphical representation of the state of stress in an element. E i h i l h l d h•Every point on the circle represents the normal and shear stress on a plane. •While x-coordinate of a point on the circle represents the normal stress on a plane, y-coordinate represents the shear stress on that plane. •Procedure for construction of Mohr’s circle Dept. of CE, GCE Kannur Dr.RajeshKN 22
  • 23. Maximum shear stress from Mohr’s circle xyτ ( ),y xyσ τ xσ xyτ xy xyτ Max shear 2 2 2 y x xy σ σ τ −⎛ ⎞ +⎜ ⎟ ⎝ ⎠ yσ xyτ Max shear stress 1 3 max 2 n σ σ τ − = σy τxyτ ,max 2 n y σx σσ3 σ1 2θ τxy ( ),x xyσ τ− Dept. of CE, GCE Kannur Dr.RajeshKN 23
  • 24. Principal planes from Mohr’s circle xyτ( ),y xyσ τ xy xyτ θ σ τxyτ σ σy σx τxy σσ3 σ1 ( ) 2θ 3σ1σ xσ xyτ( ),x xyσ τ− σ yσ xyτ 3σ 1σ 3σ Dept. of CE, GCE Kannur Dr.RajeshKN 24 3 1σ
  • 25. 2 60 N 2 80 N mmProblem: Find principal stresses, principal 2 120 N mm 2 60 N mm 2 120 N mm planes and max shear stress analytically. Draw Mohr’s circle and verify graphically. 2 80 N mm 2 60 N mm ( )( )120,60− τ60 18.44 2 71 56 θ 80120 60 σ σ3σ1 3σ 1σ 35.78 71.56= τ 9.22 60 1 ,maxnτ Dept. of CE, GCE Kannur Dr.RajeshKN 25 ( )80, 60− −
  • 26. Problems: Find principal stresses, principal planes and max shear stress analytically. Draw Mohr’s circle and verify graphically.analytically. Draw Mohr s circle and verify graphically. 1510 80 5015 15 15 50 50 10 10 10 50 50 30 15 30 15 80 10 10 15 50 5 20 20 20 50 5 50 20 Dept. of CE, GCE Kannur Dr.RajeshKN 26
  • 27. Transformation of strains σ σ σ σ+ − sin2 cos2x yσ σ τ θ τ θ − +cos2 sin2 2 2 x y x y n xy σ σ σ σ σ θ τ θ + = + − sin2 cos2 2 y n xyτ θ τ θ= + The above equations, which give the normal and tangential (shear) stresses on any plane inclined at θ with the vertical, are called stress transformation equations.equations. Similarly strain transformation equations can be derived as follows: 2 2 cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + − cos2 sin2 2 2 2 x y x y xy n ε ε ε ε γ ε θ θ + − = + −OR, Dept. of CE, GCE Kannur Dr.RajeshKN 27 sin2 cos2 2 2 2 x y xyn ε ε γγ θ θ − = +and,
  • 28. Principal strains: Planes on which i i l t i tPrincipal strains: principal strains act: 2 2 max min 1 3 x y x y xyε ε ε ε γ ε ε + −⎛ ⎞ ⎛ ⎞ = = ± +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ( ) tan2 xyγ β − = max,min 1,3 2 2 2⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ( )x yε ε− Strain Rosettes M t f l t i i i l• Measurement of normal strains is simple. • Strain gages are placed as a cluster, along several gage lines through a pointa point • This arrangement of strain gages is called a strain rosette • If three measurements are taken at a rosette (in three directions), the information is sufficient to get the complete state of plane strain at a point Dept. of CE, GCE Kannur Dr.RajeshKN p
  • 29. 0 3 90θ = 1 2 3, ,θ θ θε ε ε are measured from strain gages 0 2 45θ = 1 2 3, ,θ θ θε ε ε are measured from strain gages 0 45 90ε ε ε45 degree rosette: 1 0θ = 0 45 90, ,ε ε ε45 degree rosette: 0 60 120, ,ε ε ε60 degree rosette: Rectangular strain rosette From strain transformation equations, g (45 degree rosette)2 2 cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + − Hence, for a 45 degree rosette, 0 0 0x xε ε ε= + − = 45 0.5 0.5 0.5x y xyε ε ε γ= + −y y 90 0 0y yε ε ε= + − = Dept. of CE, GCE Kannur Dr.RajeshKN From the above, we can get , ,x y xyε ε γ
  • 30. Problem: Using a 60 degree rosette, the following strains are obtained at i t D t i t i t d i i l t ia point. Determine strain components and principal strains. 0 60 12040 , 980 , 330ε μ ε μ ε μ= = = , ,x y xyε ε γ We have, 2 2 cos sin sin cosn x y xyε ε θ ε θ γ θ θ= + − 2 2 0 cos 0 sin 0 sin cos0x y xyε ε ε γ θ∴ = + − i.e., 40 0 0 40x xε ε= + − ⇒ = 0 x y xyγ 60 980 0.25 0.75 0.433x y xyε ε ε γ⇒ = + − 120 330 0.25 0.75 0.433x y xyε ε ε γ⇒ = + + 40 , 860 , 750x y xyε μ ε μ γ μ= = = − y y From the above, we can get Principal strains and their planes can be obtained from: 2 2 ε ε ε ε γ+ −⎛ ⎞ ⎛ ⎞ tan2 xyγ β − = Dept. of CE, GCE Kannur Dr.RajeshKN max,min 1,3 2 2 2 x y x y xyε ε ε ε γ ε ε + ⎛ ⎞ ⎛ ⎞ = = ± +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ( ) tan2 x y β ε ε = −
  • 31. Theory of columnsy Compression member: A structural member loaded in compression Column: A vertical compression member Strut: An inclined compression member – as in roof trusses Stanchion: A compression member made of rolled steel section Classification of columns based on mode of failure Short columns: Failure by crushing under axial compression L ( l d ) l F il b l l b di Intermediate (medium length) columns: Failure by Long (slender) columns: Failure by lateral bending (buckling) Dept. of CE, GCE Kannur Dr.RajeshKN 31 Intermediate (medium length) columns: Failure by combination of buckling and crushing
  • 32. Equilibrium:qu b u : Stable, neutral, unstable Dept. of CE, GCE Kannur Dr.RajeshKN 32
  • 33. L d th t b i d b th b b f f il Critical load Load that can be carried by the member before failure Least load that causes elastic instability depends on dimensions of the member end conditions modulus of elasticity Slenderness ratio: Ratio of length to the least radius of gyration. Buckling tendency varies with slenderness ratio modulus of elasticity Buckling tendency varies with slenderness ratio. Dept. of CE, GCE Kannur Dr.RajeshKN 33
  • 34. Euler’s theory – Leonhard Euler (1757)y ( ) 2 d y Both ends hinged PEI M R = 2 d y EI P 2 d y 2 d y EI M dx ⇒ = A2 y EI Py dx ⇒ = − 2 0 d y EI Py dx + = 2 2 0 d y P y+ =2 y dx EI P P⎛ ⎞ ⎛ ⎞ Solution for the above differential equation is: y XX l1 2cos sin P P y C x C x EI EI ⎛ ⎞ ⎛ ⎞ = +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ When 0, 0x y= = 1 0C⇒ = B x When 0, 0x y 1 When , 0x l y= = 20 sin P C l EI ⎛ ⎞ ⇒ = ⎜ ⎟ ⎝ ⎠ P B⎝ ⎠ sin 0 0, ,2 ,3 ,4 ... P P l l EI EI π π π π ⎛ ⎞ = ⇒ =⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 34 P ,where 0,1,2,3,4... P l n n EI π= =
  • 35. 2 2 2 n EI P l π = 2 sin P y C x EI ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ 2 sin n x C L π⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ The least practical 2 EI P π The least practical value for P is: Critical load2cr EI P l π = sin x y C π⎛ ⎞ = ⎜ ⎟The corresponding mode shape is: Dept. of CE, GCE Kannur Dr.RajeshKN 35 2 siny C L = ⎜ ⎟ ⎝ ⎠ The corresponding mode shape is:
  • 36. Assumptions in Euler’s theoryAssumptions in Euler s theory • Material is homogeneous and isotropic • Axis of column is perfectly straight when unloaded • Line of thrust coincides exactly with the unstrained axis of the column • Column fails by buckling alone • Flexural rigidity EI is uniform S lf h f l l d• Self weight of column is neglected • Stresses are within elastic limit Dept. of CE, GCE Kannur Dr.RajeshKN 36
  • 37. Euler’s theory P y 2 d y EI M One end fixed and the other end free ( ) 2 d y EI P yδ⇒ = − P A δ 2 y EI M dx = ( )2 EI P y dx δ⇒ = 2 d y EI P Pδ 2 d y P P y δ + = y2 y EI Py P dx δ+ = 2 y dx EI EI + = y lSolution for the above differential equation is: 1 2cos sin P P y C x C x EI EI δ ⎛ ⎞ ⎛ ⎞ = + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ xEI EI⎝ ⎠ ⎝ ⎠ When 0, 0x y= = 1C δ⇒ = − x B Dept. of CE, GCE Kannur Dr.RajeshKN 37
  • 38. dy P P P P⎛ ⎞ ⎛ ⎞ dy P 1 2sin cos dy P P P P C x C x dx EI EI EI EI ⎛ ⎞ ⎛ ⎞ = − +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ When 0, 0 dy x dx = = 2 20 0 0 P C C EI ⇒ = = ⇒ = When x l y δ= = cos P lδ δ δ ⎛ ⎞ ⇒ +⎜ ⎟ 3 5 cos 0 P P l l π π π⎛ ⎞ ⇒⎜ ⎟ When ,x l y δ= = cos l EI δ δ δ⇒ = − +⎜ ⎟ ⎝ ⎠ cos 0 , , ... 2 2 2 l l EI EI = ⇒ =⎜ ⎟ ⎝ ⎠ P l π Th l t ti l l i 2 P l EI π = 2 EI P π 2 EI P π The least practical value is: 2el l= Effective length 2 4 EI P l π = 2 e EI P l π = P⎛ ⎞ ⎛ ⎞ e Effective length Dept. of CE, GCE Kannur Dr.RajeshKN 38 cos 1 cos 2 e P x y x EI l π δ δ δ ⎛ ⎞ ⎛ ⎞ = − + = −⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠
  • 39. Euler’s theory Py ( ) 2 d y EI M P H l One end fixed and the other hinged H A ( )2 y EI M Py H l x dx = = − + − ( ) 2 d y EI P H l y( )2 y EI Py H l x dx + = − ( )cos sin P P H C C l ⎛ ⎞ ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ y l ( )1 2cos siny C x C x l x EI EI P = + + −⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ x ⎛ ⎞ ⎛ ⎞ x 1 2sin cos dy P P P P H C x C x dx EI EI EI EI P ⎛ ⎞ ⎛ ⎞ = − + −⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ When 0 0x y= = 1 10 H H C l C l⇒ = + ⇒ = − B M Dept. of CE, GCE Kannur Dr.RajeshKN 39 When 0, 0x y 1 1 P P P M
  • 40. When 0, 0 dy x dx = = 2 20 P H H EI C C EI P P P ⇒ = − ⇒ = When 0x l y= = 0 cos sin H P H EI P l l l ⎛ ⎞ ⎛ ⎞ = − +⎜ ⎟ ⎜ ⎟ tan P P l l ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ When , 0x l y= = 0 cos sinl l l P EI P P EI +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ tan l l EI EI =⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ P 2 20.25 2EI EI P π 4.5 radians P l EI = 2 2 P l l = ≈ 2 EI P π l l2 e EI P l π = 2 el = Dept. of CE, GCE Kannur Dr.RajeshKN 40
  • 41. Euler’s theory P y 2 d y EI M M P Both ends fixed A M0 02 y EI M M Py dx = = − 2 d y EI P M y2 0d y P M 02 y EI Py M dx + = 0P P M⎛ ⎞ ⎛ ⎞ y l 0 2 y y dx EI EI + = 0 1 2cos sin P P M y C x C x EI EI P ⎛ ⎞ ⎛ ⎞ = + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞ x 1 2sin cos dy P P P P C x C x dx EI EI EI EI ⎛ ⎞ ⎛ ⎞ = − +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ x When 0 0x y= = 0 0 1 10 M M C C⇒ = + ⇒ = − B M Dept. of CE, GCE Kannur Dr.RajeshKN 41 When 0, 0x y 1 1 P P P M0
  • 42. When 0, 0 dy x dx = = 2 20 0 P C C EI ⇒ = ⇒ = When 0x l y= = 0 0 0 cos M P M l P EI P ⎛ ⎞ = − +⎜ ⎟ 0 1 cos 0 M P l ⎡ ⎤⎛ ⎞ ⇒ − =⎢ ⎥⎜ ⎟ cos 1 P l ⎛ ⎞ ⎜ ⎟ When , 0x l y= = P EI P ⎜ ⎟ ⎝ ⎠ P EI ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦ 0 2 4 6 P l π π π⇒ =cos 1l EI =⎜ ⎟ ⎝ ⎠ 2 4 EI P π 0,2 ,4 ,6 ...l EI π π π⇒ = 2 P l π 2 P l = 2 EI l 2l EI π= 2 2 e EI P l π = 2 e l l = Dept. of CE, GCE Kannur Dr.RajeshKN 42
  • 43. Effective lengthEnd conditions Both ends hinged g l One end fixed and the other end free 2l B th d fi d One end fixed and the other hinged 2l Both ends fixed 2l Dept. of CE, GCE Kannur Dr.RajeshKN 43
  • 44. Limitations of Euler’s theoryLimitations of Euler s theory • Applicable to ideal cases only. There may be imperfections in the l th l d t tl th h th t id f th 2 column, the load may not pass exactly through the centroid of the column section • Direct stress is not taken into account 2 2E e EI P l π =• Strength of the material is not taken into account 2 2 E E e P EI A Al π σ = = 2 2 2 EAr Eπ π 22E e e EAr E Al l r π π σ⇒ = = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 44
  • 45. σEσE l / Validity limits of Euler’s formula le /r Dept. of CE, GCE Kannur Dr.RajeshKN 45 Critical stress for mild steel with E=2x105 MPa
  • 46. 2 l Eπe E l E OD r π σ = = 5 2 2 10 NEL t 2 250 N mmPLσ =Stress at limit of proportionality 5 2 2 10 N mmE = ×Let ( )2 5 2 10 89 250 el r π × ∴ = = 250r i.e., Euler’s theory is applicable for 89el > for mild steel r Dept. of CE, GCE Kannur Dr.RajeshKN 46
  • 47. Rankine’s theoryy 2 2Euler EI P π = c cP Aσ=For short compression members, For long columns, 2Euler el g , Rankine proposed a general empirical formula: 1 1 1 Rankine c EulerP P P = + For a short compression member, PE is very large. P P∴ ≈Rankine cP P∴ ≈ For long columns, 1/PEuler is very large. 2 2 1 el P EIπ = Rankine EulerP P≈ EulerP EIπ 2 1 1 1 R ki EIP A πσ = + 2 I Ar= Dept. of CE, GCE Kannur Dr.RajeshKN 47 2 Rankine c e EIP A l πσ
  • 48. 1 1 1 2 2 r Eπ σ ⎛ ⎞ +⎜ ⎟ 2 2 1 1 1 Rankine cP A r EA l σ π = + ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ 2 2 c e Rankine c E lA P r E l π σ σ π +⎜ ⎟ ⎝ ⎠= ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ 2 2 c c Rankine A A P l l σ σ σ = = ⎛ ⎞ ⎛ ⎞ c a σ = el⎝ ⎠ c el⎜ ⎟ ⎝ ⎠ 2 1 1c e el l a E r r σ π ⎛ ⎞ ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 2 a Eπ 2 2 Crushing loadc Rankine A P l l σ = = ⎛ ⎞ ⎛ ⎞ 2 1 el a r ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠1 1e el l a a r r ⎛ ⎞ ⎛ ⎞ + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ r⎝ ⎠ Factor that accounts for bucklingg Dept. of CE, GCE Kannur Dr.RajeshKN 48
  • 49. Find the length of the column for which Rankine’s and Euler’s formulae give the same buckling load: Rankine EulerP P= 2 A EIσ π 1/2 2 2 ⎛ ⎞2 2 1 c ee A EI ll a r σ π = ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠ 1/2 2 2 2e c Er l Ea π σ π ⎛ ⎞ = ⎜ ⎟ −⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 49
  • 50. Problem: Compare the buckling (crippling) loads given by Rankine’sProblem: Compare the buckling (crippling) loads given by Rankine s and Euler’s formulae for a tubular strut hinged at both ends, 6 m long having outer diameter 15 cm and thickness 2 cm. Given, 4 2 2 1 8 10 N mm , 567 N mm , 1600 cE aσ= × = = For what length of the column does the Euler’s formula cease to apply?For what length of the column does the Euler s formula cease to apply? 2 2Euler EI P l π = ( )4 4 4 150 110 17663604.69 mm 64 I π = − = el 6 m 6000 mmel l= = =( )64 e 2 2 387406.2 NEuler EI P l π = = 387.4 kN= 2Euler el ( )2 2 2π Dept. of CE, GCE Kannur Dr.RajeshKN 50 ( )2 2 2 150 110 8168.141 mm 4 A π = − =
  • 51. c A P σ 2 1 c Rankine e P l a r σ = ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠ 2 4 17663604.69 mmI Ar= = 17663604.69 46.503 mm 8168.141 I r A = = = 567 8168.141 406097 78 NP × 406 098 kN=2 406097.78 N 1 6000 1 1600 46.503 RankineP = = ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠ 406.098 kN= 2 2E Eπ σ = ( )2 4 8 10 37 317el π × ∴ = = 2 EP EIπ σ = = To find the length of the column above which Euler’s formula is applicable 2E el r σ ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ 37.317 567r ∴ = =2E eA Al σ = = 46 503 37 317l 1735 34 mm 1 735 m Dept. of CE, GCE Kannur Dr.RajeshKN 51 46.503 37.317el∴ = × 1735.34 mm 1.735 m= =
  • 52. Long column under eccentric loading P σ =For short columns P A σ = M P e= For short columns, e .M P e Z Z σ = = .M P e= .P P e y A I σ = ± Z Z A I . . 1 P P e y P ey⎛ ⎞ ± +⎜ ⎟2 2 1 y y A Ar A r σ ⎛ ⎞ = ± = +⎜ ⎟ ⎝ ⎠ Aσ 2 1 A P ey r σ = ⎛ ⎞ +⎜ ⎟ ⎝ ⎠ 2 A P al ey σ = ⎛ ⎞⎛ ⎞ For long columns, Dept. of CE, GCE Kannur Dr.RajeshKN 52 2 2 1 1eal ey r r ⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
  • 53. Secant formula P A e 2 2 0 d y EI Py⇒ + = 2 2 d y EI Py= − Both ends hinged 2 y dx 2 2 0 d y P y d EI + = 2 y dx y l 2 dx EI P P⎛ ⎞ ⎛ ⎞ Solution for the above differential equation is: y x 1 2cos sin P P y C x C x EI EI ⎛ ⎞ ⎛ ⎞ = +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ When 0,x y e= = 1C e⇒ = B When 0,x y e 1C e⇒ 2sin cos dy P P P P e x C x dx EI EI EI EI ⎛ ⎞ ⎛ ⎞ = − +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠dx EI EI EI EI⎝ ⎠ ⎝ ⎠ When 0 l dy x = = sin 2 l P EI C e ⎛ ⎞ ⎜ ⎟ ⎝ ⎠= Dept. of CE, GCE Kannur Dr.RajeshKN 53 When , 0 2 x dx = = 2 cos 2 C e l P EI = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠
  • 54. l P⎡ ⎤⎛ ⎞ sin 2 cos sin cos l P EIP P y e x x EI EIl P ⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟ 2 sin 2 l P EI ⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎛ ⎞ cos 2 EI ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦ l P⎛ ⎞ max 2 When , cos 2 2 cos 2 EIl l P x y y e EI l P EI ⎢ ⎥⎜ ⎟ ⎛ ⎞ ⎝ ⎠⎢ ⎥= = = +⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦ max .sec 2 l P y e EI ⎛ ⎞ ⇒ = ⎜ ⎟ ⎝ ⎠ max max . .sec 2 l P M Py P e EI ⎛ ⎞ = = ⎜ ⎟ ⎝ ⎠2 EI⎝ ⎠ P My P Pey l P P ey l P⎡ ⎤⎛ ⎞ ⎛ ⎞ max 2 sec 1 sec 2 2 c c cP My P Pey l P P ey l P A I A I EI A r EI σ ⎡ ⎤⎛ ⎞ ⎛ ⎞ = + = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 54
  • 55. Secant formula P δ One end fixed and the other end free A δ e ( ) 2 2 d y EI P e yδ= + − ( ) 2 2 d y P P y e d EI EI δ+ = + y ( )2 y dx ( )2 dx EI EI P P⎛ ⎞ ⎛ ⎞ Solution for the above differential equation is: l ( )1 2cos sin P P y C x C x e EI EI δ ⎛ ⎞ ⎛ ⎞ = + + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ When 0, 0x y= = ( )1C eδ⇒ = − + x When 0, 0x y ( )1 ( ) 2sin cos dy P P P P e x C x dx EI EI EI EI δ ⎛ ⎞ ⎛ ⎞ = − + +⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ B dx EI EI EI EI⎝ ⎠ ⎝ ⎠ When 0 0 dy x = = 0C⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN 55 When 0, 0x dx = = 2 0C⇒ =
  • 56. When x l y δ= = ( ) ( )cos P e l eδ δ δ ⎛ ⎞ ⇒ = + + +⎜ ⎟When ,x l y δ= = ( ) ( )cose l e EI δ δ δ⇒ = − + + +⎜ ⎟ ⎝ ⎠ ( ) 1 P lδ δ ⎡ ⎤⎛ ⎞ ⇒ + ⎢ ⎥⎜ ⎟( ) 1 cose l EI δ δ⇒ = + −⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦ ( )cos P e l eδ ⎛ ⎞ ⇒ + ⎜ ⎟( )cose l e EI δ⇒ + =⎜ ⎟ ⎝ ⎠ ( ) sec P e e lδ ⎛ ⎞ ⇒ + = ⎜ ⎟ ( ) P M P P lδ ⎛ ⎞ + ⎜ ⎟ ( ) .sece e l EI δ⇒ + = ⎜ ⎟ ⎝ ⎠ ( )max . .secM P e P e l EI δ= + = ⎜ ⎟ ⎝ ⎠ ⎡ ⎤⎛ ⎞ ⎛ ⎞ max 2 sec 1 secc c cP My P Pey P P ey P l l A I A I EI A r EI σ ⎡ ⎤⎛ ⎞ ⎛ ⎞ = + = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ Dept. of CE, GCE Kannur Dr.RajeshKN 56
  • 57. max . .sec 2 el P M P e EI ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ In general, 2 EI⎝ ⎠ max 2 1 sec 2 c eP ey l P A r EI σ ⎡ ⎤⎛ ⎞ = +⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦2A r EI⎢ ⎥⎝ ⎠⎣ ⎦ For short compression members (no buckling), max .M P e= For long columns (with buckling) el P M P ⎛ ⎞ ⎜ ⎟For long columns (with buckling), max . .sec 2 e M P e EI = ⎜ ⎟ ⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 57
  • 58. Problem: A hollow mild steel column with internal diameter 80 mm and external diameter 100 mm is 2.4 m long, hinged at both ends, carries a load of 60 kN at an eccentricity of 16mm from the geometrical axis. Calculate the maximum and minimum stresses in the column. Also find the maximum eccentricity so that no tension is induced in the section. 5 2 2 10 N mmE = × ( )4 4 4 100 80 2898119 mmI π = − = ( )2 2 2 100 80 2827 4 mmA π = − =( )100 80 2898119 mm 64 I 2400 mml l ( )100 80 2827.4 mm 4 A 2898119 32 015 mm I r 2400 mmel l= =32.015 mm 2827.4 r A = = = Dept. of CE, GCE Kannur Dr.RajeshKN 58
  • 59. sec el P M P e ⎛ ⎞ = ⎜ ⎟ 3 3 2400 60 10 60 10 16 secM ⎛ ⎞× × × × ⎜ ⎟ 0 96 kN max . .sec 2 e M P e EI = ⎜ ⎟ ⎝ ⎠ max 5 6 60 10 16 sec 2 2 10 2.898 10 M = × × × ⎜ ⎟ ⎜ ⎟× × ×⎝ ⎠ 0.96 kNm= 3 6 ⎧max max min cP M y A I σ = ± 3 6 max min 37.78 MPa60 10 0.96 10 50 4.69 MPa2827.4 2898119 σ ⎧× × × = ± = ⎨ ⎩ To find the maximum eccentricity so that no tension is induced in the section max 0cP M y A I − = . .sec 0 2 e c P P l y I e P A EI ⎛ ⎞ − =⎜ ⎟ ⎝ ⎠ 20.5 mme = Dept. of CE, GCE Kannur Dr.RajeshKN 59
  • 60. SummarySummary Transformation of stresses and strains (two dimensional case only)Transformation of stresses and strains (two-dimensional case only) - equations of transformation - principal stresses - mohr's circles of stress and strain - strain rosettes - compound stresses - superposition d it li it tiand its limitations – Eccentrically loaded members - columns - theory of columns - buckling theory - Euler's formula - effect of end conditions - eccentric loads and secant formula Dept. of CE, GCE Kannur Dr.RajeshKN 60
  • 61. "A teacher is one who makes himself progressively unnecessary "progressively unnecessary." Thomas Carruthers Dept. of CE, GCE Kannur Dr.RajeshKN 61