More Related Content
More from Dimitris Psounis
More from Dimitris Psounis(20)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
- 1. 30
1:
1.3:
! " # $ % &' $! " # $ % &' $
! " # $ % "
!
" # $ % #$ & '# () *$
*$
+ ) )+ ) )
,
. ($ " $
() " $ * ' :
! " # $ % "
*+
# '* ' ,' ,' (' -.# * $ * /# 0*
* ($)
*+ 1
2#" ' # ' 3 ' (+* - ( )&* .' $ ($
($
*+*+
# ' ,' ,' (+* - * ' # ( (
)&* .' $ ($ ($
1. * #
1.
&! " # $ % "
3 * $ &$ &$ , , , , 3 ' # & *
' *# 3# 4 * ' ( 3 # ' . '' *# 3# 4 * ' ( 3 # ' . '
/# 3 '.
5 +& ' # " * $ ( $ f(n) g(n). ( *:
- . /- 0 /
$
'()*+, ! ' -./
0 1 0 +
'2+
'(3*+, ! ' -./
1 0 +
'4+
1 0 +
'(5*+, ! ' -./
! ! 1 0 +
'(+
'(6*+, ! ' -./
! 1 0 +
'7+
'( *+, ! ' -./
0 ! 1 0 +
'8+
- 2. 1. * #
1.
1. ($
9! " # $ % "
! , ( ' . * f=O(g), ' * ( : f6g.
# ($ .* :# ($ .* :
* (3 *# '*&* ( * ( *# n0,
f(n) * ' ' #( *# " ( ' cg(n) 3
*# c.
))(()( ngOnf = )()(0:0,00 ngcnfcn ⋅≤≤>>∃ 0nn ≥
H ). f(n)=O(g(n)) + 0* « f .)* $ ' /# 3 ' g»
1. * #
1.
1. ($
:! " # $ % "
$ + & * $ )# & * ' # (:
11
+* -* * ( : 2n=O(n3)
(+* - :
5) * f(n)=2n, g(n)=n3
.3 * n0=1, c=2.
3
22
)()(
nn
ncgnf
≤
≤
)&* 3 * n71
2
1 n≤
1. * #
1.
2. ($ o
;! " # $ % "
! , ( ' . * f= (g), ' * ( : f<g.
# ($ .* :# ($ .* :
* (3 *# '*&* ( 3 * * " *# c f(n)
* ' ' #( *# ( ' cg(n) * ( *# n0
H ). f(n)= (g(n)) + 0* « f .)* $ '
/# 3 ' g»
# )"!!
n=O(n)
))(()( ngonf = )()(0::0 0 ngcnfnc ⋅<≤∃>∀ 0nn ≥
n=O(n)
n8o(n)
n=o(n2)
n=o(n3)
… . . .
(+* - * ' +& 3 #. * ' 3 '* 3 * *#
c>0.
1. * #
1.
2. ($ o
<! " # $ % "
$ + & * $ )# & * ' # (:
22
+* -* * ( : 2n= (n2)
(+* - :
5 c>0:
nc
cn
cnn
ncgnf
<
<
<
<
/2
2
2
)()(
2
9# #)* * .3 * $ n0
nc </2
c/2
- 3. 1. * #
1.
4. ($
=! " # $ % "
! , ( ' . * f= (g), ' * ( : f7g.
# ($ .* :# ($ .* :
* (3 *# '*&* ( * ( *# n0,
f(n) * ' ' *3 & *# " ( ' cg(n) 3
*# c.
))(()( ngnf Ω= 0)()(:0,00 ≥⋅≥>>∃ ngcnfcn 0nn ≥
H ). f(n)= (g(n)) + 0* « f .)* $ /# 3 '
g»
1. * #
1.
4. ($
! " # $ % "
$ + & * $ )# & * ' # (:
33
+* -* * ( : 4n= (logn)
(+* - :
5) * f(n)=4n, g(n)=logn
.3 * n0=1, c=4.
nn
ncgnf
log44
)()(
≥
≥
)&* 3 * n71
nn log≥
1. * #
1.
5. ($
! " # $ % "
! , ( ' . * f= (g), ' * ( : f>g.
# ($ .* :# ($ .* :
* (3 *# '*&* ( 3 * * " *# c f(n)
* ' ' *3 & *# ( ' cg(n) * ( *# n0
H ). f(n)= (g(n)) + 0* « f .)* $
/# 3 ' g»
# )"!!
n= (n)
))(()( ngnf ω= 0)()(::0 0 ≥⋅>∃>∀ ngcnfnc 0nn ≥
n= (n)
n8 (n)
n= (logn)
n= (loglogn)
… . . .
(+* - * ' +& 3 #. * ' 3 '* 3 * *#
c>0.
1. * #
1.
5. ($
! " # $ % "
$ + & * $ )# & * ' # (:
44
+* -* * ( : 0.5n2= (n)
(+* - :
5 c>0:
c
n
cnn
ncgnf
5.0
5.0
)()(
2
>
>
>
>
9# #)* * .3 * $ n0
cn 2>
c2
- 4. 1. * #
1.
5. ($
! " # $ % "
! , ( ' . * f= (g), ' * ( f=g.
# ($ .* :# ($ .* :
* (3 *# '*&* ( * ( *# n0,
f(n) /# * ( ' ( ( ' g(n), ( ' "
0* ' ) * *$ *$ *#.$:
))(()( ngnf Θ= )()()(0:0,,0 21210 ngcnfngcccn ≤≤<>>∃
0nn ≥
H ). f(n)= (g(n)) + 0* « f * ' *
' g»
1. * #
1.
5. ($
&! " # $ % "
$ + & * $ )# & * ' # (:
55
+* -* * ( : 4n= (n)
(+* - :
5) * f(n)=4n, g(n)=n
.3 * n0=1, c1=2.
24
24
)()( 1
≥
≥
≥
nn
ngcnf
)&* 3 * n71
.3 * n0=1, c2=6.
)&* 3 * n71
24 ≥
64
64
)()(
≤
≤
≤
nn
ncgnf
' +* - * ( )&* .' $ ($ ($ * -& 2
' # " * ':
1. * #
2. :#
9! " # $ % "
' # " * ':
* )# & * ' ' ) # (,
* ' * )#" ( * #" $:
'* ,$ .' $ *' ($ ( *& $) #( $ '
=∝+
=
Θ=≠
=
∝+→
))(()(,
))(()(,0
))(()(,0
)(
)(
lim
ngnf
ngonf
ngnfc
ng
nf
n
ωτετ
τετ
τετ
'* ,$ .' $ *' ($ ( *& $) #( $ '
*-* * ' )&* .' $ ($ ($ * ' :
3 0 * # ' (#
' 3 * . * ' / * ' )&* "
() ' ) $ ($ ($
1. * #
2. :#
:! " # $ % "
$ + & * $ )# & * ' # (:
66
+* -* * ( : 0.5n2= (n)
(+* - :
'* ,$ 0.5n2= (n)
∝+===
∝+→∝+→∝+→
)5.0(lim
5.0
lim
)(
)(
lim
2
n
n
n
ng
nf
nnn
66
+* -* * ( : 2n=o(3n)
(+* - :
'* ,$ 2n=o(3n)
0)66.0(lim
3
2
lim
3
2
lim
)(
)(
lim ====
∝+→∝+→∝+→∝+→
n
n
n
nn
n
nn ng
nf
- 5. 1. * #
3. " $ &$ &$
;! " # $ % "
)& ' ( *$ # / '* $ # * $ 3 $ &$
&$:&$:
! : f=g ' (' ' f6g f7g
-.# * ( ( ' )&* )&*
! : ' f<g ( * f6g
-.# * ( ( ' )&* )&*
))(()( ngOnf =))(()( ngnf Θ= ))(()( ngnf Ω=
))(()( ngnf ο= ))(()( ngOnf =
-.# * ( ( ' )&* )&*
(!*' )&* ' # / )
! : ' f>g ( * f7g
-.# * ( ( ' )&* )&*
(!*' )&* ' # / )
))(()( ngnf ω= ))(()( ngnf Ω=
1. * #
4. $ &'
<! " # $ % "
5 # O(n2):
)& ' *-"$:)& ' *-"$:
1=O(n2)
n+2=O(n2)
logn=O(n2)
logn+5loglogn=O(n2)
3n2=O(n2)
' # 3 ( ($ O(n2) * /# 0* ( *$ $ ' # " * $
* ' #( *#*$ " *$ ( ' n2.* ' #( *#*$ " *$ ( ' n2.
9# O(n2) . #* * ' * ' 0* $ &' ' # " * ' '
3# / * ' ) :
* ),$ .)* * # " * ($ * ' ( .
)(2
)(1
2
2
nOn
nO
∈+
∈
. " * $
; '( $ 1
' ' * 3 * 0* 3 # ' # " * ' f g
* , * * < ' )&* ). ' ) & $ f * '
=! " # $ % "
* , * * < ' )&* ). ' ) & $ f * '
g.
f(n) g(n) o O
n2 n3 < <
n1.5 n
4logn 8logn
5n2 0.5n2
.). .)* * * * < 1 * , + ( n2=o(n3)
5n2 0.5n2
n3-5n 8logn
. " * $
; '( $ 2
' ' * 3 * 0* 3 # ' # " * ' f g
* , * * " " ' 3 * $ ( $ 3 &$
! " # $ % "
* , * * " " ' 3 * $ ( $ 3 &$
&$ )&* * -& $ f $ g
g(n)=5 g(n)=logn g(n)=n2 g(n)=2n g(n)=5n g(n)=nn
f(n)=loglogn
f(n)=4logn
f(n)=n
f(n)=2n2
.). 1 * .)* * * / & loglogn= (1)
f(n)=2n
f(n)=6n5+n
f(n)=3n
f(n)=n!
- 6. . " * $
/ # 3" 1
+* -* *, ' ' $ )#" ' ) # & &
& ( :
! " # $ % "
& ( :
)(.6
)3(2.5
)(46.4
)(loglog.3
)(4.2
)log(.1
2
2
22
nn
o
nn
nn
nnn
nnOn
n
nn
ω=
=
Θ=+
Ω=
Θ=+
=
)(.6 nn ω=
. " * $
/ # 3" 2
+* -* *, ' ' $ )#" # & ' # ' ( :
! " # $ % "
)(.6
)3(2.5
)(46.4
)(loglog.3
)(4.2
)log(.1
2
2
22
nn
o
nn
nn
nnn
nnOn
n
nn
ω=
=
Θ=+
Ω=
Θ=+
=
)(.6 nn ω=