SlideShare a Scribd company logo
1 of 10
Download to read offline
ΠΛΗ30
ΕΝΟΤΗΤΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Μάθηµα 1.6:
Περισσότερα για τον υπολογισµό αθροισµάτωνΠερισσότερα για τον υπολογισµό αθροισµάτων
∆ηµήτρης Ψούνης
ΠΕΡΙΕΧΟΜΕΝΑ
Α. Σκοπός του Μαθήµατος
B. Μεθοδολογία Ασκήσεων
1. Υπολογισµός Φραγµάτων Αθροισµάτων
1. Υπολογισµός Άνω Φράγµατος
2. Υπολογισµός Κάτω Φράγµατος
2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος
2∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
Γ.Ασκήσεις
Α. Σκοπός του Μαθήµατος
Οι στόχοι του µαθήµατος είναι:
Επίπεδο Α
(-)
Επίπεδο Β
(-)
3∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
(-)
Επίπεδο Γ
Υπολογισµός Φραγµάτων Αθροισµάτων
Υπολογισµός Κλειστών Τύπων Αθροισµάτων
B. Μεθοδολογία Ασκήσεων
1. Υπολογισµός Φραγµάτων Αθροισµάτων
4∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
Ασχολούµαστε µε τον υπολογισµό περίπλοκων αθροισµάτων:
Σε κάποιες ασκήσεις είναι ανέφικτο να υπολογίσουµε το άθροισµα απ’
ευθείας µε κάποιον από τους γνωστούς τύπους.
Στις περίπτωση αυτή υπολογίζουµε φράγµατα για να εκτιµήσουµε την
πολυπλοκότητα της συνάρτησης.
Θα υπολογίσουµε ένα άνω φράγµα, αντικαθιστώντας τον όρο του
αθροίσµατος µε «κάτι» µεγαλύτερο που είναι δυνατόν να υπολογιστεί.
Θα υπολογίσουµε ένα κάτω φράγµα, αντικαθιστώντας τον όρο του
αθροίσµατος µε «κάτι» µικρότερο που είναι δυνατόν να υπολογιστει.
Αν τύχει τα άνω και κάτω φράγµατα που υπολογίσαµε να είναι ίσα τότε
έχουµε εξάγει ασυµπτωτική εκτίµηση της πολυπλοκότητας του αθροίσµατος.
Αφού αν f=O(g) και f=Ω(g) τότε f=Θ(g).
Αν τα φράγµατα δεν είναι ίσα τότε έχουµε µια εκτίµηση για την
πολυπλοκότητα του αλγορίθµου.
B. Μεθοδολογία Ασκήσεων
1. Υπολογισµός Φραγµάτων Αθροισµάτων
1. Υπολογισµός Άνω Φράγµατος
5∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
Ο υπολογισµός του άνω φράγµατος γίνεται κάνοντας αντικατάσταση του
όρου του αθροίσµατος µε «κάτι» µεγαλύτερο.
Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η
προσέγγιση που θα πάρουµε.
ΠΑΡΑ∆ΕΙΓΜΑ:
Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: ∑=
n
iinT log)(Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα:
1η Λύση: Προφανώς ισχύει:
Συνεπώς: άρα έπεται:
2η Λύση: Προφανώς ισχύει:
Συνεπώς:
άρα έπεται:
∑=
=
n
i
iinT 1
log)(
2
log iii ≤
)(log)( 3
1
2
1
niiinT
n
i
n
i
Θ=≤= ∑∑ ==
)()( 3
nOnT =
niii loglog ≤
)log()(loglogloglog)( 22
111
nnnninniiinT
n
i
n
i
n
i
Θ=Θ⋅==≤= ∑∑∑ ===
)log()( 2
nnOnT =
B. Μεθοδολογία Ασκήσεων
1. Υπολογισµός Φραγµάτων Αθροισµάτων
2. Υπολογισµός Κάτω Φράγµατος
6∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
Ο υπολογισµός του κάτω φράγµατος γίνεται κάνοντας αντικατάσταση του
όρου του αθροίσµατος µε «κάτι» µικρότερο.
Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η
προσέγγιση που θα πάρουµε.
ΠΑΡΑ∆ΕΙΓΜΑ:
Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: ∑=
n
iinT log)(
∆εν µπορέσαµε να υπολογίσουµε ασυµπτωτική εκτίµηση για το άθροισµα
αλλά εκτιµήσαµε ότι είναι και
Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα:
Λύση: Προφανώς ισχύει:
Συνεπώς: άρα έπεται:
∑=
=
n
i
iinT 1
log)(
iii ≥log
)(log)( 2
11
niiinT
n
i
n
i
Θ=≥= ∑∑ ==
)()( 2
nnT Ω=
)log()( 2
nnOnT =)()( 2
nnT Ω=
B. Μεθοδολογία Ασκήσεων
2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος
7∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
Κλειστός τύπος ενός αθροίσµατος ονοµάζεται µια πολυωνυµική παράσταση
που προσεγγίζει το ακριβές αποτέλεσµα ενός αθροίσµατος.
Η κατασκευή του κλειστού τύπου γίνεται αν µπορέσουµε να υπολογίσουµε
άνω και κάτω φράγµατα που είναι ίσα µεταξύ τους.
Εφόσον τα καταφέρουµε προσεγίζουµε µέσω ενός πολυωνύµου το
αποτέλεσµα του αθροίσµατος.αποτέλεσµα του αθροίσµατος.
ΠΑΡΑ∆ΕΙΓΜΑ:
Να εξάγετε κλειστό τύπο για το άθροισµα :
Λύση:
Για το άνω φράγµα έχουµε: συνεπώς:
Για το κάτω φράγµα έχουµε:
συνεπώς )()( 3
nnT Ω=
∑=
=
n
ni
inT 2/
2
)(
)()( 3
1
2
2/
2
niinT
n
i
n
ni
Θ=≤= ∑∑ ==
)()( 3
nnT Ο=
)(
48
)1
2
(
4
)1
2
(
4
1
22
)(
3
2322
2/
2
2/
2
2/
2
n
nnnnn
n
n
nn
inT
n
ni
n
ni
n
ni
Θ=+=+=+−=
=





=





≥= ∑∑∑ ===
B. Μεθοδολογία Ασκήσεων
2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος
8∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
(….συνέχεια….)
Άρα αφού και έπεται ότι:
Άρα µπορούµε µε ασφάλεια να ισχυριστούµε ότι το άθροισµα είναι ένα
πολυώνυµο τρίτου βαθµού, άρα γράφεται
Για να υπολογίσουµε τους συντελεστές κάνουµε αντικατάσταση στην σχέση:
)()( 3
nnT Ω= )()( 3
nnT Ο= )()( 3
nnT Θ=
∑=
=Τ
n
ni
in 2/
2
)(
dcnbnannT +++= 23
)(
Για να υπολογίσουµε τους συντελεστές κάνουµε αντικατάσταση στην σχέση:
θέτουµε διαδοχικά n=1,n=2,n=3,n=4 οπότε προκύπτει το εξής σύστηµα 4 εξισώσεων µε 4
αγνώστους:
Το σύστηµα έχει λύση
Άρα τελικά υπολογίσαµε τον κλειστό τύπο για το άθροισµα:
∑=
=+++
n
ni
idcnbnan 2/
223
2941664
143927
5248
1
=+++
=+++
=+++
=+++
dcba
dcba
dcba
dcba
0,16,0,5,0,33,0 ==== dcba
nnnnT 16,05,033,0)( 23
++=
Γ. Ασκήσεις
Εφαρµογή 1
Υπολογίστε µία ασυµπτωτική εκτίµηση για την συνάρτηση πολυπλοκότητας:
9∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
)!log()( nnT =
Γ. Ασκήσεις
Εφαρµογή 2
Υπολογίστε κλειστό τύπο για το άθροισµα
10∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων
∑ =
=
n
ni
inT 3/
)(

More Related Content

What's hot

ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1Dimitris Psounis
 
ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1Dimitris Psounis
 
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝDimitris Psounis
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7Dimitris Psounis
 

What's hot (20)

ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
 
ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.5
ΠΛΗ30 ΜΑΘΗΜΑ 4.5ΠΛΗ30 ΜΑΘΗΜΑ 4.5
ΠΛΗ30 ΜΑΘΗΜΑ 4.5
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.3
ΠΛΗ31 ΜΑΘΗΜΑ 2.3ΠΛΗ31 ΜΑΘΗΜΑ 2.3
ΠΛΗ31 ΜΑΘΗΜΑ 2.3
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.4
ΠΛΗ30 ΜΑΘΗΜΑ 3.4ΠΛΗ30 ΜΑΘΗΜΑ 3.4
ΠΛΗ30 ΜΑΘΗΜΑ 3.4
 
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.1
ΠΛΗ30 ΜΑΘΗΜΑ 4.1ΠΛΗ30 ΜΑΘΗΜΑ 4.1
ΠΛΗ30 ΜΑΘΗΜΑ 4.1
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.2
ΠΛΗ30 ΜΑΘΗΜΑ 1.2ΠΛΗ30 ΜΑΘΗΜΑ 1.2
ΠΛΗ30 ΜΑΘΗΜΑ 1.2
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 2 - ΑΝΑΖΗΤΗΣΗ ΣΤΟΙΧΕΙΟΥ ΣΕ ΠΙΝΑΚΑ
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.6
ΠΛΗ30 ΜΑΘΗΜΑ 3.6ΠΛΗ30 ΜΑΘΗΜΑ 3.6
ΠΛΗ30 ΜΑΘΗΜΑ 3.6
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
 

Viewers also liked

ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3Dimitris Psounis
 

Viewers also liked (20)

ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 (4in1)
 
ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5
 
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.5 (4sl)
 
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.4 (4sl)
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.4 (4in1)
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
 
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)
ΠΛΗ30 ΚΑΡΤΑ 1.3 (4sl)
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
 

Similar to ΠΛΗ30 ΜΑΘΗΜΑ 1.6

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2Dimitris Psounis
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑDimitris Psounis
 
ΑΕΠΠ: 22ο Φύλλο Ασκήσεων
ΑΕΠΠ: 22ο Φύλλο ΑσκήσεωνΑΕΠΠ: 22ο Φύλλο Ασκήσεων
ΑΕΠΠ: 22ο Φύλλο ΑσκήσεωνNikos Michailidis
 
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη Εφαρμογών
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη ΕφαρμογώνΠροσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη Εφαρμογών
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη ΕφαρμογώνPeriklis Georgiadis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2 Dimitris Psounis
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3Dimitris Psounis
 

Similar to ΠΛΗ30 ΜΑΘΗΜΑ 1.6 (18)

ΠΛΗ30 ΜΑΘΗΜΑ 6.1
ΠΛΗ30 ΜΑΘΗΜΑ 6.1ΠΛΗ30 ΜΑΘΗΜΑ 6.1
ΠΛΗ30 ΜΑΘΗΜΑ 6.1
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
 
ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑ
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 1 - ΔΙΑΠΕΡΑΣΗ ΠΙΝΑΚΑ
 
ΠΛΗ30 ΜΑΘΗΜΑ 6.3
ΠΛΗ30 ΜΑΘΗΜΑ 6.3ΠΛΗ30 ΜΑΘΗΜΑ 6.3
ΠΛΗ30 ΜΑΘΗΜΑ 6.3
 
ΑΕΠΠ: 22ο Φύλλο Ασκήσεων
ΑΕΠΠ: 22ο Φύλλο ΑσκήσεωνΑΕΠΠ: 22ο Φύλλο Ασκήσεων
ΑΕΠΠ: 22ο Φύλλο Ασκήσεων
 
Algorithms - Exercise 1
Algorithms - Exercise 1Algorithms - Exercise 1
Algorithms - Exercise 1
 
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη Εφαρμογών
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη ΕφαρμογώνΠροσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη Εφαρμογών
Προσομοίωση με απλά μέσα: μια εισαγωγή στην Ανάπτυξη Εφαρμογών
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.2
ΠΛΗ10 ΜΑΘΗΜΑ 1.2ΠΛΗ10 ΜΑΘΗΜΑ 1.2
ΠΛΗ10 ΜΑΘΗΜΑ 1.2
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.4
ΠΛΗ10 ΜΑΘΗΜΑ 1.4ΠΛΗ10 ΜΑΘΗΜΑ 1.4
ΠΛΗ10 ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
 
ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
 
ΠΛΗ31 ΤΕΣΤ 22
ΠΛΗ31 ΤΕΣΤ 22ΠΛΗ31 ΤΕΣΤ 22
ΠΛΗ31 ΤΕΣΤ 22
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
 
ΠΛΗ30 ΜΑΘΗΜΑ 6.5
ΠΛΗ30 ΜΑΘΗΜΑ 6.5ΠΛΗ30 ΜΑΘΗΜΑ 6.5
ΠΛΗ30 ΜΑΘΗΜΑ 6.5
 
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3
ΑΛΓΟΡΙΘΜΟΙ ΣΕ C - ΜΑΘΗΜΑ 3
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CDimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 

Recently uploaded

ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx
ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptxΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx
ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx41dimperisteriou
 
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΝίκος Θεοτοκάτος
 
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΝίκος Θεοτοκάτος
 
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdf
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdfΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdf
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdfChrisa Kokorikou
 
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptxΟι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx36dimperist
 
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptxΈκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx7gymnasiokavalas
 
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdf
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdfΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdf
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdfChrisa Kokorikou
 
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"margaritathymara1
 
Ιπτάμενη σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝ
Ιπτάμενη                σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝΙπτάμενη                σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝ
Ιπτάμενη σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝDimitra Mylonaki
 
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdf
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdfΤο τέλος του Δυτικού Ρωμαϊκού κράτους.pdf
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdfEvangelia Patera
 
Παρουσίαση καλλιτεχνικού θεάματος
Παρουσίαση          καλλιτεχνικού θεάματοςΠαρουσίαση          καλλιτεχνικού θεάματος
Παρουσίαση καλλιτεχνικού θεάματοςDimitra Mylonaki
 
Παρουσίαση καλλιτεχνικού θεάματος
Παρουσίαση                  καλλιτεχνικού θεάματοςΠαρουσίαση                  καλλιτεχνικού θεάματος
Παρουσίαση καλλιτεχνικού θεάματοςDimitra Mylonaki
 
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptxΗμέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx36dimperist
 
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗ
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗB2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗ
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗChrisa Kokorikou
 
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptxΕπίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx7gymnasiokavalas
 
Οι δικές μας αεροσκάφες
Οι δικές μας                    αεροσκάφεςΟι δικές μας                    αεροσκάφες
Οι δικές μας αεροσκάφεςDimitra Mylonaki
 
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptx
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptxΕξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptx
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptxntanavara
 
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptx
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptxΠρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptx
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptxntanavara
 
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdfMaria Koufopoulou
 
13η ENΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ: ΚΑΤΑΣΚΕΥΕΣ.pdf
13η ENΟΤΗΤΑ  ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ:  ΚΑΤΑΣΚΕΥΕΣ.pdf13η ENΟΤΗΤΑ  ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ:  ΚΑΤΑΣΚΕΥΕΣ.pdf
13η ENΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ: ΚΑΤΑΣΚΕΥΕΣ.pdfMaria Koufopoulou
 

Recently uploaded (20)

ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx
ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptxΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx
ΝΕΕΣ ΚΟΥΡΤΙΝΕΣ ΜΕ ΔΩΡΕΑ ΤΟΥ ΣΥΛΛΟΓΟΥ ΓΟΝΕΩΝ.pptx
 
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
 
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
ΚΠΑ Γ' ΓΥΜΝΑΣΙΟΥ 10.2.3 ΔΙΚΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ
 
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdf
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdfΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdf
ΣΠΑΣΕ ΤΗ ΣΙΩΠΗ ΑΠΟ ΤΟΥΣ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΟΥ Β2.pdf
 
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptxΟι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx
Οι μικροί αρτοποιοί της Γ τάξης και το ψωμί τους.pptx
 
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptxΈκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx
Έκθεση μαθητικής Ζωγραφικής- Η μαγεία των μοτίβων.pptx
 
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdf
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdfΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdf
ΣΤ2 -ΕΓΩ ΚΑΙ ΣΥ ΜΑΖΙ-ΦΙΛΟΙ ΠΑΝΤΟΤΙΝΟΙ .pdf
 
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"
1ο ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ-ECOMOBILITY "ΑΛΛΑΖΟΝΤΑΣ ΤΟΝ ΠΕΙΡΑΙΑ!"
 
Ιπτάμενη σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝ
Ιπτάμενη                σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝΙπτάμενη                σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝ
Ιπτάμενη σκάφη ΚΟΜΙΚ ΠΑΙΔΙΩΝ
 
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdf
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdfΤο τέλος του Δυτικού Ρωμαϊκού κράτους.pdf
Το τέλος του Δυτικού Ρωμαϊκού κράτους.pdf
 
Παρουσίαση καλλιτεχνικού θεάματος
Παρουσίαση          καλλιτεχνικού θεάματοςΠαρουσίαση          καλλιτεχνικού θεάματος
Παρουσίαση καλλιτεχνικού θεάματος
 
Παρουσίαση καλλιτεχνικού θεάματος
Παρουσίαση                  καλλιτεχνικού θεάματοςΠαρουσίαση                  καλλιτεχνικού θεάματος
Παρουσίαση καλλιτεχνικού θεάματος
 
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptxΗμέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx
Ημέρα Επιστημών – Επίδειξη πειραμάτων από τους μαθητές.pptx
 
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗ
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗB2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗ
B2 TΑΞΗ -ΜΗΝΥΜΑΤΑ ΓΙΑ ΤΑ ΑΔΕΣΠΟΤΑ.pdf-ΜΑΡΚΕΛΛΑ ΤΣΑΤΣΑΡΩΝΗ
 
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptxΕπίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx
Επίσκεψη μαθητών στην Έκθεση Η Μαγεία των Μοτίβων.pptx
 
Οι δικές μας αεροσκάφες
Οι δικές μας                    αεροσκάφεςΟι δικές μας                    αεροσκάφες
Οι δικές μας αεροσκάφες
 
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptx
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptxΕξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptx
Εξερευνώντας τα μυστήρια του ουρανού-Παρουσίαση.pptx
 
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptx
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptxΠρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptx
Πρόγραμμα - Πάμε μια βόλτα στο φεγγάρι.pptx
 
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf
15η ΕΝΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε ΤΑΞΗ :ΤΗΛΕΟΡΑΣΗ.pdf
 
13η ENΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ: ΚΑΤΑΣΚΕΥΕΣ.pdf
13η ENΟΤΗΤΑ  ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ:  ΚΑΤΑΣΚΕΥΕΣ.pdf13η ENΟΤΗΤΑ  ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ:  ΚΑΤΑΣΚΕΥΕΣ.pdf
13η ENΟΤΗΤΑ ΓΛΩΣΣΑΣ Ε΄ΤΑΞΗΣ: ΚΑΤΑΣΚΕΥΕΣ.pdf
 

ΠΛΗ30 ΜΑΘΗΜΑ 1.6

  • 1. ΠΛΗ30 ΕΝΟΤΗΤΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτωνΠερισσότερα για τον υπολογισµό αθροισµάτων ∆ηµήτρης Ψούνης
  • 2. ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος B. Μεθοδολογία Ασκήσεων 1. Υπολογισµός Φραγµάτων Αθροισµάτων 1. Υπολογισµός Άνω Φράγµατος 2. Υπολογισµός Κάτω Φράγµατος 2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος 2∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων Γ.Ασκήσεις
  • 3. Α. Σκοπός του Μαθήµατος Οι στόχοι του µαθήµατος είναι: Επίπεδο Α (-) Επίπεδο Β (-) 3∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων (-) Επίπεδο Γ Υπολογισµός Φραγµάτων Αθροισµάτων Υπολογισµός Κλειστών Τύπων Αθροισµάτων
  • 4. B. Μεθοδολογία Ασκήσεων 1. Υπολογισµός Φραγµάτων Αθροισµάτων 4∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων Ασχολούµαστε µε τον υπολογισµό περίπλοκων αθροισµάτων: Σε κάποιες ασκήσεις είναι ανέφικτο να υπολογίσουµε το άθροισµα απ’ ευθείας µε κάποιον από τους γνωστούς τύπους. Στις περίπτωση αυτή υπολογίζουµε φράγµατα για να εκτιµήσουµε την πολυπλοκότητα της συνάρτησης. Θα υπολογίσουµε ένα άνω φράγµα, αντικαθιστώντας τον όρο του αθροίσµατος µε «κάτι» µεγαλύτερο που είναι δυνατόν να υπολογιστεί. Θα υπολογίσουµε ένα κάτω φράγµα, αντικαθιστώντας τον όρο του αθροίσµατος µε «κάτι» µικρότερο που είναι δυνατόν να υπολογιστει. Αν τύχει τα άνω και κάτω φράγµατα που υπολογίσαµε να είναι ίσα τότε έχουµε εξάγει ασυµπτωτική εκτίµηση της πολυπλοκότητας του αθροίσµατος. Αφού αν f=O(g) και f=Ω(g) τότε f=Θ(g). Αν τα φράγµατα δεν είναι ίσα τότε έχουµε µια εκτίµηση για την πολυπλοκότητα του αλγορίθµου.
  • 5. B. Μεθοδολογία Ασκήσεων 1. Υπολογισµός Φραγµάτων Αθροισµάτων 1. Υπολογισµός Άνω Φράγµατος 5∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων Ο υπολογισµός του άνω φράγµατος γίνεται κάνοντας αντικατάσταση του όρου του αθροίσµατος µε «κάτι» µεγαλύτερο. Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η προσέγγιση που θα πάρουµε. ΠΑΡΑ∆ΕΙΓΜΑ: Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: ∑= n iinT log)(Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: 1η Λύση: Προφανώς ισχύει: Συνεπώς: άρα έπεται: 2η Λύση: Προφανώς ισχύει: Συνεπώς: άρα έπεται: ∑= = n i iinT 1 log)( 2 log iii ≤ )(log)( 3 1 2 1 niiinT n i n i Θ=≤= ∑∑ == )()( 3 nOnT = niii loglog ≤ )log()(loglogloglog)( 22 111 nnnninniiinT n i n i n i Θ=Θ⋅==≤= ∑∑∑ === )log()( 2 nnOnT =
  • 6. B. Μεθοδολογία Ασκήσεων 1. Υπολογισµός Φραγµάτων Αθροισµάτων 2. Υπολογισµός Κάτω Φράγµατος 6∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων Ο υπολογισµός του κάτω φράγµατος γίνεται κάνοντας αντικατάσταση του όρου του αθροίσµατος µε «κάτι» µικρότερο. Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η προσέγγιση που θα πάρουµε. ΠΑΡΑ∆ΕΙΓΜΑ: Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: ∑= n iinT log)( ∆εν µπορέσαµε να υπολογίσουµε ασυµπτωτική εκτίµηση για το άθροισµα αλλά εκτιµήσαµε ότι είναι και Εκτιµήστε ασυµπτωτικά την πολυπλοκότητα: Λύση: Προφανώς ισχύει: Συνεπώς: άρα έπεται: ∑= = n i iinT 1 log)( iii ≥log )(log)( 2 11 niiinT n i n i Θ=≥= ∑∑ == )()( 2 nnT Ω= )log()( 2 nnOnT =)()( 2 nnT Ω=
  • 7. B. Μεθοδολογία Ασκήσεων 2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος 7∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων Κλειστός τύπος ενός αθροίσµατος ονοµάζεται µια πολυωνυµική παράσταση που προσεγγίζει το ακριβές αποτέλεσµα ενός αθροίσµατος. Η κατασκευή του κλειστού τύπου γίνεται αν µπορέσουµε να υπολογίσουµε άνω και κάτω φράγµατα που είναι ίσα µεταξύ τους. Εφόσον τα καταφέρουµε προσεγίζουµε µέσω ενός πολυωνύµου το αποτέλεσµα του αθροίσµατος.αποτέλεσµα του αθροίσµατος. ΠΑΡΑ∆ΕΙΓΜΑ: Να εξάγετε κλειστό τύπο για το άθροισµα : Λύση: Για το άνω φράγµα έχουµε: συνεπώς: Για το κάτω φράγµα έχουµε: συνεπώς )()( 3 nnT Ω= ∑= = n ni inT 2/ 2 )( )()( 3 1 2 2/ 2 niinT n i n ni Θ=≤= ∑∑ == )()( 3 nnT Ο= )( 48 )1 2 ( 4 )1 2 ( 4 1 22 )( 3 2322 2/ 2 2/ 2 2/ 2 n nnnnn n n nn inT n ni n ni n ni Θ=+=+=+−= =      =      ≥= ∑∑∑ ===
  • 8. B. Μεθοδολογία Ασκήσεων 2. Υπολογισµός Κλειστού Τύπου Αθροίσµατος 8∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων (….συνέχεια….) Άρα αφού και έπεται ότι: Άρα µπορούµε µε ασφάλεια να ισχυριστούµε ότι το άθροισµα είναι ένα πολυώνυµο τρίτου βαθµού, άρα γράφεται Για να υπολογίσουµε τους συντελεστές κάνουµε αντικατάσταση στην σχέση: )()( 3 nnT Ω= )()( 3 nnT Ο= )()( 3 nnT Θ= ∑= =Τ n ni in 2/ 2 )( dcnbnannT +++= 23 )( Για να υπολογίσουµε τους συντελεστές κάνουµε αντικατάσταση στην σχέση: θέτουµε διαδοχικά n=1,n=2,n=3,n=4 οπότε προκύπτει το εξής σύστηµα 4 εξισώσεων µε 4 αγνώστους: Το σύστηµα έχει λύση Άρα τελικά υπολογίσαµε τον κλειστό τύπο για το άθροισµα: ∑= =+++ n ni idcnbnan 2/ 223 2941664 143927 5248 1 =+++ =+++ =+++ =+++ dcba dcba dcba dcba 0,16,0,5,0,33,0 ==== dcba nnnnT 16,05,033,0)( 23 ++=
  • 9. Γ. Ασκήσεις Εφαρµογή 1 Υπολογίστε µία ασυµπτωτική εκτίµηση για την συνάρτηση πολυπλοκότητας: 9∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων )!log()( nnT =
  • 10. Γ. Ασκήσεις Εφαρµογή 2 Υπολογίστε κλειστό τύπο για το άθροισµα 10∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 1.6: Περισσότερα για τον υπολογισµό αθροισµάτων ∑ = = n ni inT 3/ )(