More Related Content More from Dimitris Psounis More from Dimitris Psounis(20) ΠΛΗ30 ΜΑΘΗΜΑ 1.2 (4in1)1. 30
1:
1.2:
! "! #$ %! "! #$ %
& % ' ( %
! " # $
% & ' ( # # $ # # )*+,-./0 +
! " # $# %&
% & ' ( # # $ # # )*+,-./0 +
1 2 3 2
& 2 $
4$ 5# " $ $
" 6 $ $ ( 2 2 #
4$ 5# 7 8 9 $ 2:
8
. # "$% %
) $ ) % ):
" " *
( $! % )% )*)$ % ! +
* ! + , % " % " ( ) (
)% " ! "! #$ %.
! " # $# %&
)% " ! "! #$ %.
" " * -
(-)
" " *
(-)
-.
1. + ) )
1. ) $% +
'! " # $# %&
! "
# $%& $ # $ '
# $# $ ( $# $ #
) # *# $%& $ # $ '
log x
bx a b aανν= =
logb a
) # *# $%& $ # $ '
* + :
3
2
4
3
3
5
2 2
1/4 2
log 8 3 2 8
log 81 4 3 81
log 125 3 5 125
1 1 1
log 1/16 2
4 4 16
αϕο
αϕο
αϕο
αϕο
= =
= =
= =
= = =
2. -.
1. + ) )
2. & *)# + ) )
(! " # $# %&
30, * # . ) / ! + , ) $ )
/ ) 2, 0 $ * *)# (% ! + ) %
1 ) 2 % ):
% * ( % * *)# (% ! + ) % # " ) 0 )#3 ) 3 :
; ./0;
2log logx x=
; ./0;; ./0;
1 log1=0
2 log2=1
4 log4=2
8 log8=3
16 log16=4
32 log32=5
64 log64=6
…
1024 log1024=10
; ./0;
2048 log2048=11
4096 log4096=12
8192 log8192=13
…
220 log220=20
230 log230=30
240 log240=40
…
-.
1. + ) )
3. *)$ % + (& )% + ) %)
)! " # $# %&
4* "$ " + ( *) 0 ) ) 0,% $ ) ) ( ):
& ! * # , % ) ( «",0 )» " "$ ! + ) .
,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( :
log logK
b ba K a=
,2 $ ) *, ) ! + ) % ) 5 , % # " ) *( :
$ $ " ) ( # ) % 2 %:
6 ) " $ ) # , % $% & «",0 )».
5 . %: # ) )*)# +) * *)# (% ! + ) %:
(log )X
b a
logX
b a
log log
log (log )
K
b b
X X
b b
a K a
a a
=
=
log log
log (log )
K
X X
a K a
a a
=
=
-.
1. + ) )
3. *)$ % + ( !! + - %)
*! " # $# %&
) )# )*)$ , ) $ , " ! + # " )
! + ) «" + » / , ) #$! :
log
log
log
c
b
c
a
a
b
=
)*)$ ) " !( ) $ / # ) *) % ) $% )
*( 2.
* + :
2
8
2
64
3
9
3
log 32 5
log 32 1.66
log 8 3
log 2048 11
log 2048 1.83
log64 6
log 27 3
log 27 1.5
log 9 2
= = =
= = =
= = =
-.
1. + ) )
3. *)$ % + ( + ) % ) , # ) 6! %)
+! " # $# %&
( # ) ) 2 % *( )*)$ %:
log ( ) log log
log log log
b b b
b b b
xy x y
x
x y
y
= +
= −
6 ) )*)# +) * *)# (% ! + ) %:
+ ! " " " . ! + ) % , ) " *
0 + %:
" " ) , )% " , )%
"$ ) * " " , )%
! )"$ :
log( ) log log
log log log
xy x y
x
x y
y
= +
= −
log (log )b bxy x y= ⋅ log log ( )b bxy xy≠
3. -.
1. + ) )
3. *)$ % + ( #0 % *( )
,! " # $# %&
1 # ) 2 % (" !( )# ) )*)$
0 +,%:
logb x
b x=
2
5
10
log 2
log ( )
5
10
n
n n
n
n n+
=
= +
)*)$ % 0 )*) ) $ )
)% " ! "! #$ %, $" #0 . )% )% %
# )#,% / 2.
* + :
2
2 log
log4 log4 2
2
4 2 2 2
n
n
n n n
n =
= = =
10log ( )
10 n n
n n+
= +
-.
1. + ) )
4. 0)# % f(x)=log x
! " # $# %&
30 ! " )0 " )# (
" ) )
% 2 ) ) + 0)# " % f(x)=log x:
( $ ):
f(x) 2 ) " !( + ( ) )# $ "$ " ) * "
" ! )# ).
$ " )# " ," ) + . $ ) ) " ) .
-.
1. + ) )
5. &)"!$% # ) )"!$% + ) %
! " # $# %&
# ) )% 2 % )%:
% + 0 % ) :
1
2
( ) loglog
( ) logloglog
f n n
f n n
=
=
% + 0 % ) :
1 ) ". . , :
) )% " % " ," ) + . :
!! # ) $ ) " )# " % " )
1
2
( ) log(log )
( ) log(log(log ))
f n n
f n n
=
=
log(log 256) log(8) 3
log(log(log16)) log(log 4) log(2) 1
= =
= = =
logloglog loglog logn n n< <
. * ! + #
1. 5 *) +
! " # $# %&
< # = < #
- .! &
/ . 0. 1
log x
bx a b aανν= = log 2x
x a aανν= =
log ( ) log logb b bxy x y= + log( ) log logxy x y= +
x x
/ . 2# !
3## / 4 !
! . &
! # / .
5%6 ! "
log log logb b b
x
x y
y
= − log log log
x
x y
y
= −
log
log
log
c
b
c
a
a
b
=
log
log
log 2
c
c
a
a =
log logK
b ba K a= log logK
a K a=
log (log )X X
b ba a= log (log )X X
a a=
logb x
b x= log
2 x
x=
4. . * ! + #
2. ! "! #$ %
% #03 2 :
6 ) % * 5-6 )%.
" " # ! ( * ! + "
) 2 % / :
! " # $# %&
(2 ) " )# % " ! "! #$ % )%
" # )%
) 2 % / :
1. - # (.) " ) ).
1. ) )% " ( 2) ( (* ! * * " )
# " ) " *)$ ) ) * ) %,
!!)3% " / 2
2. #0 . )% )% % # )#,% / 2,
) " )3 % )*)$
3. 6 " 2 )% % # , % ( % )*)$ %
! + )
4. +# % # , % # ) 0,
" ,! )% )#,% )%
log
2 x
x =
. * ! + #
2. ! "! #$ %
1. ( (.)
" + ( * " % " ( 2 + (.) ) %
%.
) 2 + + (.) " ) ) , «# »
* ! * " ," ) +) " 0 ( # ! )% 2 %
)%:
# ).)# * )%.
'! " # $# %&
# ).)# * )%.
# )% $" ) % " 2 )% * " .
" ! + #! ) 3 # ) #0 %
* # *)# (% ) (%.
# )% $" ) % ") ) )#,% )*)$ %.
7 ! ( (.) ) " ) )# . & ! * :
# * , ) $ * "
,% " !! "! ) , % )% )%, / $
" ! " )!
$ , , " ) ( (.), $
7 6 " ," ) " (.) $! % )% )%.
. * ! + #
2. ! "! #$ %
1. ( (.)
% * ( , " * )+ :
(! " # $# %&
( $ ) , # ) ,% " !/ % )%
)%, 2 #) " ( (.)
. * ! + #
2. ! "! #$ %
2. # )#,% / 2
)% )% " , (.) ,
" *)$ ) $ #0 . )% )%
( 7 ! 8 ) , ) /+ ) (.) ) % # )#,% / 2.
% * ( 2,!)2 % " % " + ( " * )+ :
)! " # $# %&
5. . * ! + #
2. ! "! #$ %
3. 2 )% % # , %
1" ) " 3 % # , % # ) # )%
" 2 )% ! + " , 0 ) (%.
$ % # ) " !) ) , # # ) , ", ) $! %
) * )% " ) % ) (% ! +
" * )+ " !
*! " # $# %&
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
!)# / . (2 ) % # , % , 0 (
)% " 2 )% , " "$ )% + ,% 0,%.
- )#$ * +$ ) +) " 0 ( ) " # % )% + ,%
0,% " ! "! #$ %.
!!! " " , ) " #(5 ) ) " "! # (
, ) $ ) , " #(5 ) +) $ /# ) , $ :
+! " # $# %&
, ) $ ) , " #(5 ) +) $ /# ) , $ :
" . + !( $ "$ $ % ) "
" " "$ )% , *) + !( $ ,
$ " 0 . " ) ) + !( "$ ,%:
# ) 3 % , % "$ $ " )
" !! "! ) , . . :
, # ) " !) ) " ! , $ # ) # ) "$ $
%. . .:
/ $, ) ,% , ! 9 * " ! " )
# , % "$ % $ % " , " #(5 ).
5 6 logn n n n< <
2 4 2 logn n n+ < +
) "$0 % ) % ) .$ "$ $ )
8" , "!, ") ! )# :
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
,3 # ! . 7.% ! .%8 3#/ "
( ) (1)nΤ = Θ )(log)( nn k
Θ=Τ )()( k
nn Θ=Τ )()( n
an Θ=Τ )!()( nn Θ=Τ
)()( n
nn Θ=Τ
8" , "!, ") ! )# :
' $ $ 6 2
(1)
6 6>1
«# $» n
6 6
«# $» n
6 6 1<a<2, ,/: ,%
«# $» n
6 6 «# $» n
log log log logK
n n n< <
2 3
... K
n n n n< < < <
... 2 3 ...n n n n
a b< < < < <
! n
n n<
. * ! + #
2. ! "! #$ %
4. (+# ) # 3
1 ) #! " * )+ " ! % 2 %:
! " # $# %&
( ):
9 ," ):
2
3log log 2.32n n n< <
1 2 3f f f< <
6. . * ! + #
2. ! "! #$ %
% * ( 3 " % " ," ) ) " % )% 2 )%:
! " # $# %&
. # )%
# 6 $ % 1
" ! + % #$! % ! + % % " ! +) .
* " " ! + # )/3%, # ) 2( " ) *(
0 )#3 ) 3 # ) ! + ) %
! " # $# %&
5
4
1.log 25
2.log 644
8
3
4
9
6
2.log 64
3.log 64
4.log7
5.log 45
6.log 62
7.log 33
8.log 80
9.log 244
. # )%
# 6 $ % 2
" ! + % #$! % ! + ) % # % !! + / %:
! " # $# %&
128
4
1.log 32
2.log 5124
9
4
2.log 512
3.log 27
4.log 1/ 2
. # )%
0 + 1
)% " # )% (2 ) " )# %
" ! "! #$ %:
'! " # $# %&
log
1
log
2
( ) 1.5
( ) 10log
( ) 0.005log
n
n
n
f n n
f n n
f n n
=
=
=3
4
( ) 0.005log
( ) 1.15
n
n
f n n
f n n
=
=
7. . # )%
0 + 2
)% " # )% (2 ) " )# %
" ! "! #$ %:
(! " # $# %&
log
1
5 2 6
2
( ) 8log 4
( ) 10( )
n n
f n n n n
f n n n n
= +
= + +
2 5 7
3
4
4
( )
( ) log n
f n n n n
f n n
= ⋅ +
=
. # )%
0 + 3
)% " # )% (2 ) " )# %
" ! "! #$ %:
)! " # $# %&
1
2
( ) 3
( ) log( )
n
n
f n
f n n
=
=
log
3
5
4
( ) 2
( ) ( )
n
n
f n
f n n
=
=