SlideShare a Scribd company logo
1 of 163
Introductory Course on Design of Three-Phase Induction Motors
Ali Jamali Fard
https://ComProgExpert.com
Course objective
Pout 1HP  0.75kW
Speed 1500RPM
OSDmax 125mm
Lstk,max  70mm
Vt  400V
d  72.1%
PFd  0.8
Induction Motor
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 2
Motor Nameplate
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 3
IE efficiency classes
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 4
IE efficiency classes
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 5
IE efficiency classes
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 6
IEC standard frame
IEC 60072-1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 7
IEC standard frame
IEC 60072-1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 8
Main dimensions
A 125mm B 100mm
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 9
Main dimensions
A 125mm
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 10
B 100mm
Outer stator diameter
A 125mm
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 11
Shaft height (frame size)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 12
Stack length
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 13
Analytic Design
Developing electromagnetic design core in Excel
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 14
Classification of design variables
Design Variables
Independent
Fixed
Adjusted by
Designer
Dependent
Direct
Dependent
Indirect
Dependent
Pout ,OSDmax
av
p

B ,ar 
Lstk
out
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 15
m
T


Pout
wst , Ntc , KgRotor
Electromagnetic design procedure
Electromagnetic Design
Fixed Independents Direct Dependents
Independents Adjusted by Designer Indirect Dependents
Convergence logic
sw
Bav
 ar


J


 :
Eff
:
KgAPs
 OSD





av
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 16
av sw
:
KgAPs  f Bav ,ac, Jsw ,...

OSD  f (B ,ac,ar,...)

Eff  f B ,ac, J ,...




The aim in this section
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 17
Direct Dependents: output torque
P
m
Tout  out
Rated output torque
Rated output power
Rated mechanical speed

m  2 RPS
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 18
RPS 
RPM
60
Direct Dependents: slip & rotor frequency
s
RPM
RPM  RPM
s  s
slip
Rated rotor speed
Synchronous speed
fr  s fs
s
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 19
RPM 
120 fs
p
Calculation of input power (Volt-Ampere)
in
d

P 
Pout
Desired efficiency
d
Pout
Sin 
 cos

Desired power factor
in in
Q  S  1 cos
2
Input reactive power
Input Volt-Ampere
Input real power
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 20
Direct Dependents: terminal & phase current
t
P
3V cos()
It  in
Terminal current
3
ph
I
 It
 
I
 t


Phase current
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 21
Direct Dependents: phase voltage
3
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 22
 Vt
ph
V  

 V
 t
Direct Dependents: coil current
c
I 
Iph
p
N
Number of parallel paths
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 23
Direct Dependents: coil voltage
ph
p
V
N

Vc  Ncpph
Number of coils per phase
Number of parallel paths
Coil voltage
 2m
 Ns
cpph
N  N
 s
Double layer winding
Single layer winding

 m
Number of phases
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 24
Output equation: input KVA
Input KVA  Sin  3Vph  Iph
ph
emf
ph
E
V
 
Phase back-EMF
Lower than 1: Motor operation
Higher than 1: Generator operation
in
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 25
ph
emf

S  3
Eph
 I
Output equation: phase back-EMF
Number of effective turns per phase
Rated frequency of supply Pole flux
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 26
Winding factor
Calculation of the number of Ntph and Ntc (initial guess)

1
tph tc cpph
p
N  N  N
N
Number of turns per coil
Number of effective turns per phase
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 27
Calculation of the winding factor
kW  kd kp kskew
Distribution factor Skew factor
Pitch factor
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 28
Distribution factor
Ns
m p
q 
Number of stator slots per pole per phase
 
2
u
s
N
Stator slot pitch angle
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 29
Pitch factor
Short pitching is a method of reduction of air gap
harmonics in a double layer winding
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 30
Pitch factor

Ns
Q
y
p
Pole pitch
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 31
Skew factor

Skew angle
s
s
sq
sin 

 s  
sin

 p 2 
k 
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 32
Rotor skew angle
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 33
Output equation: input KVA
av
B
DL

pp
D
ac 
32 Ntc  Ncpph  Ic
Magnetic loading Electrical loading
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 34
Output equation: output coefficient
w
P 1.112
k  B a 
out
 

d cos

d
out
P
1.112
k  B ac cos

 
w av

out
P  G D2
Lrps
w av d
emf
1.112
k  B ac cos

G 
Output coefficient Rotor volume
Revolutions per second
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 35
Magnetic loading
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 36
Electric loading
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 37
Calculation of main dimensions
P
D2
L 
p
ar 
L
p
 
D
p
Aspect ratio
Pole pitch
p D2
L
D  3
ar 
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 38
Total flux & pole flux
total av
  B DL
Flux under one pole
p
 

Total air gap flux
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 39
Stator lamination geometry
sy
w
wst1
bs2
bs0
hs0
hs1
D
OSD
wst2
bs1 hs2
wst
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 40
w
 
wst 2
st1
Calculation of width of the stator tooth
st,max  Bst  wst1  Lki
Width of stator tooth at tip
wst2  wst  wst1
Width of stator tooth at tail
Iron insulation factor
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 41
Maximum stator tooth flux
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 42
Maximum stator tooth flux
 
st,max
2
Ns
Ns
r
D
d L


B.ds  B  
   
2 2 2
r p av
B  B cos(
p
) 
B cos(
p
)
st,max
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 43
p
 s   s 
p
 2N   2N 
 
Bav DL
sin
 p 
 sin
 p 
Calculation of width of stator yoke
2
p
sy
 B wsy  Lki
Width of stator yoke
Maximum flux in stator yoke
wsy
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 44
Calculation of the stator slot dimensions
s1
s
wst1 /2 
b  2

tan/ N  D
 h  h  
s  2 s0 s1 
 cos/ N 
 
 
D
y  tan/ Ns x
wst1
bs1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 45
Calculation of the number of Ntph and Ntc (initial guess)
Number of effective turns per phase
tph
N 
w
Eph
4.44 f k p
Number of turns per coil

1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 46
tph tc cpph
p
N  N  N
N
Calculation of the slot area
Copper area of coil arm
cAca  Ntc cAsc
cAca
kf
gAca  Fill factor
Gross area of coil arm
gAca
Nps  3
Copper area of single conductor
cAsc
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 47
Fill factor of the benchmark motor?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 48
Calculation of cAsc (initial guess)
Jsw
cAsc 
Ic
Maximum current density in stator winding
Coil current (RMS)
After Calculation of the cAsc we should update it with SWG or AWG table
Jsw  cAsc  cAca  K f  gAca  gAss  hs2 ,bs2 
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 49
Calculation of the stator slot depth
  s0
 h  hs1  h
2
 
/ 2 

 

 
 D




s2 s
bs1  bs2 
b  2 tan 
w
b b
hs2
s
s
N
 
2
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 50
Ntc Ntph p L
p
  B
p,old
p,new
old
L

D

Lnew

Updating process
p,new
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 51
s tph,new w
Eph
4.44 f  N k
 
Rotor lamination geometry
r1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 52
D  2g
Dsh
ry
w
wrt
wtrib
r2
d
Rotor slot dimensions
wrt
rb
d r0
h
br0
r1
2
r
ry
w
sh
D g
D
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 53
Calculation of width of rotor tooth
rt,max  Brt  wrt  Lki
Width of rotor tooth
Iron insulation factor
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 54
Maximum rotor tooth flux
 
rt,max
2
Nr
Nr
r
D
d L


B.ds  B  
   
B  B cos(
p

r p

rt,max
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 55
p
 r   r 
p
 2N   2N 
 
Bav DL
sin
 p 
 sin
 p 
Calculation of width of rotor yoke
2
p
i
 Bry  wry  Lk
Width of rotor yoke
Maximum flux in rotor yoke
ry
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 56
w
r
2
x
Rotor bar dimensions
y
2 2
rt
r
rt
r
 w

 
 d
 g  h sin 
 r0   2 
   

 d
 g  
   
 w  r 
2 1
 hr0 r1  sin 
r
 r1
 
 2   2  1 sin  
 2 
r1
w
d
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 57
Calculation of rotor bar current
mmf
 
Total Rotor Ampere Turns
1
Total Stator Ampere Turns
mmf
cpph tc c
Nr  Ib
 
3 N 2N  I
b
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 58
r
I
N


mmf 3 Ncpph 2Ntc  Ic
r
2
x
Rotor bar dimensions
y
2 2
2
rt
r
rt
r
 w

 
 d
 g  h  d sin 
 r0 rb   2 
   

 d
 g    
  
 w
 r2 
 hr0 drb r2  sin 
r
 r2
 
 2   2  1sin  
 2 
2
r
w
d
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 59
Rotor bar dimensions
2
180 180 2
r
r0 r0 rb 1 2
90 

r
90 

r
1
r  r   
aArb 
r2
 2 
r2
 2  h b  2 1 2
d  r  r cos 2 
 
rb
d r0
h
br0
r1
2
r
aArb 
Ib
Jb
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 60
Calculation of the depth of rotor bar
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 61
Calculation of the end ring current
r
 N 

I   2
 I  2p 
e,max  b,max 
   
Maximum end ring current
e
p
I 
Nr Ib
RMS value of maximum end ring current
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 62
End ring dimensions
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 63
Calculation of depth of end ring
e e
e
J
aAer  t d 
Ie
de
te
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 64
Efficiency
Calculation of the motor losses and efficiency
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 65
Total losses
Copper losses
Iron losses
Mechanical losses
bearing friction losses
windage losses of rotating rotor
ventilator losses
Additional losses
The difference between the total
losses and the sum of stator and rotor
resistive losses, stator and rotor iron
losses, and mechanical losses
IEC 60034-2-1
Magnet losses
Calculation of the motor efficiency
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 66
PCu  mR
RAC  kR  RDC
kR  kR ( f ,,...)
Number of phases
Copper losses: AC resistance factor
AC resistance
Phase current
AC resistance factor
• Frequency
• Load angle
• Rotor magnetic field
p (t)  R (i2
 i2
 i2
)
cu ph a b c
Pcu  pcu (t)
avg
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 67
tc T
cAsc
Rc,T  N  
Lmt
Mean turn length

T  
20 1 T
Calculation of the coil resistance
Coil resistance
Resistivity
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 68
End winding
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 69
Mean turn length
Lmt  2 Lstk  4 Lend  2.4 Lspan
span

D OSD
L
Lstk
Lstk
Lend
Lspan
D
OSD
Mean radius
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 70
Stator slot
pitch angle
ph c cpph
N2
R  R  N 
1 Number of parallel paths
Calculation of the phase resistance
p
Number of coils in each phase
p (t)  R (i2
i2
i2
)
cu ph a b c
Pcu  pcu (t)
avg
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 71
Cold phase resistance (Siemens)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 72
Cold phase resistance (WEG)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 73

T  
20 1 T
Ohmic loss of rotor bars
rb,T T
Lstk
R
aArb
  
cos
Skew 
length of the rotor bar
Rotor bar resistance
Resistivity
Cross-section area
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 74
Resistance of the end ring
er,T T
R   
D  2
Mean length
Cross-section area
End ring resistance
te
de
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 75
Ohmic loss of the rotor cage
P  N  R  I2
rb r b b
P  2 R  I2
er er e
Pcage  Prb  Per
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 76
Equivalent rotor resistance referred to the stator
b
Pcage
Rr 
3 I2
Total Ohmic losses of the cage
Rotor bar current
Equivalent rotor
resistance in rotor side

2
 m T K
Rrs  
s
 s
 ws
  Rr
 mr Tr Kwr 
Equivalent rotor
resistance referred
to the stator
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 77
Total losses
Hysteresis losses
Eddy current losses
Excess losses
2 2 2 1.5 1.5
Fe dc h c e
p B
 C k fB  k f B  k f
dc dc dc
C 1 k B2
kdc,default  0.65
Iron losses
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 78
Total losses
Hysteresis losses
Eddy current losses
Excess losses
2
pHyst  Cdckh fB
Iron losses: hysteresis losses
Hysteresis losses
increase by frequency
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 79
Total losses
Hysteresis losses
Eddy current losses
Excess losses
2 2
Eddy c
p  k f B
6
2

d2
kc 
conductivity Thickness of the lamination
Iron losses: eddy current losses
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 80
Total losses
Hysteresis losses
Eddy current losses
Excess losses
1.5 1.5
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 81
B
pExcess  ke f
Excess or anomalous loss is due to eddy
currents generated by the displacement
of the magnetic domain walls
Iron losses: excess losses
Iron losses in stator teeth
sy
w
wst1
bs0
b
hs0
hs1
D wst2
bs1 hs2
2
wst1  wst2 
Vst  hs
0
hs1  hs2  Lstk
W 
OSD
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 82
Iron loss density in stator tooth 
m3 

PFe,steeth  Ns  pFe,stooth Vst
Iron losses in stator yoke
wst1
bs0
hs0
hs1
D wst2
bs1 hs2
Fe,sy
p  C k f B2
 k f 2
B2
dc h s sy c s sy
 k f 1.5
B1.5
e s sy
Vsy OSD  wsy  wsy  Lstk
Iron loss density in stator yoke
W

PFe,sy  pFe,sy Vsy
sy
OSD
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 83
w
b
Iron losses in rotor teeth
Vrt  wrt  drb  Lstk
Iron loss density in rotor tooth
W 

m3 

PFe,rteeth  Nr  pFe,rtooth Vrt
r1
D  2g
Dsh
ry
w
w
wtrib
r2
d
fr  s  fs
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 84
Iron losses in rotor yoke
Fe,ry dc h r ry c r ry
p  C k f B2
 k f 2
B2  k f 1.5
B1.5
e r ry
wry  wry  Lstk
Vry Dsh
Iron loss density in rotor yoke
W

PFe,ry  pFe,ry Vry
r1
r2
D  2g
Dsh
w
wtrib
d
w
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 85
fr  s  fs
Mechanical losses
bearing friction losses
windage losses of rotating rotor
ventilator losses
prot
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 86
in out
Prot
P or P
 
%1prot  %4
Calculation of the mechanical losses
Sensitivity analysis
Sensitivity analysis of the design
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 87
Sensitivity analysis
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 88
Finite Element Analysis
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 89
FEA of the motor and calculation of its electrical parameters and its performance
Creation of the parametric model
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 90
Dynamic simulation
Dynamic simulation of the motor
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 91
Setup motion band
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 92
Rotor speed; Is the steady-state speed correct?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 93
Phase currents; Is the phase current equal to the desired one?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 94
Torque; Can the motor deliver the desired torque?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 95
Stator winding loss
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 96
Rotor cage loss
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 97
Iron loss
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 98
Output power
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 99
Efficiency; Is calculated efficiency equal to desired one?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 100
Start backward calculations!
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 101
Equivalent circuit
Calculation of equivalent circuit parameters
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 102
Per-phase equivalent circuit
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 103
Per-phase equivalent circuit
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 104
Useful equations
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 105
Derivation of equivalent circuit from voltage equations
vas  Rsias
vbs  Rsibs
vcs  Rsics
var  Rriar
vbr  Rribr
vcr  Rricr
 das
dt
 dbs
dt
 dcs
dt
 dar
dt
 dbr
dt
 dcr
dt
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 106
Inductance matrix
L cos p
2
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 107
msr  3 
L cos p
2
msr  3 
s ms ms msr
L cosp msr
L cos p
2
ms s ms msr
L cos
ms ms S msr
L cos
L L L
L L L
L L L
 
as
 

bs 
 

 
 


ar 
 



cr 

L cos p
2
msr  3 
msr
L cos p msr
L cos
msr L








cs
  


br
 
  2
L cos  p
 
  3 

 


L
MATLAB Symbolic toolbox
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 108
Vector diagram
2
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 109
m msr
L 
3
L
Lls  Ls  Lms  Lm
Llr  Lr  Lmr  Lm
Equivalent circuit parameters
Calculation of the induction motor equivalent circuit parameters by FEA
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 110
Calculation of circuit parameters by FEA
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 111
No-load (open circuit) test
s  0
ph
Fe
P
3V 2
RFe  Rc 
Sin  3Vph  Iph
ph m
m m
in e
X
Q 
3V 2
X   L 
Pin  avg v i 
Q  S2
 P2
in in in
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 112
Locked-rotor (short circuit) test
s 1
ph
R  R'
s r

Pohmic
3 I2
ph
I
Z  Z'
ls lr

Vph
  
2 2
'
s r
X  X '
 Z  Z'
ls lr ls lr
 R  R
'
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 113
ls lr
e
X  X '
L  L  ls lr
Calculated equivalent circuit parameters
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 114
Segregation of leakage reactance
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 115
Magnetic loading
Calculation of the motor magnetic loading
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 116
Magnetic loading
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 117
Average absolute value
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 118
Fundamental component
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 119
DQ reference frames
Derivation of the induction motor DQ model
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 120

2
3
s
F  a
f (t)  a j
2
a  e 3
 
2
3
1
3






s
d
q
F  fa (t) 0.5 fb (t) 0.5 fc (t)
Fs
 fb (t)  fc (t)
a
Fs
D
Q
b
c
Amplitude invariant version
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 121
abc to stationary DQ reference frame
The induction motor per-phase equivalent circuit discussed so far is valid only for steady-state
operation. The dynamic model of the machine is important for transient analysis.
Clarke transformations
2
1
 2 

0

1

1 
2 
3 3
 2 2 
Tabc2dqs 
3
 
3
1
 
 1 0 



  
1




 
 3 



2 2 
ds ds
bs  dqs2abc
qs  qs 
cs
vas  
v v 
v  T
2 2  v v 

v  
 
 1 0 

https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 122

3 
 
1
 2 2 





1 3 
2 2 
dqs2abc
T
DQ model in stationary reference frame
1
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 123
2 2
3
1
2 2
 
 1   1 0 

3
1  
2  
1 0
3
       0 1
 3  
 


0   
 2


2  
1 3 
2 2 
abc2dqs dqs2abc
T T
DQ model in stationary reference frame

 

 

 

 
bs  
 cs 
br  r  br  br  
 cr 
v
dt  

vcs 

bs  s  bs 

ics 

var  iar 
v   R  i
dt  
vcr icr
 
as 
  R  i  
d   

 
ar  
 
d    


 

 

 
abc2dqs bs  abc2dqs abc2dqs bs  
 cs 
abc2dqs abc2dqs
 cr 
vas  ias  vas  ias 
T  v   T  R  i  T
dt  

vcs 

var 
s  bs 

ics 

iar 
T  v   T  R  i  T
dt  
vcr
br  abc2dqs r  br 

icr 

 
as  

d    

 
ar  


d    
br  

 
   
 

   
 

ds ds
s abc2dqs
qs   qs  qs  
dr dr
abc2dqs
qr   qr  qr  
v i
 R  T 
d 
T
v  i 
dt 
v i
 R  T 
d 
T
v  r i 
dt


ds  
dqs2abc    
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 124

   
  
dr     
  
ds ds
s abc2dqs dqs2abc
qs   qs  qs  
dr dr
abc2dqs dqs2abc
qr   qr  qr  
v i
 R   T T
v  i 
v i
 R   T T
dqs2abc    v  r i 

d  
ds  
dt    

d  
dr  
dt

   

DQ model in stationary reference frame
s ms ms msr
ms s ms msr
as
ms S msr
L L L
L L L
Lms L L
L cosp
L cosp
L cos p
2
msr  3 
  
L cos p
2
msr  3  msr 
    
 
 bs  L cos p
2 L cos p
2
msr  3  msr  3 
     


ar 
 



cr 

3
msr r mr mr
msr mr r mr
L L L
L L L
Lmr Lmr Lr
L cosp
L cos p
2
msr  3 








cs
  
L cos p L cosp
2 L cosp
2
msr  3  msr  3 
   


br
 
L cosp L cosp
2
  2
L cos  p
msr  3  msr  3 
   

  2  2
L cos  p
3
L cos  p Lmsr cos p
msr   msr  
   

 as

L cos p
2
3  i 
 i 
  bs 
 i 
 
cs

 iar 
 i 
  br

 
icr 






0
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 125
0
2
3
2
2
3
2
0
0
3
2
3
2




 

3


2 
3 

2 
s ms msr msr
qs  
   qs 
dr
  
dr

msr msr r mr
qr qr
L  L
3
L
3
L
 ids 
Ls  Lms
 i 
L L L  L
 
i
Lr  Lmr
cosp cosp

ds 
Lmsr cosp Lmsr cosp i
 
 
cosp cosp

 

 Lmsr cosp Lmsr cosp
   
   
r s s
d d q
r s s
q d q
t
t
sin 
F  F cos t  F


F  F sin t  F cos 

Fr
 Fs
e j
t
Fs
 Fej
s
Fr
 Fej
r
 Fej(
s 
t )
     
 
 cos t  jsin 
t
r s s
d q
F  F  jF
Stationary to rotatory reference frame
dqs2dqr
d
r
Fs
cos
t
sin
t Fs

Fs
Fs

 T
F
Fr
  cos
t 

d
  
sin
t    
d

 d 

  d 

 
q   
dqr2dqs
T
sin 
cos
t sin
t

t cos
t 

 
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 126
Equations in rotor dq reference frame
 

ph
 qs  qs 
 r 
ids 
vs 
 R 
i
v
d 
ds 
  
dt   Tdqr2dqs
sin
t

cos
t
sin
t cos
t 
 
dr dr
dqr2dqs ph dqr2dqs dqr2dqs
v i d
T

   
  R T   T 

dr 
v  i 
dt   
 qr   qr  
 qr 
dr dr
dqr2dqs dqr2dqs dqr2dqs ph dqr2dqs dqr2dqs dqr2dqs
v i
T1 1 1
   
T   T  R T  T d 
T 

dr 
v  i 
dt   
 qr   qr  
 qr 
dr
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 127
dr dr
dqr2dqs
v i d
dt
1
  
     
 R   T 
d
T 

dr 
v  ph i  dqr2dqs  
dt  
 qr   qr   qr 
 qr 
Equations in rotor dq reference frame
Tdqr2dqs
sin
t

cos
t
sin
t cos
t 
 
d
1
vdr  idr  d 
dr 
v   Rph  i    

 qr 
dr dr dr qr
ph
v i d    
       
 R   
v  i    
dt  
 dr 
 qr   qr   qr  q
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 128
vd  Rphidr 
v 

d
q
Fs
rt
D
Q
      
 Fej(
s 
rt )
r
Fs
 Fej
s
Fr
 Fej
r
Fr
 Fs
e jt
r s s
d q
F  F  jF r r
 cos  t  jsin t
   
   
r s s
d d r q r
r s s
q d r q r
t
t
F  F cos  t  F sin 


F  F sin  t  F cos 

Stationary to rotatory reference frame
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 129
cos

A.B
A B
Calculation of the angle
between two vectors
Power factor

Calculation of the power factor
B
A
vs is
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 130
PF  cos

vdsids  vqsiqs
Calculation of the g_emf
emf
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 131
ph s
V V
 
Eph

Vm
Stator, rotor, and resultant field
Stator
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 132
Rotor Resultant
Calculation of the MMF ratio
mmf
cpph tc c
Nr  Ib
 
3 N 2N  I
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 133
Torque-speed curve
Calculation of torque-speed curve both analytically and by FEA and comparison
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 134
Analytic method
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 135
Torque-speed curve of induction machine
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 136
Operating speed
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 137
Breakdown torque
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 138
Variation of torque-speed curve by rotor resistance
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 139
Torque near synchronous speed
mV 2
 s
2
Te s
s r
m s
Te 

V 
R
 Rr 
Is the steady-state speed
correct?
Check Rr-error!
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 140
Magnetizing current
Calculation of magnetizing current analytically and by FEA
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 141
Magnetizing current for concentrated winding
m
t

AT
I
N
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 142
Magnetizing current for concentrated winding (Sinusoidal flux distribution)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 143
Magnetizing current for concentrated winding (Non sinusoidal flux distribution)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 144
The circle diagram
Calculation of the motor circle diagram
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 145
What is the circle diagram?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 146
What is the circle diagram?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 147
What is the circle diagram?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 148
The induction motor circle diagram
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 149
Sensitivity analysis
Air gap sensitivity analysis
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 150
Variation of the air gap length
Air gap length   Power factor 
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 151
Air gap length   Leakage reactance   Over-load capacity 
Air gap length   Zigzag leakage flux   Pulsation loss  & Noise 
Air gap length   Better cooling Air gap length   Unbalanced magnetic pull 
Sensitivity analysis: full load
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 152
Sensitivity analysis: no-load
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 153
Double cage rotors
Rotor classes
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 154
Why double cage rotors?
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 155
Design types of induction motors
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 156
Ns-Nr combination
Selection of number of stator and rotor slots
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 157
Harmonic fields
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 158
The harmonic fields are produced because of:
i. Windings
ii.Slotting
iii.Saturation
iv.Gap length irregularity
v.Over hang leakage fields
vi.Axial leakage of the main flux
vii.Harmonics in the supply system
viii.Unbalance supply system
Position period, time period
r 1
B  B cos p
t 
 2 e 
 
f x,t cos
f x,t f x,t T  cosAx  Bt T   co
BT  2T 
2
in
,
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 159
wave speed 
X
Harmonic induction torques (asynchronous crawling)
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 160
Slot harmonics
1
s
f  f  2
 slots 
 poles 
 
poles
s 1 1  
 
 
1 
s sin2fstcos2f1t
f  f  f 
 2 slots
1

https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 161
Safe choices
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 162
Some of references
I. J. Pyrhonen, T. Jokinen, and V. Hrabovcova, Design of rotating electrical machines. John Wiley & Sons, 2013.
II. T.A. Lipo, Introduction toAC machine design. John Wiley & Sons, 2017.
III. R.K.Agarwal, Principles Of Electrical Machine Design.
IV. A. K Sawhney, Acourse in electrical machine design.
V. P. Cochran, Polyphase induction motors, analysis: design, and application. CRC Press, 1989.
https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 163

More Related Content

What's hot

Numerical examples
Numerical examplesNumerical examples
Numerical examplesFelipe Gomes
 
vector control of induction motor
vector control of induction motorvector control of induction motor
vector control of induction motorDwaraka Pilla
 
Direct torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulationDirect torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulationIAEME Publication
 
Field oriented control of induction motor based on
Field oriented control  of induction motor based onField oriented control  of induction motor based on
Field oriented control of induction motor based onAMRITAKUMARI21408
 
Ac motors
Ac motors Ac motors
Ac motors Amr Seif
 
Modeling and Testing of Induction Motors
Modeling and Testing of Induction MotorsModeling and Testing of Induction Motors
Modeling and Testing of Induction MotorsBirju Besra
 
Buck-Boost Converter
Buck-Boost ConverterBuck-Boost Converter
Buck-Boost ConverterSagar Patil
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterPurushotam Kumar
 
Updated field oriented control of induction motor.pptx
Updated field oriented control of induction motor.pptxUpdated field oriented control of induction motor.pptx
Updated field oriented control of induction motor.pptxMohit Sharma
 
Unit commitment in power system
Unit commitment in power systemUnit commitment in power system
Unit commitment in power systemAbrar Ahmed
 
Study of Permanent Magnent Synchronous Macnine
Study of Permanent Magnent Synchronous MacnineStudy of Permanent Magnent Synchronous Macnine
Study of Permanent Magnent Synchronous MacnineRajeev Kumar
 
Module2: opamp as ZCD (zero crossing detector)
Module2: opamp as ZCD (zero crossing detector)Module2: opamp as ZCD (zero crossing detector)
Module2: opamp as ZCD (zero crossing detector)chandrakant shinde
 
Chapter 4 synchronous machine
Chapter 4 synchronous machineChapter 4 synchronous machine
Chapter 4 synchronous machinemkazree
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motorAnoop S
 
Principle of regenerative braking and chopper configuration
Principle of regenerative braking and chopper configurationPrinciple of regenerative braking and chopper configuration
Principle of regenerative braking and chopper configurationAbhishek Choksi
 

What's hot (20)

Numerical examples
Numerical examplesNumerical examples
Numerical examples
 
vector control of induction motor
vector control of induction motorvector control of induction motor
vector control of induction motor
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Direct torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulationDirect torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulation
 
Field oriented control of induction motor based on
Field oriented control  of induction motor based onField oriented control  of induction motor based on
Field oriented control of induction motor based on
 
Ac motors
Ac motors Ac motors
Ac motors
 
Modeling and Testing of Induction Motors
Modeling and Testing of Induction MotorsModeling and Testing of Induction Motors
Modeling and Testing of Induction Motors
 
Buck-Boost Converter
Buck-Boost ConverterBuck-Boost Converter
Buck-Boost Converter
 
Fault analysis
Fault analysisFault analysis
Fault analysis
 
POWER (LOAD) FLOW STUDY
POWER (LOAD)  FLOW STUDYPOWER (LOAD)  FLOW STUDY
POWER (LOAD) FLOW STUDY
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
 
COGGING & CRAWLING IN INDUCTION MOTOR
COGGING & CRAWLING IN INDUCTION MOTORCOGGING & CRAWLING IN INDUCTION MOTOR
COGGING & CRAWLING IN INDUCTION MOTOR
 
Updated field oriented control of induction motor.pptx
Updated field oriented control of induction motor.pptxUpdated field oriented control of induction motor.pptx
Updated field oriented control of induction motor.pptx
 
Two Quadrant chopper
Two Quadrant chopperTwo Quadrant chopper
Two Quadrant chopper
 
Unit commitment in power system
Unit commitment in power systemUnit commitment in power system
Unit commitment in power system
 
Study of Permanent Magnent Synchronous Macnine
Study of Permanent Magnent Synchronous MacnineStudy of Permanent Magnent Synchronous Macnine
Study of Permanent Magnent Synchronous Macnine
 
Module2: opamp as ZCD (zero crossing detector)
Module2: opamp as ZCD (zero crossing detector)Module2: opamp as ZCD (zero crossing detector)
Module2: opamp as ZCD (zero crossing detector)
 
Chapter 4 synchronous machine
Chapter 4 synchronous machineChapter 4 synchronous machine
Chapter 4 synchronous machine
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motor
 
Principle of regenerative braking and chopper configuration
Principle of regenerative braking and chopper configurationPrinciple of regenerative braking and chopper configuration
Principle of regenerative braking and chopper configuration
 

Similar to IM design course.pptx

IJSRED-V1I2P4
IJSRED-V1I2P4IJSRED-V1I2P4
IJSRED-V1I2P4IJSRED
 
Power System Modelling And Simulation Lab
Power System Modelling And Simulation LabPower System Modelling And Simulation Lab
Power System Modelling And Simulation LabSachin Airan
 
Inertia dynamic type mpc_specsheet
Inertia dynamic type mpc_specsheetInertia dynamic type mpc_specsheet
Inertia dynamic type mpc_specsheetElectromate
 
Microprocessor based autonomous control system
Microprocessor based autonomous control systemMicroprocessor based autonomous control system
Microprocessor based autonomous control systemDr. Rajesh P Barnwal
 
Kollmorgen nema34 powerpac_specsheet
Kollmorgen nema34 powerpac_specsheetKollmorgen nema34 powerpac_specsheet
Kollmorgen nema34 powerpac_specsheetElectromate
 
Computer modeling-simulation&examples1
Computer modeling-simulation&examples1Computer modeling-simulation&examples1
Computer modeling-simulation&examples1Jian Shen
 
ECCE2016_FSPM_ControlTest3_Chandan
ECCE2016_FSPM_ControlTest3_ChandanECCE2016_FSPM_ControlTest3_Chandan
ECCE2016_FSPM_ControlTest3_ChandanChandan Sikder
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdfMaulikPandya25
 
Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Alexander Decker
 
IRJET- Comparative Study of Sensor and Sensor Less Control of Three Phase...
IRJET-  	  Comparative Study of Sensor and Sensor Less Control of Three Phase...IRJET-  	  Comparative Study of Sensor and Sensor Less Control of Three Phase...
IRJET- Comparative Study of Sensor and Sensor Less Control of Three Phase...IRJET Journal
 
One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW pupin_proces_automation
 
BEEM UII.pptx
BEEM UII.pptxBEEM UII.pptx
BEEM UII.pptxMalathyN5
 
BLDC motor control reference design press presentation
BLDC motor control reference design press presentationBLDC motor control reference design press presentation
BLDC motor control reference design press presentationSilicon Labs
 
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...IJERA Editor
 
CH-2_3 Induction Machines.ppt
CH-2_3 Induction Machines.pptCH-2_3 Induction Machines.ppt
CH-2_3 Induction Machines.pptDaaniyyeeAbdiisaa
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatusnganesh90
 

Similar to IM design course.pptx (20)

IJSRED-V1I2P4
IJSRED-V1I2P4IJSRED-V1I2P4
IJSRED-V1I2P4
 
Psms lab manual
Psms lab manualPsms lab manual
Psms lab manual
 
Power System Modelling And Simulation Lab
Power System Modelling And Simulation LabPower System Modelling And Simulation Lab
Power System Modelling And Simulation Lab
 
Inertia dynamic type mpc_specsheet
Inertia dynamic type mpc_specsheetInertia dynamic type mpc_specsheet
Inertia dynamic type mpc_specsheet
 
Microprocessor based autonomous control system
Microprocessor based autonomous control systemMicroprocessor based autonomous control system
Microprocessor based autonomous control system
 
Kollmorgen nema34 powerpac_specsheet
Kollmorgen nema34 powerpac_specsheetKollmorgen nema34 powerpac_specsheet
Kollmorgen nema34 powerpac_specsheet
 
Pmdc motors
Pmdc motorsPmdc motors
Pmdc motors
 
Computer modeling-simulation&examples1
Computer modeling-simulation&examples1Computer modeling-simulation&examples1
Computer modeling-simulation&examples1
 
ECCE2016_FSPM_ControlTest3_Chandan
ECCE2016_FSPM_ControlTest3_ChandanECCE2016_FSPM_ControlTest3_Chandan
ECCE2016_FSPM_ControlTest3_Chandan
 
Design of Synchronous machine.pdf
Design of Synchronous machine.pdfDesign of Synchronous machine.pdf
Design of Synchronous machine.pdf
 
Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...Development of a low cost sensored control for high speed axial flux permanen...
Development of a low cost sensored control for high speed axial flux permanen...
 
IRJET- Comparative Study of Sensor and Sensor Less Control of Three Phase...
IRJET-  	  Comparative Study of Sensor and Sensor Less Control of Three Phase...IRJET-  	  Comparative Study of Sensor and Sensor Less Control of Three Phase...
IRJET- Comparative Study of Sensor and Sensor Less Control of Three Phase...
 
One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW One Solution for Simulation of Steam Turbine Power Upon 210MW
One Solution for Simulation of Steam Turbine Power Upon 210MW
 
Wind Turbine generator
Wind Turbine generatorWind Turbine generator
Wind Turbine generator
 
BEEM UII.pptx
BEEM UII.pptxBEEM UII.pptx
BEEM UII.pptx
 
BLDC motor control reference design press presentation
BLDC motor control reference design press presentationBLDC motor control reference design press presentation
BLDC motor control reference design press presentation
 
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
Analysis of Commutation Torque Ripple Minimization for Brushless DC Motor Bas...
 
Bldc
BldcBldc
Bldc
 
CH-2_3 Induction Machines.ppt
CH-2_3 Induction Machines.pptCH-2_3 Induction Machines.ppt
CH-2_3 Induction Machines.ppt
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatus
 

Recently uploaded

18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...
18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...
18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...Payal Garg #K09
 
Gamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad IbrahimGamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad Ibrahimamgadibrahim92
 
Spring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers ParisSpring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers ParisPeclers Paris
 
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证wpkuukw
 
Academic Portfolio (2017-2021) .pdf
Academic Portfolio (2017-2021)      .pdfAcademic Portfolio (2017-2021)      .pdf
Academic Portfolio (2017-2021) .pdfM. A. Architects
 
Spring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisSpring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisPeclers Paris
 
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...Design Forum International
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKMarekMitek1
 
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证khuurq8kz
 
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...Amil baba
 
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证eqaqen
 
422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmmKarenNares2
 
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement 210303105569
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfAlexandra Plesner
 
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...samsungultra782445
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证wpkuukw
 
How to Build a Simple Shopify Website
How to Build a Simple Shopify WebsiteHow to Build a Simple Shopify Website
How to Build a Simple Shopify Websitemark11275
 
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样awasv46j
 
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...drmarathore
 

Recently uploaded (20)

18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...
18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...
18+ Young ℂall Girls Vadodara Book Esha 7427069034 Top Class ℂall Girl Serviℂ...
 
Gamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad IbrahimGamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad Ibrahim
 
Spring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers ParisSpring Summer 26 Colors Trend Book Peclers Paris
Spring Summer 26 Colors Trend Book Peclers Paris
 
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证
一比一定(购)卡尔顿大学毕业证(CU毕业证)成绩单学位证
 
Academic Portfolio (2017-2021) .pdf
Academic Portfolio (2017-2021)      .pdfAcademic Portfolio (2017-2021)      .pdf
Academic Portfolio (2017-2021) .pdf
 
Spring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers ParisSpring Summer 2026 Inspirations trend book Peclers Paris
Spring Summer 2026 Inspirations trend book Peclers Paris
 
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...
Redefining Affordable Housing in Gurgaon The Role of Housing Architects from ...
 
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEKLANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
LANDSCAPE ARCHITECTURE PORTFOLIO - MAREK MITACEK
 
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证
一比一原版澳洲堪培拉大学毕业证(UC毕业证书)毕业证成绩单留信认证
 
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...
NO1 Top Pakistani Amil Baba Real Amil baba In Pakistan Najoomi Baba in Pakist...
 
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证
一比一定(购)西悉尼大学毕业证(WSU毕业证)成绩单学位证
 
422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm422368378-Laos-Architecture.pdfmmmmkkkkmmm
422368378-Laos-Architecture.pdfmmmmkkkkmmm
 
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Semarang ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Resume all my skills and educations and achievement
Resume all my skills and educations and  achievement Resume all my skills and educations and  achievement
Resume all my skills and educations and achievement
 
Branding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdfBranding in the Psychedelic Landscape Report.pdf
Branding in the Psychedelic Landscape Report.pdf
 
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
Abortion pills in Jeddah +966572737505 <> buy cytotec <> unwanted kit Saudi A...
 
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
一比一定(购)滑铁卢大学毕业证(UW毕业证)成绩单学位证
 
How to Build a Simple Shopify Website
How to Build a Simple Shopify WebsiteHow to Build a Simple Shopify Website
How to Build a Simple Shopify Website
 
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
一比一原版(WLU毕业证)罗瑞尔大学毕业证成绩单留信学历认证原版一模一样
 
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
Abortion pills in Kuwait 🚚+966505195917 but home delivery available in Kuwait...
 

IM design course.pptx

  • 1. Introductory Course on Design of Three-Phase Induction Motors Ali Jamali Fard https://ComProgExpert.com
  • 2. Course objective Pout 1HP  0.75kW Speed 1500RPM OSDmax 125mm Lstk,max  70mm Vt  400V d  72.1% PFd  0.8 Induction Motor https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 2
  • 3. Motor Nameplate https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 3
  • 4. IE efficiency classes https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 4
  • 5. IE efficiency classes https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 5
  • 6. IE efficiency classes https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 6
  • 7. IEC standard frame IEC 60072-1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 7
  • 8. IEC standard frame IEC 60072-1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 8
  • 9. Main dimensions A 125mm B 100mm https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 9
  • 10. Main dimensions A 125mm https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 10 B 100mm
  • 11. Outer stator diameter A 125mm https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 11
  • 12. Shaft height (frame size) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 12
  • 13. Stack length https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 13
  • 14. Analytic Design Developing electromagnetic design core in Excel https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 14
  • 15. Classification of design variables Design Variables Independent Fixed Adjusted by Designer Dependent Direct Dependent Indirect Dependent Pout ,OSDmax av p  B ,ar  Lstk out https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 15 m T   Pout wst , Ntc , KgRotor
  • 16. Electromagnetic design procedure Electromagnetic Design Fixed Independents Direct Dependents Independents Adjusted by Designer Indirect Dependents Convergence logic sw Bav  ar   J    : Eff : KgAPs  OSD      av https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 16 av sw : KgAPs  f Bav ,ac, Jsw ,...  OSD  f (B ,ac,ar,...)  Eff  f B ,ac, J ,...    
  • 17. The aim in this section https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 17
  • 18. Direct Dependents: output torque P m Tout  out Rated output torque Rated output power Rated mechanical speed  m  2 RPS https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 18 RPS  RPM 60
  • 19. Direct Dependents: slip & rotor frequency s RPM RPM  RPM s  s slip Rated rotor speed Synchronous speed fr  s fs s https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 19 RPM  120 fs p
  • 20. Calculation of input power (Volt-Ampere) in d  P  Pout Desired efficiency d Pout Sin   cos  Desired power factor in in Q  S  1 cos 2 Input reactive power Input Volt-Ampere Input real power https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 20
  • 21. Direct Dependents: terminal & phase current t P 3V cos() It  in Terminal current 3 ph I  It   I  t   Phase current https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 21
  • 22. Direct Dependents: phase voltage 3 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 22  Vt ph V     V  t
  • 23. Direct Dependents: coil current c I  Iph p N Number of parallel paths https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 23
  • 24. Direct Dependents: coil voltage ph p V N  Vc  Ncpph Number of coils per phase Number of parallel paths Coil voltage  2m  Ns cpph N  N  s Double layer winding Single layer winding   m Number of phases https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 24
  • 25. Output equation: input KVA Input KVA  Sin  3Vph  Iph ph emf ph E V   Phase back-EMF Lower than 1: Motor operation Higher than 1: Generator operation in https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 25 ph emf  S  3 Eph  I
  • 26. Output equation: phase back-EMF Number of effective turns per phase Rated frequency of supply Pole flux https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 26 Winding factor
  • 27. Calculation of the number of Ntph and Ntc (initial guess)  1 tph tc cpph p N  N  N N Number of turns per coil Number of effective turns per phase https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 27
  • 28. Calculation of the winding factor kW  kd kp kskew Distribution factor Skew factor Pitch factor https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 28
  • 29. Distribution factor Ns m p q  Number of stator slots per pole per phase   2 u s N Stator slot pitch angle https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 29
  • 30. Pitch factor Short pitching is a method of reduction of air gap harmonics in a double layer winding https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 30
  • 31. Pitch factor  Ns Q y p Pole pitch https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 31
  • 32. Skew factor  Skew angle s s sq sin    s   sin   p 2  k  https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 32
  • 33. Rotor skew angle https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 33
  • 34. Output equation: input KVA av B DL  pp D ac  32 Ntc  Ncpph  Ic Magnetic loading Electrical loading https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 34
  • 35. Output equation: output coefficient w P 1.112 k  B a  out    d cos  d out P 1.112 k  B ac cos    w av  out P  G D2 Lrps w av d emf 1.112 k  B ac cos  G  Output coefficient Rotor volume Revolutions per second https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 35
  • 36. Magnetic loading https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 36
  • 37. Electric loading https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 37
  • 38. Calculation of main dimensions P D2 L  p ar  L p   D p Aspect ratio Pole pitch p D2 L D  3 ar  https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 38
  • 39. Total flux & pole flux total av   B DL Flux under one pole p    Total air gap flux https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 39
  • 40. Stator lamination geometry sy w wst1 bs2 bs0 hs0 hs1 D OSD wst2 bs1 hs2 wst https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 40 w   wst 2 st1
  • 41. Calculation of width of the stator tooth st,max  Bst  wst1  Lki Width of stator tooth at tip wst2  wst  wst1 Width of stator tooth at tail Iron insulation factor https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 41
  • 42. Maximum stator tooth flux https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 42
  • 43. Maximum stator tooth flux   st,max 2 Ns Ns r D d L   B.ds  B       2 2 2 r p av B  B cos( p )  B cos( p ) st,max https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 43 p  s   s  p  2N   2N    Bav DL sin  p   sin  p 
  • 44. Calculation of width of stator yoke 2 p sy  B wsy  Lki Width of stator yoke Maximum flux in stator yoke wsy https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 44
  • 45. Calculation of the stator slot dimensions s1 s wst1 /2  b  2  tan/ N  D  h  h   s  2 s0 s1   cos/ N      D y  tan/ Ns x wst1 bs1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 45
  • 46. Calculation of the number of Ntph and Ntc (initial guess) Number of effective turns per phase tph N  w Eph 4.44 f k p Number of turns per coil  1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 46 tph tc cpph p N  N  N N
  • 47. Calculation of the slot area Copper area of coil arm cAca  Ntc cAsc cAca kf gAca  Fill factor Gross area of coil arm gAca Nps  3 Copper area of single conductor cAsc https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 47
  • 48. Fill factor of the benchmark motor? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 48
  • 49. Calculation of cAsc (initial guess) Jsw cAsc  Ic Maximum current density in stator winding Coil current (RMS) After Calculation of the cAsc we should update it with SWG or AWG table Jsw  cAsc  cAca  K f  gAca  gAss  hs2 ,bs2  https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 49
  • 50. Calculation of the stator slot depth   s0  h  hs1  h 2   / 2         D     s2 s bs1  bs2  b  2 tan  w b b hs2 s s N   2 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 50
  • 51. Ntc Ntph p L p   B p,old p,new old L  D  Lnew  Updating process p,new https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 51 s tph,new w Eph 4.44 f  N k  
  • 52. Rotor lamination geometry r1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 52 D  2g Dsh ry w wrt wtrib r2 d
  • 53. Rotor slot dimensions wrt rb d r0 h br0 r1 2 r ry w sh D g D https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 53
  • 54. Calculation of width of rotor tooth rt,max  Brt  wrt  Lki Width of rotor tooth Iron insulation factor https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 54
  • 55. Maximum rotor tooth flux   rt,max 2 Nr Nr r D d L   B.ds  B       B  B cos( p  r p  rt,max https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 55 p  r   r  p  2N   2N    Bav DL sin  p   sin  p 
  • 56. Calculation of width of rotor yoke 2 p i  Bry  wry  Lk Width of rotor yoke Maximum flux in rotor yoke ry https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 56 w
  • 57. r 2 x Rotor bar dimensions y 2 2 rt r rt r  w     d  g  h sin   r0   2        d  g        w  r  2 1  hr0 r1  sin  r  r1    2   2  1 sin    2  r1 w d https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 57
  • 58. Calculation of rotor bar current mmf   Total Rotor Ampere Turns 1 Total Stator Ampere Turns mmf cpph tc c Nr  Ib   3 N 2N  I b https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 58 r I N   mmf 3 Ncpph 2Ntc  Ic
  • 59. r 2 x Rotor bar dimensions y 2 2 2 rt r rt r  w     d  g  h  d sin   r0 rb   2        d  g         w  r2   hr0 drb r2  sin  r  r2    2   2  1sin    2  2 r w d https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 59
  • 60. Rotor bar dimensions 2 180 180 2 r r0 r0 rb 1 2 90   r 90   r 1 r  r    aArb  r2  2  r2  2  h b  2 1 2 d  r  r cos 2    rb d r0 h br0 r1 2 r aArb  Ib Jb https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 60
  • 61. Calculation of the depth of rotor bar https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 61
  • 62. Calculation of the end ring current r  N   I   2  I  2p  e,max  b,max      Maximum end ring current e p I  Nr Ib RMS value of maximum end ring current https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 62
  • 63. End ring dimensions https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 63
  • 64. Calculation of depth of end ring e e e J aAer  t d  Ie de te https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 64
  • 65. Efficiency Calculation of the motor losses and efficiency https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 65
  • 66. Total losses Copper losses Iron losses Mechanical losses bearing friction losses windage losses of rotating rotor ventilator losses Additional losses The difference between the total losses and the sum of stator and rotor resistive losses, stator and rotor iron losses, and mechanical losses IEC 60034-2-1 Magnet losses Calculation of the motor efficiency https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 66
  • 67. PCu  mR RAC  kR  RDC kR  kR ( f ,,...) Number of phases Copper losses: AC resistance factor AC resistance Phase current AC resistance factor • Frequency • Load angle • Rotor magnetic field p (t)  R (i2  i2  i2 ) cu ph a b c Pcu  pcu (t) avg https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 67
  • 68. tc T cAsc Rc,T  N   Lmt Mean turn length  T   20 1 T Calculation of the coil resistance Coil resistance Resistivity https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 68
  • 69. End winding https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 69
  • 70. Mean turn length Lmt  2 Lstk  4 Lend  2.4 Lspan span  D OSD L Lstk Lstk Lend Lspan D OSD Mean radius https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 70 Stator slot pitch angle
  • 71. ph c cpph N2 R  R  N  1 Number of parallel paths Calculation of the phase resistance p Number of coils in each phase p (t)  R (i2 i2 i2 ) cu ph a b c Pcu  pcu (t) avg https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 71
  • 72. Cold phase resistance (Siemens) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 72
  • 73. Cold phase resistance (WEG) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 73
  • 74.  T   20 1 T Ohmic loss of rotor bars rb,T T Lstk R aArb    cos Skew  length of the rotor bar Rotor bar resistance Resistivity Cross-section area https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 74
  • 75. Resistance of the end ring er,T T R    D  2 Mean length Cross-section area End ring resistance te de https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 75
  • 76. Ohmic loss of the rotor cage P  N  R  I2 rb r b b P  2 R  I2 er er e Pcage  Prb  Per https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 76
  • 77. Equivalent rotor resistance referred to the stator b Pcage Rr  3 I2 Total Ohmic losses of the cage Rotor bar current Equivalent rotor resistance in rotor side  2  m T K Rrs   s  s  ws   Rr  mr Tr Kwr  Equivalent rotor resistance referred to the stator https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 77
  • 78. Total losses Hysteresis losses Eddy current losses Excess losses 2 2 2 1.5 1.5 Fe dc h c e p B  C k fB  k f B  k f dc dc dc C 1 k B2 kdc,default  0.65 Iron losses https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 78
  • 79. Total losses Hysteresis losses Eddy current losses Excess losses 2 pHyst  Cdckh fB Iron losses: hysteresis losses Hysteresis losses increase by frequency https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 79
  • 80. Total losses Hysteresis losses Eddy current losses Excess losses 2 2 Eddy c p  k f B 6 2  d2 kc  conductivity Thickness of the lamination Iron losses: eddy current losses https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 80
  • 81. Total losses Hysteresis losses Eddy current losses Excess losses 1.5 1.5 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 81 B pExcess  ke f Excess or anomalous loss is due to eddy currents generated by the displacement of the magnetic domain walls Iron losses: excess losses
  • 82. Iron losses in stator teeth sy w wst1 bs0 b hs0 hs1 D wst2 bs1 hs2 2 wst1  wst2  Vst  hs 0 hs1  hs2  Lstk W  OSD https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 82 Iron loss density in stator tooth  m3   PFe,steeth  Ns  pFe,stooth Vst
  • 83. Iron losses in stator yoke wst1 bs0 hs0 hs1 D wst2 bs1 hs2 Fe,sy p  C k f B2  k f 2 B2 dc h s sy c s sy  k f 1.5 B1.5 e s sy Vsy OSD  wsy  wsy  Lstk Iron loss density in stator yoke W  PFe,sy  pFe,sy Vsy sy OSD https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 83 w b
  • 84. Iron losses in rotor teeth Vrt  wrt  drb  Lstk Iron loss density in rotor tooth W   m3   PFe,rteeth  Nr  pFe,rtooth Vrt r1 D  2g Dsh ry w w wtrib r2 d fr  s  fs https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 84
  • 85. Iron losses in rotor yoke Fe,ry dc h r ry c r ry p  C k f B2  k f 2 B2  k f 1.5 B1.5 e r ry wry  wry  Lstk Vry Dsh Iron loss density in rotor yoke W  PFe,ry  pFe,ry Vry r1 r2 D  2g Dsh w wtrib d w https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 85 fr  s  fs
  • 86. Mechanical losses bearing friction losses windage losses of rotating rotor ventilator losses prot https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 86 in out Prot P or P   %1prot  %4 Calculation of the mechanical losses
  • 87. Sensitivity analysis Sensitivity analysis of the design https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 87
  • 88. Sensitivity analysis https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 88
  • 89. Finite Element Analysis https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 89 FEA of the motor and calculation of its electrical parameters and its performance
  • 90. Creation of the parametric model https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 90
  • 91. Dynamic simulation Dynamic simulation of the motor https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 91
  • 92. Setup motion band https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 92
  • 93. Rotor speed; Is the steady-state speed correct? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 93
  • 94. Phase currents; Is the phase current equal to the desired one? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 94
  • 95. Torque; Can the motor deliver the desired torque? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 95
  • 96. Stator winding loss https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 96
  • 97. Rotor cage loss https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 97
  • 98. Iron loss https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 98
  • 99. Output power https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 99
  • 100. Efficiency; Is calculated efficiency equal to desired one? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 100
  • 101. Start backward calculations! https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 101
  • 102. Equivalent circuit Calculation of equivalent circuit parameters https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 102
  • 103. Per-phase equivalent circuit https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 103
  • 104. Per-phase equivalent circuit https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 104
  • 105. Useful equations https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 105
  • 106. Derivation of equivalent circuit from voltage equations vas  Rsias vbs  Rsibs vcs  Rsics var  Rriar vbr  Rribr vcr  Rricr  das dt  dbs dt  dcs dt  dar dt  dbr dt  dcr dt https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 106
  • 107. Inductance matrix L cos p 2 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 107 msr  3  L cos p 2 msr  3  s ms ms msr L cosp msr L cos p 2 ms s ms msr L cos ms ms S msr L cos L L L L L L L L L   as    bs           ar       cr   L cos p 2 msr  3  msr L cos p msr L cos msr L         cs      br     2 L cos  p     3       L
  • 108. MATLAB Symbolic toolbox https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 108
  • 109. Vector diagram 2 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 109 m msr L  3 L Lls  Ls  Lms  Lm Llr  Lr  Lmr  Lm
  • 110. Equivalent circuit parameters Calculation of the induction motor equivalent circuit parameters by FEA https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 110
  • 111. Calculation of circuit parameters by FEA https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 111
  • 112. No-load (open circuit) test s  0 ph Fe P 3V 2 RFe  Rc  Sin  3Vph  Iph ph m m m in e X Q  3V 2 X   L  Pin  avg v i  Q  S2  P2 in in in https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 112
  • 113. Locked-rotor (short circuit) test s 1 ph R  R' s r  Pohmic 3 I2 ph I Z  Z' ls lr  Vph    2 2 ' s r X  X '  Z  Z' ls lr ls lr  R  R ' https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 113 ls lr e X  X ' L  L  ls lr
  • 114. Calculated equivalent circuit parameters https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 114
  • 115. Segregation of leakage reactance https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 115
  • 116. Magnetic loading Calculation of the motor magnetic loading https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 116
  • 117. Magnetic loading https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 117
  • 118. Average absolute value https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 118
  • 119. Fundamental component https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 119
  • 120. DQ reference frames Derivation of the induction motor DQ model https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 120
  • 121.  2 3 s F  a f (t)  a j 2 a  e 3   2 3 1 3       s d q F  fa (t) 0.5 fb (t) 0.5 fc (t) Fs  fb (t)  fc (t) a Fs D Q b c Amplitude invariant version https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 121 abc to stationary DQ reference frame The induction motor per-phase equivalent circuit discussed so far is valid only for steady-state operation. The dynamic model of the machine is important for transient analysis.
  • 122. Clarke transformations 2 1  2   0  1  1  2  3 3  2 2  Tabc2dqs  3   3 1    1 0        1        3     2 2  ds ds bs  dqs2abc qs  qs  cs vas   v v  v  T 2 2  v v   v      1 0   https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 122  3    1  2 2       1 3  2 2  dqs2abc T
  • 123. DQ model in stationary reference frame 1 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 123 2 2 3 1 2 2    1   1 0   3 1   2   1 0 3        0 1  3       0     2   2   1 3  2 2  abc2dqs dqs2abc T T
  • 124. DQ model in stationary reference frame             bs    cs  br  r  br  br    cr  v dt    vcs   bs  s  bs   ics   var  iar  v   R  i dt   vcr icr   as    R  i   d       ar     d               abc2dqs bs  abc2dqs abc2dqs bs    cs  abc2dqs abc2dqs  cr  vas  ias  vas  ias  T  v   T  R  i  T dt    vcs   var  s  bs   ics   iar  T  v   T  R  i  T dt   vcr br  abc2dqs r  br   icr     as    d        ar     d     br                    ds ds s abc2dqs qs   qs  qs   dr dr abc2dqs qr   qr  qr   v i  R  T  d  T v  i  dt  v i  R  T  d  T v  r i  dt   ds   dqs2abc     https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 124         dr         ds ds s abc2dqs dqs2abc qs   qs  qs   dr dr abc2dqs dqs2abc qr   qr  qr   v i  R   T T v  i  v i  R   T T dqs2abc    v  r i   d   ds   dt      d   dr   dt      
  • 125. DQ model in stationary reference frame s ms ms msr ms s ms msr as ms S msr L L L L L L Lms L L L cosp L cosp L cos p 2 msr  3     L cos p 2 msr  3  msr          bs  L cos p 2 L cos p 2 msr  3  msr  3          ar       cr   3 msr r mr mr msr mr r mr L L L L L L Lmr Lmr Lr L cosp L cos p 2 msr  3          cs    L cos p L cosp 2 L cosp 2 msr  3  msr  3        br   L cosp L cosp 2   2 L cos  p msr  3  msr  3         2  2 L cos  p 3 L cos  p Lmsr cos p msr   msr         as  L cos p 2 3  i   i    bs   i    cs   iar   i    br    icr        0 https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 125 0 2 3 2 2 3 2 0 0 3 2 3 2        3   2  3   2  s ms msr msr qs      qs  dr    dr  msr msr r mr qr qr L  L 3 L 3 L  ids  Ls  Lms  i  L L L  L   i Lr  Lmr cosp cosp  ds  Lmsr cosp Lmsr cosp i     cosp cosp      Lmsr cosp Lmsr cosp
  • 126.         r s s d d q r s s q d q t t sin  F  F cos t  F   F  F sin t  F cos   Fr  Fs e j t Fs  Fej s Fr  Fej r  Fej( s  t )          cos t  jsin  t r s s d q F  F  jF Stationary to rotatory reference frame dqs2dqr d r Fs cos t sin t Fs  Fs Fs   T F Fr   cos t   d    sin t     d   d     d     q    dqr2dqs T sin  cos t sin t  t cos t     https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 126
  • 127. Equations in rotor dq reference frame    ph  qs  qs   r  ids  vs   R  i v d  ds     dt   Tdqr2dqs sin t  cos t sin t cos t    dr dr dqr2dqs ph dqr2dqs dqr2dqs v i d T        R T   T   dr  v  i  dt     qr   qr    qr  dr dr dqr2dqs dqr2dqs dqr2dqs ph dqr2dqs dqr2dqs dqr2dqs v i T1 1 1     T   T  R T  T d  T   dr  v  i  dt     qr   qr    qr  dr https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 127 dr dr dqr2dqs v i d dt 1           R   T  d T   dr  v  ph i  dqr2dqs   dt    qr   qr   qr   qr 
  • 128. Equations in rotor dq reference frame Tdqr2dqs sin t  cos t sin t cos t    d 1 vdr  idr  d  dr  v   Rph  i       qr  dr dr dr qr ph v i d              R    v  i     dt    dr   qr   qr   qr  q https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 128 vd  Rphidr  v  
  • 129. d q Fs rt D Q         Fej( s  rt ) r Fs  Fej s Fr  Fej r Fr  Fs e jt r s s d q F  F  jF r r  cos  t  jsin t         r s s d d r q r r s s q d r q r t t F  F cos  t  F sin    F  F sin  t  F cos   Stationary to rotatory reference frame https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 129
  • 130. cos  A.B A B Calculation of the angle between two vectors Power factor  Calculation of the power factor B A vs is https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 130 PF  cos  vdsids  vqsiqs
  • 131. Calculation of the g_emf emf https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 131 ph s V V   Eph  Vm
  • 132. Stator, rotor, and resultant field Stator https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 132 Rotor Resultant
  • 133. Calculation of the MMF ratio mmf cpph tc c Nr  Ib   3 N 2N  I https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 133
  • 134. Torque-speed curve Calculation of torque-speed curve both analytically and by FEA and comparison https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 134
  • 135. Analytic method https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 135
  • 136. Torque-speed curve of induction machine https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 136
  • 137. Operating speed https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 137
  • 138. Breakdown torque https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 138
  • 139. Variation of torque-speed curve by rotor resistance https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 139
  • 140. Torque near synchronous speed mV 2  s 2 Te s s r m s Te   V  R  Rr  Is the steady-state speed correct? Check Rr-error! https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 140
  • 141. Magnetizing current Calculation of magnetizing current analytically and by FEA https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 141
  • 142. Magnetizing current for concentrated winding m t  AT I N https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 142
  • 143. Magnetizing current for concentrated winding (Sinusoidal flux distribution) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 143
  • 144. Magnetizing current for concentrated winding (Non sinusoidal flux distribution) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 144
  • 145. The circle diagram Calculation of the motor circle diagram https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 145
  • 146. What is the circle diagram? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 146
  • 147. What is the circle diagram? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 147
  • 148. What is the circle diagram? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 148
  • 149. The induction motor circle diagram https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 149
  • 150. Sensitivity analysis Air gap sensitivity analysis https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 150
  • 151. Variation of the air gap length Air gap length   Power factor  https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 151 Air gap length   Leakage reactance   Over-load capacity  Air gap length   Zigzag leakage flux   Pulsation loss  & Noise  Air gap length   Better cooling Air gap length   Unbalanced magnetic pull 
  • 152. Sensitivity analysis: full load https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 152
  • 153. Sensitivity analysis: no-load https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 153
  • 154. Double cage rotors Rotor classes https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 154
  • 155. Why double cage rotors? https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 155
  • 156. Design types of induction motors https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 156
  • 157. Ns-Nr combination Selection of number of stator and rotor slots https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 157
  • 158. Harmonic fields https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 158 The harmonic fields are produced because of: i. Windings ii.Slotting iii.Saturation iv.Gap length irregularity v.Over hang leakage fields vi.Axial leakage of the main flux vii.Harmonics in the supply system viii.Unbalance supply system
  • 159. Position period, time period r 1 B  B cos p t   2 e    f x,t cos f x,t f x,t T  cosAx  Bt T   co BT  2T  2 in , https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 159 wave speed  X
  • 160. Harmonic induction torques (asynchronous crawling) https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 160
  • 161. Slot harmonics 1 s f  f  2  slots   poles    poles s 1 1       1  s sin2fstcos2f1t f  f  f   2 slots 1  https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 161
  • 162. Safe choices https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 162
  • 163. Some of references I. J. Pyrhonen, T. Jokinen, and V. Hrabovcova, Design of rotating electrical machines. John Wiley & Sons, 2013. II. T.A. Lipo, Introduction toAC machine design. John Wiley & Sons, 2017. III. R.K.Agarwal, Principles Of Electrical Machine Design. IV. A. K Sawhney, Acourse in electrical machine design. V. P. Cochran, Polyphase induction motors, analysis: design, and application. CRC Press, 1989. https://ComProgExpert.com Introductory Course on Design of Three-Phase Induction Motors 163