SlideShare a Scribd company logo
Unit Commitment
Daniel Kirschen
© 2011 Daniel Kirschen and the University of Washington
1
Economic Dispatch: Problem Definition
• Given load
• Given set of units on-line
• How much should each unit generate to meet this
load at minimum cost?
© 2011 Daniel Kirschen and the University of Washington 2
A B C
L
Typical summer and winter loads
© 2011 Daniel Kirschen and the University of Washington 3
Unit Commitment
• Given load profile
(e.g. values of the load for each hour of a day)
• Given set of units available
• When should each unit be started, stopped and
how much should it generate to meet the load at
minimum cost?
© 2011 Daniel Kirschen and the University of Washington 4
G G G
Load Profile
? ? ?
A Simple Example
• Unit 1:
• PMin = 250 MW, PMax = 600 MW
• C1 = 510.0 + 7.9 P1 + 0.00172 P1
2 $/h
• Unit 2:
• PMin = 200 MW, PMax = 400 MW
• C2 = 310.0 + 7.85 P2 + 0.00194 P2
2 $/h
• Unit 3:
• PMin = 150 MW, PMax = 500 MW
• C3 = 78.0 + 9.56 P3 + 0.00694 P3
2 $/h
• What combination of units 1, 2 and 3 will produce 550 MW at
minimum cost?
• How much should each unit in that combination generate?
© 2011 Daniel Kirschen and the University of Washington 5
Cost of the various combinations
© 2011 Daniel Kirschen and the University of Washington 6
Observations on the example:
• Far too few units committed:
Can’t meet the demand
• Not enough units committed:
Some units operate above optimum
• Too many units committed:
Some units below optimum
• Far too many units committed:
Minimum generation exceeds demand
• No-load cost affects choice of optimal
combination
© 2011 Daniel Kirschen and the University of Washington 7
A more ambitious example
• Optimal generation schedule for
a load profile
• Decompose the profile into a
set of period
• Assume load is constant over
each period
• For each time period, which
units should be committed to
generate at minimum cost
during that period?
© 2011 Daniel Kirschen and the University of Washington 8
Load
Time
1260 18 24
500
1000
Optimal combination for each hour
© 2011 Daniel Kirschen and the University of Washington 9
Matching the combinations to the load
© 2011 Daniel Kirschen and the University of Washington 10
Load
Time
1260 18 24
Unit 1
Unit 2
Unit 3
Issues
• Must consider constraints
– Unit constraints
– System constraints
• Some constraints create a link between periods
• Start-up costs
– Cost incurred when we start a generating unit
– Different units have different start-up costs
• Curse of dimensionality
© 2011 Daniel Kirschen and the University of Washington 11
Unit Constraints
• Constraints that affect each unit individually:
–Maximum generating capacity
–Minimum stable generation
–Minimum “up time”
–Minimum “down time”
–Ramp rate
© 2011 Daniel Kirschen and the University of Washington 12
Notations
© 2011 Daniel Kirschen and the University of Washington 13
u(i,t): Status of unit i at period t
x(i,t): Power produced by unit i during period t
Unit i is on during period tu(i,t) =1:
Unit i is off during period tu(i,t) = 0 :
Minimum up- and down-time
• Minimum up time
– Once a unit is running it may not be shut down
immediately:
• Minimum down time
– Once a unit is shut down, it may not be started
immediately
© 2011 Daniel Kirschen and the University of Washington 14
If u(i,t) =1 and ti
up
< ti
up,min
then u(i,t +1) =1
If u(i,t) = 0 and ti
down
< ti
down,min
then u(i,t +1) = 0
Ramp rates
• Maximum ramp rates
– To avoid damaging the turbine, the electrical output of a unit
cannot change by more than a certain amount over a period of
time:
© 2011 Daniel Kirschen and the University of Washington 15
x i,t +1( )- x i,t( )£ DPi
up,max
x(i,t)- x(i,t +1) £ DPi
down,max
Maximum ramp up rate constraint:
Maximum ramp down rate constraint:
System Constraints
• Constraints that affect more than one unit
– Load/generation balance
– Reserve generation capacity
– Emission constraints
– Network constraints
© 2011 Daniel Kirschen and the University of Washington 16
Load/Generation Balance Constraint
© 2011 Daniel Kirschen and the University of Washington 17
u(i,t)x(i,t)
i=1
N
å = L(t)
N : Set of available units
Reserve Capacity Constraint
• Unanticipated loss of a generating unit or an interconnection
causes unacceptable frequency drop if not corrected rapidly
• Need to increase production from other units to keep frequency
drop within acceptable limits
• Rapid increase in production only possible if committed units are
not all operating at their maximum capacity
© 2011 Daniel Kirschen and the University of Washington 18
u(i,t)
i=1
N
å Pi
max
³ L(t)+ R(t)
R(t): Reserve requirement at time t
How much reserve?
• Protect the system against “credible outages”
• Deterministic criteria:
– Capacity of largest unit or interconnection
– Percentage of peak load
• Probabilistic criteria:
– Takes into account the number and size of the
committed units as well as their outage rate
© 2011 Daniel Kirschen and the University of Washington 19
Types of Reserve
• Spinning reserve
– Primary
• Quick response for a short time
– Secondary
• Slower response for a longer time
• Tertiary reserve
– Replace primary and secondary reserve to protect
against another outage
– Provided by units that can start quickly (e.g. open cycle
gas turbines)
– Also called scheduled or off-line reserve
© 2011 Daniel Kirschen and the University of Washington 20
Types of Reserve
• Positive reserve
– Increase output when generation < load
• Negative reserve
– Decrease output when generation > load
• Other sources of reserve:
– Pumped hydro plants
– Demand reduction (e.g. voluntary load shedding)
• Reserve must be spread around the network
– Must be able to deploy reserve even if the network is
congested
© 2011 Daniel Kirschen and the University of Washington 21
Cost of Reserve
• Reserve has a cost even when it is not called
• More units scheduled than required
– Units not operated at their maximum efficiency
– Extra start up costs
• Must build units capable of rapid response
• Cost of reserve proportionally larger in small
systems
• Important driver for the creation of interconnections
between systems
© 2011 Daniel Kirschen and the University of Washington 22
Environmental constraints
• Scheduling of generating units may be affected by
environmental constraints
• Constraints on pollutants such SO2, NOx
– Various forms:
• Limit on each plant at each hour
• Limit on plant over a year
• Limit on a group of plants over a year
• Constraints on hydro generation
– Protection of wildlife
– Navigation, recreation
© 2011 Daniel Kirschen and the University of Washington 23
Network Constraints
• Transmission network may have an effect on the
commitment of units
– Some units must run to provide voltage support
– The output of some units may be limited because their
output would exceed the transmission capacity of the
network
© 2011 Daniel Kirschen and the University of Washington 24
Cheap generators
May be “constrained off”
More expensive generator
May be “constrained on”
A B
Start-up Costs
• Thermal units must be “warmed up” before they
can be brought on-line
• Warming up a unit costs money
• Start-up cost depends on time unit has been off
© 2011 Daniel Kirschen and the University of Washington 25
SCi (ti
OFF
) = ai + bi (1 - e
-
ti
OFF
t i
)
ti
OFF
αi
αi + βi
Start-up Costs
• Need to “balance” start-up costs and running costs
• Example:
– Diesel generator: low start-up cost, high running cost
– Coal plant: high start-up cost, low running cost
• Issues:
– How long should a unit run to “recover” its start-up cost?
– Start-up one more large unit or a diesel generator to cover
the peak?
– Shutdown one more unit at night or run several units part-
loaded?
© 2011 Daniel Kirschen and the University of Washington 26
Summary
• Some constraints link periods together
• Minimizing the total cost (start-up + running) must
be done over the whole period of study
• Generation scheduling or unit commitment is a
more general problem than economic dispatch
• Economic dispatch is a sub-problem of generation
scheduling
© 2011 Daniel Kirschen and the University of Washington 27
Flexible Plants
• Power output can be adjusted (within limits)
• Examples:
– Coal-fired
– Oil-fired
– Open cycle gas turbines
– Combined cycle gas turbines
– Hydro plants with storage
• Status and power output can be optimized
© 2011 Daniel Kirschen and the University of Washington 28
Thermal units
Inflexible Plants
• Power output cannot be adjusted for technical or
commercial reasons
• Examples:
– Nuclear
– Run-of-the-river hydro
– Renewables (wind, solar,…)
– Combined heat and power (CHP, cogeneration)
• Output treated as given when optimizing
© 2011 Daniel Kirschen and the University of Washington 29
Solving the Unit Commitment Problem
• Decision variables:
– Status of each unit at each period:
– Output of each unit at each period:
• Combination of integer and continuous variables
© 2011 Daniel Kirschen and the University of Washington 30
u(i,t) Î 0,1{ }   " i,t
x(i,t) Î 0, Pi
min
;Pi
max
éë ùû{ }  " i,t
Optimization with integer variables
• Continuous variables
– Can follow the gradients or use LP
– Any value within the feasible set is OK
• Discrete variables
– There is no gradient
– Can only take a finite number of values
– Problem is not convex
– Must try combinations of discrete values
© 2011 Daniel Kirschen and the University of Washington 31
How many combinations are there?
© 2011 Daniel Kirschen and the University of Washington 32
• Examples
– 3 units: 8 possible states
– N units: 2N possible states
111
110
101
100
011
010
001
000
How many solutions are there anyway?
© 2011 Daniel Kirschen and the University of Washington 33
1 2 3 4 5 6T=
• Optimization over a time
horizon divided into
intervals
• A solution is a path linking
one combination at each
interval
• How many such paths are
there?
How many solutions are there anyway?
© 2011 Daniel Kirschen and the University of Washington 34
1 2 3 4 5 6T=
Optimization over a time
horizon divided into intervals
A solution is a path linking
one combination at each
interval
How many such path are
there?
Answer: 2N
( ) 2N
( )… 2N
( ) = 2N
( )T
The Curse of Dimensionality
• Example: 5 units, 24 hours
• Processing 109 combinations/second, this would
take 1.9 1019 years to solve
• There are 100’s of units in large power systems...
• Many of these combinations do not satisfy the
constraints
© 2011 Daniel Kirschen and the University of Washington 35
2N
( )
T
= 25
( )
24
= 6.21035
combinations
How do you Beat the Curse?
Brute force approach won’t work!
• Need to be smart
• Try only a small subset of all combinations
• Can’t guarantee optimality of the solution
• Try to get as close as possible within a reasonable
amount of time
© 2011 Daniel Kirschen and the University of Washington 36
Main Solution Techniques
• Characteristics of a good technique
– Solution close to the optimum
– Reasonable computing time
– Ability to model constraints
• Priority list / heuristic approach
• Dynamic programming
• Lagrangian relaxation
• Mixed Integer Programming
© 2011 Daniel Kirschen and the University of Washington 37
State of the art
A Simple Unit Commitment Example
© 2011 Daniel Kirschen and the University of Washington
38
Unit Data
© 2011 Daniel Kirschen and the University of Washington 39
Unit
Pmin
(MW)
Pmax
(MW)
Min
up
(h)
Min
down
(h)
No-load
cost
($)
Marginal
cost
($/MWh)
Start-up
cost
($)
Initial
status
A 150 250 3 3 0 10 1,000 ON
B 50 100 2 1 0 12 600 OFF
C 10 50 1 1 0 20 100 OFF
Demand Data
© 2011 Daniel Kirschen and the University of Washington 40
Hourly Demand
0
50
100
150
200
250
300
350
1 2 3
Hours
Load
Reserve requirements are not considered
Feasible Unit Combinations (states)
© 2011 Daniel Kirschen and the University of Washington 41
Combinations
Pmin Pmax
A B C
1 1 1 210 400
1 1 0 200 350
1 0 1 160 300
1 0 0 150 250
0 1 1 60 150
0 1 0 50 100
0 0 1 10 50
0 0 0 0 0
1 2 3
150 300 200
Transitions between feasible combinations
© 2011 Daniel Kirschen and the University of Washington 42
A B C
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
1 2 3
Initial State
Infeasible transitions: Minimum down time of unit A
© 2011 Daniel Kirschen and the University of Washington 43
A B C
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
1 2 3
Initial State
TD TU
A 3 3
B 1 2
C 1 1
Infeasible transitions: Minimum up time of unit B
© 2011 Daniel Kirschen and the University of Washington 44
A B C
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
1 2 3
Initial State
TD TU
A 3 3
B 1 2
C 1 1
Feasible transitions
© 2011 Daniel Kirschen and the University of Washington 45
A B C
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
1 2 3
Initial State
Operating costs
© 2011 Daniel Kirschen and the University of Washington 46
1 1 1
1 1 0
1 0 1
1 0 0 1
4
3
2
5
6
7
Economic dispatch
© 2011 Daniel Kirschen and the University of Washington 47
State Load PA PB PC Cost
1 150 150 0 0 1500
2 300 250 0 50 3500
3 300 250 50 0 3100
4 300 240 50 10 3200
5 200 200 0 0 2000
6 200 190 0 10 2100
7 200 150 50 0 2100
Unit Pmin Pmax No-load cost Marginal cost
A 150 250 0 10
B 50 100 0 12
C 10 50 0 20
Operating costs
© 2011 Daniel Kirschen and the University of Washington 48
1 1 1
1 1 0
1 0 1
1 0 0 1
4
3
2
5
6
7
$1500
$3500
$3100
$3200
$2000
$2100
$2100
Start-up costs
© 2011 Daniel Kirschen and the University of Washington 49
1 1 1
1 1 0
1 0 1
1 0 0 1
4
3
2
5
6
7
$1500
$3500
$3100
$3200
$2000
$2100
$2100
Unit Start-up cost
A 1000
B 600
C 100
$0
$0
$0
$0
$0
$600
$100
$600
$700
Accumulated costs
© 2011 Daniel Kirschen and the University of Washington 50
1 1 1
1 1 0
1 0 1
1 0 0 1
4
3
2
5
6
7
$1500
$3500
$3100
$3200
$2000
$2100
$2100
$1500
$5100
$5200
$5400
$7300
$7200
$7100
$0
$0
$0
$0
$0
$600
$100
$600
$700
Total costs
© 2011 Daniel Kirschen and the University of Washington 51
1 1 1
1 1 0
1 0 1
1 0 0 1
4
3
2
5
6
7
$7300
$7200
$7100
Lowest total cost
Optimal solution
© 2011 Daniel Kirschen and the University of Washington 52
1 1 1
1 1 0
1 0 1
1 0 0 1
2
5
$7100
Notes
• This example is intended to illustrate the principles of
unit commitment
• Some constraints have been ignored and others
artificially tightened to simplify the problem and make
it solvable by hand
• Therefore it does not illustrate the true complexity of
the problem
• The solution method used in this example is based on
dynamic programming. This technique is no longer
used in industry because it only works for small
systems (< 20 units)
© 2011 Daniel Kirschen and the University of Washington 53

More Related Content

What's hot

Economic dispatch
Economic dispatch  Economic dispatch
Economic dispatch
Hussain Ali
 
POWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGNPOWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGN
Hardik Pandya
 
Economic operation of Power systems by Unit commitment
Economic operation of Power systems by Unit commitment Economic operation of Power systems by Unit commitment
Economic operation of Power systems by Unit commitment
Pritesh Priyadarshi
 
Power system security
Power system security Power system security
Power system security
MANGESHKULKARNI72
 
Load / Frequency balancing Control systems study
Load / Frequency balancing Control systems studyLoad / Frequency balancing Control systems study
Load / Frequency balancing Control systems study
CAL
 
Input output , heat rate characteristics and Incremental cost
Input output , heat rate characteristics and Incremental costInput output , heat rate characteristics and Incremental cost
Input output , heat rate characteristics and Incremental cost
Eklavya Sharma
 
Loading Capability Limits of Transmission Lines
Loading Capability Limits of Transmission LinesLoading Capability Limits of Transmission Lines
Loading Capability Limits of Transmission Lines
Raja Adapa
 
Load Forecasting
Load ForecastingLoad Forecasting
Load Forecasting
linsstalex
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
khemraj298
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatemPanditNitesh
 
Power system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter fivePower system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter five
Adama Science and Technology University
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
SANTOSH GADEKAR
 
Load Forecasting Techniques.pdf
Load Forecasting Techniques.pdfLoad Forecasting Techniques.pdf
Load Forecasting Techniques.pdf
Ajay Bhatnagar
 
Economic operation of power system
Economic operation of power systemEconomic operation of power system
Economic operation of power system
Balaram Das
 
POWER SYSTEM PLANNING
POWER SYSTEM PLANNINGPOWER SYSTEM PLANNING
POWER SYSTEM PLANNING
NishaDangi99
 
Power system interconnection presentation
Power system interconnection presentationPower system interconnection presentation
Power system interconnection presentation
Aneeque Qaiser
 
Small signal stability analysis
Small signal stability analysisSmall signal stability analysis
Small signal stability analysis
bhupendra kumar
 
Power System Operation and Control
Power System Operation and ControlPower System Operation and Control
Power System Operation and ControlBiswajit Pratihari
 
Principles of Power Systems V.K Mehta Complete Book - Chapter 5
Principles of Power Systems V.K Mehta Complete Book - Chapter 5Principles of Power Systems V.K Mehta Complete Book - Chapter 5
Principles of Power Systems V.K Mehta Complete Book - Chapter 5
Power System Operation
 
Swing equation
Swing equationSwing equation
Swing equation
Darshil Shah
 

What's hot (20)

Economic dispatch
Economic dispatch  Economic dispatch
Economic dispatch
 
POWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGNPOWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGN
 
Economic operation of Power systems by Unit commitment
Economic operation of Power systems by Unit commitment Economic operation of Power systems by Unit commitment
Economic operation of Power systems by Unit commitment
 
Power system security
Power system security Power system security
Power system security
 
Load / Frequency balancing Control systems study
Load / Frequency balancing Control systems studyLoad / Frequency balancing Control systems study
Load / Frequency balancing Control systems study
 
Input output , heat rate characteristics and Incremental cost
Input output , heat rate characteristics and Incremental costInput output , heat rate characteristics and Incremental cost
Input output , heat rate characteristics and Incremental cost
 
Loading Capability Limits of Transmission Lines
Loading Capability Limits of Transmission LinesLoading Capability Limits of Transmission Lines
Loading Capability Limits of Transmission Lines
 
Load Forecasting
Load ForecastingLoad Forecasting
Load Forecasting
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatem
 
Power system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter fivePower system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter five
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
 
Load Forecasting Techniques.pdf
Load Forecasting Techniques.pdfLoad Forecasting Techniques.pdf
Load Forecasting Techniques.pdf
 
Economic operation of power system
Economic operation of power systemEconomic operation of power system
Economic operation of power system
 
POWER SYSTEM PLANNING
POWER SYSTEM PLANNINGPOWER SYSTEM PLANNING
POWER SYSTEM PLANNING
 
Power system interconnection presentation
Power system interconnection presentationPower system interconnection presentation
Power system interconnection presentation
 
Small signal stability analysis
Small signal stability analysisSmall signal stability analysis
Small signal stability analysis
 
Power System Operation and Control
Power System Operation and ControlPower System Operation and Control
Power System Operation and Control
 
Principles of Power Systems V.K Mehta Complete Book - Chapter 5
Principles of Power Systems V.K Mehta Complete Book - Chapter 5Principles of Power Systems V.K Mehta Complete Book - Chapter 5
Principles of Power Systems V.K Mehta Complete Book - Chapter 5
 
Swing equation
Swing equationSwing equation
Swing equation
 

Viewers also liked

HIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERINGHIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERING
rpsswitchgear
 
Measurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_versionMeasurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_version
Aman Ansari
 
Design, planning and layout of high voltage lab
Design, planning and layout of high voltage labDesign, planning and layout of high voltage lab
Design, planning and layout of high voltage labNidhi Maru
 
High voltage engineering
High voltage engineeringHigh voltage engineering
High voltage engineering
Hari Kumar
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...
Living Online
 
Project on economic load dispatch
Project on economic load dispatchProject on economic load dispatch
Project on economic load dispatchayantudu
 
Summer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul MehraSummer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul Mehra
Rahul Mehra
 
EE2353 / High Voltage Engineering - Testing of Cables
EE2353 / High Voltage Engineering - Testing of CablesEE2353 / High Voltage Engineering - Testing of Cables
EE2353 / High Voltage Engineering - Testing of CablesRajesh Ramesh
 
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
foyez ahammad
 
POWER DISTRIBUTION 2.docx
POWER DISTRIBUTION 2.docxPOWER DISTRIBUTION 2.docx
POWER DISTRIBUTION 2.docxJeffrey Dorsey
 
Measurement & Instrumentation (BE)
Measurement & Instrumentation (BE)Measurement & Instrumentation (BE)
Measurement & Instrumentation (BE)
PRABHAHARAN429
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION moiz89
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
Siswoyo Edo
 
Load forecasting
Load forecastingLoad forecasting
Load forecastingsushrut p
 

Viewers also liked (15)

HIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERINGHIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERING
 
Measurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_versionMeasurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_version
 
Design, planning and layout of high voltage lab
Design, planning and layout of high voltage labDesign, planning and layout of high voltage lab
Design, planning and layout of high voltage lab
 
Unit Commitment
Unit CommitmentUnit Commitment
Unit Commitment
 
High voltage engineering
High voltage engineeringHigh voltage engineering
High voltage engineering
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...
 
Project on economic load dispatch
Project on economic load dispatchProject on economic load dispatch
Project on economic load dispatch
 
Summer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul MehraSummer Internship Report -By Rahul Mehra
Summer Internship Report -By Rahul Mehra
 
EE2353 / High Voltage Engineering - Testing of Cables
EE2353 / High Voltage Engineering - Testing of CablesEE2353 / High Voltage Engineering - Testing of Cables
EE2353 / High Voltage Engineering - Testing of Cables
 
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
SWITCH GEAR & PROTECTIVE DEVICE (EEN-437)
 
POWER DISTRIBUTION 2.docx
POWER DISTRIBUTION 2.docxPOWER DISTRIBUTION 2.docx
POWER DISTRIBUTION 2.docx
 
Measurement & Instrumentation (BE)
Measurement & Instrumentation (BE)Measurement & Instrumentation (BE)
Measurement & Instrumentation (BE)
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
 
Load forecasting
Load forecastingLoad forecasting
Load forecasting
 

Similar to Unit commitment in power system

BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptxBAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
idoer11
 
[2020.2] PSOC - Unit_Commitment.pptx
[2020.2] PSOC - Unit_Commitment.pptx[2020.2] PSOC - Unit_Commitment.pptx
[2020.2] PSOC - Unit_Commitment.pptx
SintianiPerdanisinti
 
Power station
Power stationPower station
Power station
Sirat Mahmood
 
Economics of Power Generation
Economics of Power GenerationEconomics of Power Generation
Economics of Power Generation
Niraj Solanki
 
Economic load dispatch
Economic load dispatch Economic load dispatch
Economic load dispatch
MANGESHKULKARNI72
 
Bunaken Island | Nov-15 | Renewable Energy in Small Island Grids
Bunaken Island | Nov-15 | Renewable Energy in Small Island GridsBunaken Island | Nov-15 | Renewable Energy in Small Island Grids
Bunaken Island | Nov-15 | Renewable Energy in Small Island Grids
Smart Villages
 
Shreelakshmi(power).pptx
Shreelakshmi(power).pptxShreelakshmi(power).pptx
Shreelakshmi(power).pptx
surbhi agarwal
 
Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design
Marcep Inc.
 
Copy of PSOC-unit1.pdf
Copy of PSOC-unit1.pdfCopy of PSOC-unit1.pdf
Copy of PSOC-unit1.pdf
ShubhamVerma961456
 
Module1-Power-System-operation and-control
Module1-Power-System-operation and-controlModule1-Power-System-operation and-control
Module1-Power-System-operation and-control
kvvbapiraju2
 
Lecture 8 load duration curves
Lecture 8 load duration curvesLecture 8 load duration curves
Lecture 8 load duration curves
Swapnil Gadgune
 
Lecture 7 load duration curves
Lecture 7 load duration curvesLecture 7 load duration curves
Lecture 7 load duration curves
Swapnil Gadgune
 
Design and construction of wind turbine towers for maximum power generation
Design and construction of wind turbine towers for maximum power generationDesign and construction of wind turbine towers for maximum power generation
Design and construction of wind turbine towers for maximum power generation
Aakash Bagchi
 
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro TasmaniaSecuring Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
United Nations Association of Australia (Vic)
 
Power_plant_ecomices.pptx
Power_plant_ecomices.pptxPower_plant_ecomices.pptx
Power_plant_ecomices.pptx
LucasMogaka
 
CH-2_PPEE.ppt
CH-2_PPEE.pptCH-2_PPEE.ppt
CH-2_PPEE.ppt
AkashNetwork
 
Wind and Solar Power - Renewable Energy Technologies
Wind and Solar Power - Renewable Energy TechnologiesWind and Solar Power - Renewable Energy Technologies
Wind and Solar Power - Renewable Energy Technologies
Living Online
 
Ctws ocean energy lovely
Ctws ocean energy lovelyCtws ocean energy lovely
Ctws ocean energy lovely
blemon
 
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
kevinfok
 
Baby Smart Grid 11/09
Baby Smart Grid 11/09Baby Smart Grid 11/09
Baby Smart Grid 11/09
jessmillar
 

Similar to Unit commitment in power system (20)

BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptxBAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
BAB 7. UNIT COMMITMENTBAB 7. UNIT COMMITMENT.pptx
 
[2020.2] PSOC - Unit_Commitment.pptx
[2020.2] PSOC - Unit_Commitment.pptx[2020.2] PSOC - Unit_Commitment.pptx
[2020.2] PSOC - Unit_Commitment.pptx
 
Power station
Power stationPower station
Power station
 
Economics of Power Generation
Economics of Power GenerationEconomics of Power Generation
Economics of Power Generation
 
Economic load dispatch
Economic load dispatch Economic load dispatch
Economic load dispatch
 
Bunaken Island | Nov-15 | Renewable Energy in Small Island Grids
Bunaken Island | Nov-15 | Renewable Energy in Small Island GridsBunaken Island | Nov-15 | Renewable Energy in Small Island Grids
Bunaken Island | Nov-15 | Renewable Energy in Small Island Grids
 
Shreelakshmi(power).pptx
Shreelakshmi(power).pptxShreelakshmi(power).pptx
Shreelakshmi(power).pptx
 
Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design
 
Copy of PSOC-unit1.pdf
Copy of PSOC-unit1.pdfCopy of PSOC-unit1.pdf
Copy of PSOC-unit1.pdf
 
Module1-Power-System-operation and-control
Module1-Power-System-operation and-controlModule1-Power-System-operation and-control
Module1-Power-System-operation and-control
 
Lecture 8 load duration curves
Lecture 8 load duration curvesLecture 8 load duration curves
Lecture 8 load duration curves
 
Lecture 7 load duration curves
Lecture 7 load duration curvesLecture 7 load duration curves
Lecture 7 load duration curves
 
Design and construction of wind turbine towers for maximum power generation
Design and construction of wind turbine towers for maximum power generationDesign and construction of wind turbine towers for maximum power generation
Design and construction of wind turbine towers for maximum power generation
 
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro TasmaniaSecuring Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
Securing Australia's Energy Future: The Challenge - Simon Gamble, Hydro Tasmania
 
Power_plant_ecomices.pptx
Power_plant_ecomices.pptxPower_plant_ecomices.pptx
Power_plant_ecomices.pptx
 
CH-2_PPEE.ppt
CH-2_PPEE.pptCH-2_PPEE.ppt
CH-2_PPEE.ppt
 
Wind and Solar Power - Renewable Energy Technologies
Wind and Solar Power - Renewable Energy TechnologiesWind and Solar Power - Renewable Energy Technologies
Wind and Solar Power - Renewable Energy Technologies
 
Ctws ocean energy lovely
Ctws ocean energy lovelyCtws ocean energy lovely
Ctws ocean energy lovely
 
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
Energy Storage: New Capabilities for the Electric Grid – The Tehachapi Energy...
 
Baby Smart Grid 11/09
Baby Smart Grid 11/09Baby Smart Grid 11/09
Baby Smart Grid 11/09
 

Recently uploaded

Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 

Recently uploaded (20)

Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 

Unit commitment in power system

  • 1. Unit Commitment Daniel Kirschen © 2011 Daniel Kirschen and the University of Washington 1
  • 2. Economic Dispatch: Problem Definition • Given load • Given set of units on-line • How much should each unit generate to meet this load at minimum cost? © 2011 Daniel Kirschen and the University of Washington 2 A B C L
  • 3. Typical summer and winter loads © 2011 Daniel Kirschen and the University of Washington 3
  • 4. Unit Commitment • Given load profile (e.g. values of the load for each hour of a day) • Given set of units available • When should each unit be started, stopped and how much should it generate to meet the load at minimum cost? © 2011 Daniel Kirschen and the University of Washington 4 G G G Load Profile ? ? ?
  • 5. A Simple Example • Unit 1: • PMin = 250 MW, PMax = 600 MW • C1 = 510.0 + 7.9 P1 + 0.00172 P1 2 $/h • Unit 2: • PMin = 200 MW, PMax = 400 MW • C2 = 310.0 + 7.85 P2 + 0.00194 P2 2 $/h • Unit 3: • PMin = 150 MW, PMax = 500 MW • C3 = 78.0 + 9.56 P3 + 0.00694 P3 2 $/h • What combination of units 1, 2 and 3 will produce 550 MW at minimum cost? • How much should each unit in that combination generate? © 2011 Daniel Kirschen and the University of Washington 5
  • 6. Cost of the various combinations © 2011 Daniel Kirschen and the University of Washington 6
  • 7. Observations on the example: • Far too few units committed: Can’t meet the demand • Not enough units committed: Some units operate above optimum • Too many units committed: Some units below optimum • Far too many units committed: Minimum generation exceeds demand • No-load cost affects choice of optimal combination © 2011 Daniel Kirschen and the University of Washington 7
  • 8. A more ambitious example • Optimal generation schedule for a load profile • Decompose the profile into a set of period • Assume load is constant over each period • For each time period, which units should be committed to generate at minimum cost during that period? © 2011 Daniel Kirschen and the University of Washington 8 Load Time 1260 18 24 500 1000
  • 9. Optimal combination for each hour © 2011 Daniel Kirschen and the University of Washington 9
  • 10. Matching the combinations to the load © 2011 Daniel Kirschen and the University of Washington 10 Load Time 1260 18 24 Unit 1 Unit 2 Unit 3
  • 11. Issues • Must consider constraints – Unit constraints – System constraints • Some constraints create a link between periods • Start-up costs – Cost incurred when we start a generating unit – Different units have different start-up costs • Curse of dimensionality © 2011 Daniel Kirschen and the University of Washington 11
  • 12. Unit Constraints • Constraints that affect each unit individually: –Maximum generating capacity –Minimum stable generation –Minimum “up time” –Minimum “down time” –Ramp rate © 2011 Daniel Kirschen and the University of Washington 12
  • 13. Notations © 2011 Daniel Kirschen and the University of Washington 13 u(i,t): Status of unit i at period t x(i,t): Power produced by unit i during period t Unit i is on during period tu(i,t) =1: Unit i is off during period tu(i,t) = 0 :
  • 14. Minimum up- and down-time • Minimum up time – Once a unit is running it may not be shut down immediately: • Minimum down time – Once a unit is shut down, it may not be started immediately © 2011 Daniel Kirschen and the University of Washington 14 If u(i,t) =1 and ti up < ti up,min then u(i,t +1) =1 If u(i,t) = 0 and ti down < ti down,min then u(i,t +1) = 0
  • 15. Ramp rates • Maximum ramp rates – To avoid damaging the turbine, the electrical output of a unit cannot change by more than a certain amount over a period of time: © 2011 Daniel Kirschen and the University of Washington 15 x i,t +1( )- x i,t( )£ DPi up,max x(i,t)- x(i,t +1) £ DPi down,max Maximum ramp up rate constraint: Maximum ramp down rate constraint:
  • 16. System Constraints • Constraints that affect more than one unit – Load/generation balance – Reserve generation capacity – Emission constraints – Network constraints © 2011 Daniel Kirschen and the University of Washington 16
  • 17. Load/Generation Balance Constraint © 2011 Daniel Kirschen and the University of Washington 17 u(i,t)x(i,t) i=1 N å = L(t) N : Set of available units
  • 18. Reserve Capacity Constraint • Unanticipated loss of a generating unit or an interconnection causes unacceptable frequency drop if not corrected rapidly • Need to increase production from other units to keep frequency drop within acceptable limits • Rapid increase in production only possible if committed units are not all operating at their maximum capacity © 2011 Daniel Kirschen and the University of Washington 18 u(i,t) i=1 N å Pi max ³ L(t)+ R(t) R(t): Reserve requirement at time t
  • 19. How much reserve? • Protect the system against “credible outages” • Deterministic criteria: – Capacity of largest unit or interconnection – Percentage of peak load • Probabilistic criteria: – Takes into account the number and size of the committed units as well as their outage rate © 2011 Daniel Kirschen and the University of Washington 19
  • 20. Types of Reserve • Spinning reserve – Primary • Quick response for a short time – Secondary • Slower response for a longer time • Tertiary reserve – Replace primary and secondary reserve to protect against another outage – Provided by units that can start quickly (e.g. open cycle gas turbines) – Also called scheduled or off-line reserve © 2011 Daniel Kirschen and the University of Washington 20
  • 21. Types of Reserve • Positive reserve – Increase output when generation < load • Negative reserve – Decrease output when generation > load • Other sources of reserve: – Pumped hydro plants – Demand reduction (e.g. voluntary load shedding) • Reserve must be spread around the network – Must be able to deploy reserve even if the network is congested © 2011 Daniel Kirschen and the University of Washington 21
  • 22. Cost of Reserve • Reserve has a cost even when it is not called • More units scheduled than required – Units not operated at their maximum efficiency – Extra start up costs • Must build units capable of rapid response • Cost of reserve proportionally larger in small systems • Important driver for the creation of interconnections between systems © 2011 Daniel Kirschen and the University of Washington 22
  • 23. Environmental constraints • Scheduling of generating units may be affected by environmental constraints • Constraints on pollutants such SO2, NOx – Various forms: • Limit on each plant at each hour • Limit on plant over a year • Limit on a group of plants over a year • Constraints on hydro generation – Protection of wildlife – Navigation, recreation © 2011 Daniel Kirschen and the University of Washington 23
  • 24. Network Constraints • Transmission network may have an effect on the commitment of units – Some units must run to provide voltage support – The output of some units may be limited because their output would exceed the transmission capacity of the network © 2011 Daniel Kirschen and the University of Washington 24 Cheap generators May be “constrained off” More expensive generator May be “constrained on” A B
  • 25. Start-up Costs • Thermal units must be “warmed up” before they can be brought on-line • Warming up a unit costs money • Start-up cost depends on time unit has been off © 2011 Daniel Kirschen and the University of Washington 25 SCi (ti OFF ) = ai + bi (1 - e - ti OFF t i ) ti OFF αi αi + βi
  • 26. Start-up Costs • Need to “balance” start-up costs and running costs • Example: – Diesel generator: low start-up cost, high running cost – Coal plant: high start-up cost, low running cost • Issues: – How long should a unit run to “recover” its start-up cost? – Start-up one more large unit or a diesel generator to cover the peak? – Shutdown one more unit at night or run several units part- loaded? © 2011 Daniel Kirschen and the University of Washington 26
  • 27. Summary • Some constraints link periods together • Minimizing the total cost (start-up + running) must be done over the whole period of study • Generation scheduling or unit commitment is a more general problem than economic dispatch • Economic dispatch is a sub-problem of generation scheduling © 2011 Daniel Kirschen and the University of Washington 27
  • 28. Flexible Plants • Power output can be adjusted (within limits) • Examples: – Coal-fired – Oil-fired – Open cycle gas turbines – Combined cycle gas turbines – Hydro plants with storage • Status and power output can be optimized © 2011 Daniel Kirschen and the University of Washington 28 Thermal units
  • 29. Inflexible Plants • Power output cannot be adjusted for technical or commercial reasons • Examples: – Nuclear – Run-of-the-river hydro – Renewables (wind, solar,…) – Combined heat and power (CHP, cogeneration) • Output treated as given when optimizing © 2011 Daniel Kirschen and the University of Washington 29
  • 30. Solving the Unit Commitment Problem • Decision variables: – Status of each unit at each period: – Output of each unit at each period: • Combination of integer and continuous variables © 2011 Daniel Kirschen and the University of Washington 30 u(i,t) Î 0,1{ }   " i,t x(i,t) Î 0, Pi min ;Pi max éë ùû{ }  " i,t
  • 31. Optimization with integer variables • Continuous variables – Can follow the gradients or use LP – Any value within the feasible set is OK • Discrete variables – There is no gradient – Can only take a finite number of values – Problem is not convex – Must try combinations of discrete values © 2011 Daniel Kirschen and the University of Washington 31
  • 32. How many combinations are there? © 2011 Daniel Kirschen and the University of Washington 32 • Examples – 3 units: 8 possible states – N units: 2N possible states 111 110 101 100 011 010 001 000
  • 33. How many solutions are there anyway? © 2011 Daniel Kirschen and the University of Washington 33 1 2 3 4 5 6T= • Optimization over a time horizon divided into intervals • A solution is a path linking one combination at each interval • How many such paths are there?
  • 34. How many solutions are there anyway? © 2011 Daniel Kirschen and the University of Washington 34 1 2 3 4 5 6T= Optimization over a time horizon divided into intervals A solution is a path linking one combination at each interval How many such path are there? Answer: 2N ( ) 2N ( )… 2N ( ) = 2N ( )T
  • 35. The Curse of Dimensionality • Example: 5 units, 24 hours • Processing 109 combinations/second, this would take 1.9 1019 years to solve • There are 100’s of units in large power systems... • Many of these combinations do not satisfy the constraints © 2011 Daniel Kirschen and the University of Washington 35 2N ( ) T = 25 ( ) 24 = 6.21035 combinations
  • 36. How do you Beat the Curse? Brute force approach won’t work! • Need to be smart • Try only a small subset of all combinations • Can’t guarantee optimality of the solution • Try to get as close as possible within a reasonable amount of time © 2011 Daniel Kirschen and the University of Washington 36
  • 37. Main Solution Techniques • Characteristics of a good technique – Solution close to the optimum – Reasonable computing time – Ability to model constraints • Priority list / heuristic approach • Dynamic programming • Lagrangian relaxation • Mixed Integer Programming © 2011 Daniel Kirschen and the University of Washington 37 State of the art
  • 38. A Simple Unit Commitment Example © 2011 Daniel Kirschen and the University of Washington 38
  • 39. Unit Data © 2011 Daniel Kirschen and the University of Washington 39 Unit Pmin (MW) Pmax (MW) Min up (h) Min down (h) No-load cost ($) Marginal cost ($/MWh) Start-up cost ($) Initial status A 150 250 3 3 0 10 1,000 ON B 50 100 2 1 0 12 600 OFF C 10 50 1 1 0 20 100 OFF
  • 40. Demand Data © 2011 Daniel Kirschen and the University of Washington 40 Hourly Demand 0 50 100 150 200 250 300 350 1 2 3 Hours Load Reserve requirements are not considered
  • 41. Feasible Unit Combinations (states) © 2011 Daniel Kirschen and the University of Washington 41 Combinations Pmin Pmax A B C 1 1 1 210 400 1 1 0 200 350 1 0 1 160 300 1 0 0 150 250 0 1 1 60 150 0 1 0 50 100 0 0 1 10 50 0 0 0 0 0 1 2 3 150 300 200
  • 42. Transitions between feasible combinations © 2011 Daniel Kirschen and the University of Washington 42 A B C 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 2 3 Initial State
  • 43. Infeasible transitions: Minimum down time of unit A © 2011 Daniel Kirschen and the University of Washington 43 A B C 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 2 3 Initial State TD TU A 3 3 B 1 2 C 1 1
  • 44. Infeasible transitions: Minimum up time of unit B © 2011 Daniel Kirschen and the University of Washington 44 A B C 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 2 3 Initial State TD TU A 3 3 B 1 2 C 1 1
  • 45. Feasible transitions © 2011 Daniel Kirschen and the University of Washington 45 A B C 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 2 3 Initial State
  • 46. Operating costs © 2011 Daniel Kirschen and the University of Washington 46 1 1 1 1 1 0 1 0 1 1 0 0 1 4 3 2 5 6 7
  • 47. Economic dispatch © 2011 Daniel Kirschen and the University of Washington 47 State Load PA PB PC Cost 1 150 150 0 0 1500 2 300 250 0 50 3500 3 300 250 50 0 3100 4 300 240 50 10 3200 5 200 200 0 0 2000 6 200 190 0 10 2100 7 200 150 50 0 2100 Unit Pmin Pmax No-load cost Marginal cost A 150 250 0 10 B 50 100 0 12 C 10 50 0 20
  • 48. Operating costs © 2011 Daniel Kirschen and the University of Washington 48 1 1 1 1 1 0 1 0 1 1 0 0 1 4 3 2 5 6 7 $1500 $3500 $3100 $3200 $2000 $2100 $2100
  • 49. Start-up costs © 2011 Daniel Kirschen and the University of Washington 49 1 1 1 1 1 0 1 0 1 1 0 0 1 4 3 2 5 6 7 $1500 $3500 $3100 $3200 $2000 $2100 $2100 Unit Start-up cost A 1000 B 600 C 100 $0 $0 $0 $0 $0 $600 $100 $600 $700
  • 50. Accumulated costs © 2011 Daniel Kirschen and the University of Washington 50 1 1 1 1 1 0 1 0 1 1 0 0 1 4 3 2 5 6 7 $1500 $3500 $3100 $3200 $2000 $2100 $2100 $1500 $5100 $5200 $5400 $7300 $7200 $7100 $0 $0 $0 $0 $0 $600 $100 $600 $700
  • 51. Total costs © 2011 Daniel Kirschen and the University of Washington 51 1 1 1 1 1 0 1 0 1 1 0 0 1 4 3 2 5 6 7 $7300 $7200 $7100 Lowest total cost
  • 52. Optimal solution © 2011 Daniel Kirschen and the University of Washington 52 1 1 1 1 1 0 1 0 1 1 0 0 1 2 5 $7100
  • 53. Notes • This example is intended to illustrate the principles of unit commitment • Some constraints have been ignored and others artificially tightened to simplify the problem and make it solvable by hand • Therefore it does not illustrate the true complexity of the problem • The solution method used in this example is based on dynamic programming. This technique is no longer used in industry because it only works for small systems (< 20 units) © 2011 Daniel Kirschen and the University of Washington 53