Topic Modeling<br />Writing for People and Search Bots<br />Gillian Muessig<br />Co-founder and President, SEOmoz<br />OMS...
Today’s Menu<br /><ul><li> Topic modeling
 Vector space models
SEOmoz’ primary research on Latent Dirichlet Allocation
 Relationship & applications to SEO  </li></li></ul><li>Search Ranking Factors 2009<br />
Search Ranking Factors 2011<br />Link Signals<br />LanguageSignals<br />
Topic Modeling<br />Topic models provide a simple way to analyze large volumes of unlabeled text. <br />
Topic Modeling<br />Topic:A cluster of words that frequently occur together.<br />http://neoformix.com/archive.html<br />
What Topic Modeling Does<br /><ul><li>Use contextual clues
Connect words w/similar meanings
Distinguish between uses of words w/multiple meanings.</li></ul>http://www.stanford.edu/~kaisa/research.html<br />
Why Engines Need Topic Modeling<br />
Term & Inverse Documents Frequency<br />
Co-Occurence<br />
Topic Modeling<br />
Content-related signals require the ability to determine INTENT<br />Rock or baseball?<br />Are you SURE?<br />
If Your Response Is…<br />
Simplistic Term Vector Model<br />
Correlation Is Strong<br />
Deviation is Small<br />Standard Deviation<br />
LDA Tool in the Labs<br />URL input box<br />
LDA Tool in the Labs<br />Text input box<br />
It’s Relative<br /><ul><li>Don't presume that getting a 15% or a 20% is a terrible result
Some queries simply won't produce results that fit remarkably well with given topics</li></li></ul><li>Causation? Not So F...
Do other aspects of Google's algorithm naturally bias toward these results?
Correlation is NOT causation!</li></li></ul><li>Causation vs. Correlation<br />
Out of the SERPs!<br />Don’t<br />Keyword spamming might improve your LDA score, <br />…but not your rankings<br />
Do<br />Compare Your Friends<br />
The Whole PictureWhat to Write and How to Write It<br />OMS Atlanta| July, 2011<br />
How to Build Your Keyword List<br />OMS Atlanta | July 2011<br />
Salespeople & Customers<br />
Google AdWords Tool<br />Be Wary of<br />Match Type<br />https://adwords.google.com/select/KeywordToolExternal<br />
Bing AdCenter Excel Plug-In<br />www.seomoz.org/blog/using-the-adcenter-excel-plugin-for-keyphrase-research<br />
Google Trends<br />Sign In for Y-Axis Numbers<br />Not Very Accurate<br />
Internal Site Search Stats<br />
Competitive Keyword Research<br />Restrict query<br />to competitor’s<br />domain<br />
How Tough Is It to Rank for That?<br />
Choose the “Best” Phrases to Target<br />
The Long Tail of Keyword Demand<br />
The Search Demand Curve<br />
Predict Effort Required to Rank Well<br />
How Tough Is It to Rank for That?<br />
How to Write It<br />OMS Atlanta | July 2011<br />
The Era of In-Your-Face Marketing Is Officially Over<br />
Page Copy Is About More Than Keyword Frequency<br />
Query Deserves Freshness (QDF)<br />
Query Deserves Diversity (QDD)<br />
Avoid Duplicate Content / Use Canonicalization<br />
Hot Topics<br />Money | Health | Family <br />These subjects get picked up faster than articles on latent dirichlet alloca...
Upcoming SlideShare
Loading in...5
×

2011 07 oms atlanta-gillian-muessig-topic-modeling

1,072

Published on

Topic Modeling; What to write and how to write it to attract and engage readers, customers, and search bots.

Published in: Technology, Design
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,072
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
16
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

2011 07 oms atlanta-gillian-muessig-topic-modeling

  1. 1. Topic Modeling<br />Writing for People and Search Bots<br />Gillian Muessig<br />Co-founder and President, SEOmoz<br />OMS Atlanta | July 2011<br />
  2. 2. Today’s Menu<br /><ul><li> Topic modeling
  3. 3. Vector space models
  4. 4. SEOmoz’ primary research on Latent Dirichlet Allocation
  5. 5. Relationship & applications to SEO </li></li></ul><li>Search Ranking Factors 2009<br />
  6. 6. Search Ranking Factors 2011<br />Link Signals<br />LanguageSignals<br />
  7. 7. Topic Modeling<br />Topic models provide a simple way to analyze large volumes of unlabeled text. <br />
  8. 8. Topic Modeling<br />Topic:A cluster of words that frequently occur together.<br />http://neoformix.com/archive.html<br />
  9. 9. What Topic Modeling Does<br /><ul><li>Use contextual clues
  10. 10. Connect words w/similar meanings
  11. 11. Distinguish between uses of words w/multiple meanings.</li></ul>http://www.stanford.edu/~kaisa/research.html<br />
  12. 12. Why Engines Need Topic Modeling<br />
  13. 13. Term & Inverse Documents Frequency<br />
  14. 14. Co-Occurence<br />
  15. 15. Topic Modeling<br />
  16. 16. Content-related signals require the ability to determine INTENT<br />Rock or baseball?<br />Are you SURE?<br />
  17. 17.
  18. 18. If Your Response Is…<br />
  19. 19. Simplistic Term Vector Model<br />
  20. 20. Correlation Is Strong<br />
  21. 21. Deviation is Small<br />Standard Deviation<br />
  22. 22. LDA Tool in the Labs<br />URL input box<br />
  23. 23. LDA Tool in the Labs<br />Text input box<br />
  24. 24. It’s Relative<br /><ul><li>Don't presume that getting a 15% or a 20% is a terrible result
  25. 25. Some queries simply won't produce results that fit remarkably well with given topics</li></li></ul><li>Causation? Not So Fast!<br /><ul><li>Are good links are more likely to point more "relevant” pages?
  26. 26. Do other aspects of Google's algorithm naturally bias toward these results?
  27. 27. Correlation is NOT causation!</li></li></ul><li>Causation vs. Correlation<br />
  28. 28. Out of the SERPs!<br />Don’t<br />Keyword spamming might improve your LDA score, <br />…but not your rankings<br />
  29. 29. Do<br />Compare Your Friends<br />
  30. 30. The Whole PictureWhat to Write and How to Write It<br />OMS Atlanta| July, 2011<br />
  31. 31. How to Build Your Keyword List<br />OMS Atlanta | July 2011<br />
  32. 32. Salespeople & Customers<br />
  33. 33. Google AdWords Tool<br />Be Wary of<br />Match Type<br />https://adwords.google.com/select/KeywordToolExternal<br />
  34. 34. Bing AdCenter Excel Plug-In<br />www.seomoz.org/blog/using-the-adcenter-excel-plugin-for-keyphrase-research<br />
  35. 35. Google Trends<br />Sign In for Y-Axis Numbers<br />Not Very Accurate<br />
  36. 36. Internal Site Search Stats<br />
  37. 37. Competitive Keyword Research<br />Restrict query<br />to competitor’s<br />domain<br />
  38. 38. How Tough Is It to Rank for That?<br />
  39. 39. Choose the “Best” Phrases to Target<br />
  40. 40. The Long Tail of Keyword Demand<br />
  41. 41. The Search Demand Curve<br />
  42. 42.
  43. 43.
  44. 44. Predict Effort Required to Rank Well<br />
  45. 45. How Tough Is It to Rank for That?<br />
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50. How to Write It<br />OMS Atlanta | July 2011<br />
  51. 51. The Era of In-Your-Face Marketing Is Officially Over<br />
  52. 52. Page Copy Is About More Than Keyword Frequency<br />
  53. 53. Query Deserves Freshness (QDF)<br />
  54. 54. Query Deserves Diversity (QDD)<br />
  55. 55. Avoid Duplicate Content / Use Canonicalization<br />
  56. 56. Hot Topics<br />Money | Health | Family <br />These subjects get picked up faster than articles on latent dirichlet allocation<br />
  57. 57. Infographics<br />
  58. 58. Rules of Engagement<br /><ul><li>Focus on the issue
  59. 59. Control the trolls</li></li></ul><li>Thank You <br />Gillian Muessig<br />President | Co-founder, SEOmoz<br />OMS Atlanta | July, 2011<br />
  60. 60. No… REALLY thank-you!<br />Use code: OMS2011<br />Try SEOmoz PRO free for 45 days<br />OMS Atlanta | July 2011<br />
  61. 61. Moz Tools<br />OMS Atlanta | July, 2011<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×