SlideShare a Scribd company logo
1 of 95
Download to read offline
Relations & Functions
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                          x
                                                note: actually two functions 
              function                                                       
                                                y  x and y   x 
Domain and Range y  f  x 
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
          To find a domain, look for values x could not be.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
           To find a domain, look for values x could not be.
e.g.
       y             x  y2


                    x
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2


                       x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0                        domain: x  0 and x  2
Things to look for:
1. Fractions:
Things to look for:
1. Fractions: bottom of fraction  0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0                                 x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0
       x 1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
Things to look for:
1. Fractions: bottom of fraction  0
               1                                           1
e.g.  i  y                                ii  y 
               x                                         x2 1
           x0                                      x2 1  0
domain: all real x except x  0
                                                     x2  1
                                                      x  1
                                        domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
 domain: all real x except x  1 or 7
2. Root Signs:
2. Root Signs: you can’t find the square root of a negative number.
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
         4  x2  0
            x2  4
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0
          x2  4                            x  3
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0        5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
     domain: x  2
Range: All possible y values obtained by substituting in the domain
Range: All possible y values obtained by substituting in the domain
         “Range is the OUTPUT of the function/relation”
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y             x  y2


                    x
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2


                        x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y                     range: y  1 and y  3
Things to look for:
1. Maximum/Minimum values:
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50                              range: y  0
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
                            range: y  5
2. Restrictions on Domain:
2. Restrictions on Domain: sub in endpoints and centre of domain
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
  domain:  2  x  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2      when x  2, y  4  22
  domain:  2  x  2               0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                      when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2               0                        2
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                     2
e.g. y  4  x 2


  domain:  2  x  2               0                     2
                                          range: 0  y  2
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                     2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions:
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x     2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x     2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x   2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x    2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7
 iii  y 
            x4
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x    2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
                                       x4
                                         3
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
              3                        x4
      y  1                             3
             x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
 range: all real y except y  1
Function Notation
Function Notation
e.g. f  x   3 x 2  4
Function Notation
e.g. f  x   3 x 2  4
  a) f  5
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a 
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a   3a 2  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4    b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x 
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                      2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2



             Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd,
                       10abdf, 11aceh, 12bd, 14*

More Related Content

What's hot

Partial derivative1
Partial derivative1Partial derivative1
Partial derivative1Nidhu Sharma
 
Functions
FunctionsFunctions
FunctionsJJkedst
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functionsmath260
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlabkrishna_093
 
Module of algelbra analyses 2
Module of algelbra analyses 2Module of algelbra analyses 2
Module of algelbra analyses 2Bui Loi
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsMatthew Leingang
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJJkedst
 

What's hot (12)

Partial derivative1
Partial derivative1Partial derivative1
Partial derivative1
 
Functions
FunctionsFunctions
Functions
 
Eigenvalues - Contd
Eigenvalues - ContdEigenvalues - Contd
Eigenvalues - Contd
 
Functions (Theory)
Functions (Theory)Functions (Theory)
Functions (Theory)
 
Peta karnaugh
Peta karnaughPeta karnaugh
Peta karnaugh
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Module of algelbra analyses 2
Module of algelbra analyses 2Module of algelbra analyses 2
Module of algelbra analyses 2
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 

Viewers also liked

Relations and functions
Relations and functions Relations and functions
Relations and functions Leslie Amoguis
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functionstoni dimella
 
Math functions, relations, domain & range
Math functions, relations, domain & rangeMath functions, relations, domain & range
Math functions, relations, domain & rangeRenee Scott
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
Relations and functions
Relations and functions Relations and functions
Relations and functions Seyid Kadher
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notestoni dimella
 
Relations & functions
Relations & functionsRelations & functions
Relations & functionsindu thakur
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & FunctionsJ Edwards
 
How to factor
How to factorHow to factor
How to factor41053380
 
Polynomial power point
Polynomial power pointPolynomial power point
Polynomial power point41053380
 
Khalilah power point 11 16-10
Khalilah power point 11 16-10Khalilah power point 11 16-10
Khalilah power point 11 16-1041053380
 
Social Studies Review, Unit 1
Social Studies Review,  Unit 1Social Studies Review,  Unit 1
Social Studies Review, Unit 1rfant
 
2.1 Functions and Their Graphs
2.1 Functions and Their Graphs2.1 Functions and Their Graphs
2.1 Functions and Their Graphshisema01
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
практична робота №6
практична робота №6практична робота №6
практична робота №6Sasha Sasha
 

Viewers also liked (20)

Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functions
 
Math functions, relations, domain & range
Math functions, relations, domain & rangeMath functions, relations, domain & range
Math functions, relations, domain & range
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notes
 
Relations & functions
Relations & functionsRelations & functions
Relations & functions
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & Functions
 
How to factor
How to factorHow to factor
How to factor
 
Polynomial power point
Polynomial power pointPolynomial power point
Polynomial power point
 
Khalilah power point 11 16-10
Khalilah power point 11 16-10Khalilah power point 11 16-10
Khalilah power point 11 16-10
 
Linear Function
Linear FunctionLinear Function
Linear Function
 
7 functions
7   functions7   functions
7 functions
 
Social Studies Review, Unit 1
Social Studies Review,  Unit 1Social Studies Review,  Unit 1
Social Studies Review, Unit 1
 
2.1 Functions and Their Graphs
2.1 Functions and Their Graphs2.1 Functions and Their Graphs
2.1 Functions and Their Graphs
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
практична робота №6
практична робота №6практична робота №6
практична робота №6
 

Similar to 11 X1 T02 06 relations and functions (2010)

Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).Eko Wijayanto
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functionshisema01
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)Nigel Simmons
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)Nigel Simmons
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)Nigel Simmons
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
U1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log FunctionsU1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log FunctionsAlexander Burt
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)Nigel Simmons
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityParthDave57
 

Similar to 11 X1 T02 06 relations and functions (2010) (20)

Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
.
..
.
 
Functions
FunctionsFunctions
Functions
 
Functions
FunctionsFunctions
Functions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Radical functions
Radical functionsRadical functions
Radical functions
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
U1 Cn2 Functions
U1 Cn2 FunctionsU1 Cn2 Functions
U1 Cn2 Functions
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
function
functionfunction
function
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)12 x1 t05 01 inverse functions (2012)
12 x1 t05 01 inverse functions (2012)
 
12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)12X1 05 01 inverse functions (2011)
12X1 05 01 inverse functions (2011)
 
Difcalc10week3
Difcalc10week3Difcalc10week3
Difcalc10week3
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
U1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log FunctionsU1 Cn5 Inverse And Log Functions
U1 Cn5 Inverse And Log Functions
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 
GATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and DifferentiabilityGATE Engineering Maths : Limit, Continuity and Differentiability
GATE Engineering Maths : Limit, Continuity and Differentiability
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 

Recently uploaded

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 

Recently uploaded (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 

11 X1 T02 06 relations and functions (2010)

  • 2. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25
  • 3. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2
  • 4. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all.
  • 5. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 6. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 7. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x function
  • 8. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 9. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 10. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x function
  • 11. Relations & Functions A relation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x  note: actually two functions  function    y  x and y   x 
  • 12. Domain and Range y  f  x 
  • 13. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation.
  • 14. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation”
  • 15. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be.
  • 16. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x
  • 17. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x domain: x  0
  • 18. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0
  • 19. Domain and Range y  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0 domain: x  0 and x  2
  • 20. Things to look for: 1. Fractions:
  • 21. Things to look for: 1. Fractions: bottom of fraction  0
  • 22. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x
  • 23. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0
  • 24. Things to look for: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0 domain: all real x except x  0
  • 25. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 domain: all real x except x  0
  • 26. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1
  • 27. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1
  • 28. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x
  • 29. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 x 1
  • 30. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7
  • 31. Things to look for: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7 domain: all real x except x  1 or 7
  • 33. 2. Root Signs: you can’t find the square root of a negative number.
  • 34. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2
  • 35. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4
  • 36. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4 domain:  2  x  2
  • 37. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x2  4 domain:  2  x  2
  • 38. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 x2  4 x  3 domain:  2  x  2
  • 39. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2
  • 40. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5
  • 41. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2
  • 42. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20
  • 43. 2. Root Signs: you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20 domain: x  2
  • 44. Range: All possible y values obtained by substituting in the domain
  • 45. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation”
  • 46. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x
  • 47. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x range: all real y
  • 48. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y
  • 49. Range: All possible y values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y range: y  1 and y  3
  • 50. Things to look for: 1. Maximum/Minimum values:
  • 51. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0
  • 52. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2
  • 53. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2 range: y  0
  • 54. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0
  • 55. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03
  • 56. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3
  • 57. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2
  • 58. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50
  • 59. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50 range: y  5
  • 60. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  5
  • 61. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5
  • 62. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5
  • 63. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05
  • 64. Things to look for: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05 range: y  5
  • 66. 2. Restrictions on Domain: sub in endpoints and centre of domain
  • 67. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2
  • 68. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 domain:  2  x  2
  • 69. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 domain:  2  x  2 0
  • 70. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2
  • 71. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2
  • 72. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions:
  • 73. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0
  • 74. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x
  • 75. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0
  • 76. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0 range: all real y except y  0
  • 77. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 range: all real y except y  0
  • 78. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0
  • 79. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5
  • 80. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7  iii  y  x4
  • 81. 2. Restrictions on Domain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 x4 3
  • 82. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4
  • 83. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0
  • 84. 2. Restrictions on Domain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0 range: all real y except y  1
  • 86. Function Notation e.g. f  x   3 x 2  4
  • 87. Function Notation e.g. f  x   3 x 2  4 a) f  5
  • 88. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2
  • 89. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 2  75  4  79
  • 90. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a  2  75  4  79
  • 91. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79
  • 92. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x 
  • 93. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2
  • 94. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2
  • 95. Function Notation e.g. f  x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2 Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd, 10abdf, 11aceh, 12bd, 14*