• Like
Lesson 5: Limits Involving Infinity
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Lesson 5: Limits Involving Infinity

  • 1,694 views
Published

 

Published in Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,694
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
57
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Section 1.6 Limits involving Infinity V63.0121.002.2010Su, Calculus I New York University May 20, 2010 Announcements Office Hours: MR 5:00–5:45, TW 7:50–8:30, CIWW 102 (here) Quiz 1 Thursday on 1.1–1.4
  • 2. Announcements Office Hours: MR 5:00–5:45, TW 7:50–8:30, CIWW 102 (here) Quiz 1 Thursday on 1.1–1.4 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 2 / 37
  • 3. Objectives “Intuit” limits involving infinity by eyeballing the expression. Show limits involving infinity by algebraic manipulation and conceptual argument. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 3 / 37
  • 4. Recall the definition of limit Definition We write lim f (x) = L x→a and say “the limit of f (x), as x approaches a, equals L” if we can make the values of f (x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 4 / 37
  • 5. Recall the unboundedness problem 1 Recall why lim+ doesn’t exist. x→0 x y L? x No matter how thin we draw the strip to the right of x = 0, we cannot “capture” the graph inside the box. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 5 / 37
  • 6. Recall the unboundedness problem 1 Recall why lim+ doesn’t exist. x→0 x y L? x No matter how thin we draw the strip to the right of x = 0, we cannot “capture” the graph inside the box. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 5 / 37
  • 7. Recall the unboundedness problem 1 Recall why lim+ doesn’t exist. x→0 x y L? x No matter how thin we draw the strip to the right of x = 0, we cannot “capture” the graph inside the box. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 5 / 37
  • 8. Recall the unboundedness problem 1 Recall why lim+ doesn’t exist. x→0 x y L? x No matter how thin we draw the strip to the right of x = 0, we cannot “capture” the graph inside the box. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 5 / 37
  • 9. Outline Infinite Limits Vertical Asymptotes Infinite Limits we Know Limit “Laws” with Infinite Limits Indeterminate Limit forms Limits at ∞ Algebraic rates of growth Rationalizing to get a limit V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 6 / 37
  • 10. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 11. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 12. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 13. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 14. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 15. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 16. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 17. Infinite Limits Definition The notation y lim f (x) = ∞ x→a means that values of f (x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a but not equal to a. “Large” takes the place of x “close to L”. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 7 / 37
  • 18. Negative Infinity Definition The notation lim f (x) = −∞ x→a means that the values of f (x) can be made arbitrarily large negative (as large as we please) by taking x sufficiently close to a but not equal to a. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 8 / 37
  • 19. Negative Infinity Definition The notation lim f (x) = −∞ x→a means that the values of f (x) can be made arbitrarily large negative (as large as we please) by taking x sufficiently close to a but not equal to a. We call a number large or small based on its absolute value. So −1, 000, 000 is a large (negative) number. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 8 / 37
  • 20. Vertical Asymptotes Definition The line x = a is called a vertical asymptote of the curve y = f (x) if at least one of the following is true: lim f (x) = ∞ lim f (x) = −∞ x→a x→a lim+ f (x) = ∞ lim f (x) = −∞ x→a x→a+ lim f (x) = ∞ lim f (x) = −∞ x→a− x→a− V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 9 / 37
  • 21. Infinite Limits we Know y 1 lim+ =∞ x→0 x x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 10 / 37
  • 22. Infinite Limits we Know y 1 lim+ =∞ x→0 x 1 lim = −∞ − x x→0 x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 10 / 37
  • 23. Infinite Limits we Know y 1 lim+ =∞ x→0 x 1 lim = −∞ − x x→0 x 1 lim 2 = ∞ x→0 x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 10 / 37
  • 24. Finding limits at trouble spots Example Let x2 + 2 f (x) = x 2 − 3x + 2 Find lim f (x) and lim+ f (x) for each a at which f is not continuous. x→a− x→a V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 11 / 37
  • 25. Finding limits at trouble spots Example Let x2 + 2 f (x) = x 2 − 3x + 2 Find lim f (x) and lim+ f (x) for each a at which f is not continuous. x→a− x→a Solution The denominator factors as (x − 1)(x − 2). We can record the signs of the factors on the number line. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 11 / 37
  • 26. Use the number line − 0 + (x − 1) 1 So
  • 27. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 So
  • 28. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) So
  • 29. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) f (x) 1 2 So
  • 30. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + f (x) 1 2 So
  • 31. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ f (x) 1 2 So lim f (x) = +∞ x→1−
  • 32. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ f (x) 1 2 So lim f (x) = +∞ x→1− lim f (x) = −∞ x→1+
  • 33. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ − f (x) 1 2 So lim f (x) = +∞ x→1− lim f (x) = −∞ x→1+
  • 34. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ − −∞ f (x) 1 2 So lim f (x) = +∞ lim f (x) = −∞ x→1− x→2− lim f (x) = −∞ x→1+
  • 35. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ − −∞ +∞ f (x) 1 2 So lim f (x) = +∞ lim f (x) = −∞ x→1− x→2− lim f (x) = −∞ lim f (x) = +∞ x→1+ x→2+
  • 36. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ − −∞ +∞ f (x) 1 2 So lim f (x) = +∞ lim f (x) = −∞ x→1− x→2− lim f (x) = −∞ lim f (x) = +∞ x→1+ x→2+
  • 37. Use the number line − 0 + (x − 1) 1 − 0 + (x − 2) 2 + (x 2 + 2) + +∞ −∞ − −∞ +∞ + f (x) 1 2 So lim f (x) = +∞ lim f (x) = −∞ x→1− x→2− lim f (x) = −∞ lim f (x) = +∞ x→1+ x→2+ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 12 / 37
  • 38. In English, now To explain the limit, you can say: “As x → 1− , the numerator approaches 3, and the denominator approaches 0 while remaining positive. So the limit is +∞.” V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 13 / 37
  • 39. The graph so far y x −1 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 14 / 37
  • 40. The graph so far y x −1 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 14 / 37
  • 41. The graph so far y x −1 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 14 / 37
  • 42. The graph so far y x −1 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 14 / 37
  • 43. The graph so far y x −1 1 2 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 14 / 37
  • 44. Limit Laws (?) with infinite limits If lim f (x) = ∞ and lim g (x) = ∞, then lim (f (x) + g (x)) = ∞. x→a x→a x→a That is, ∞+∞=∞ If lim f (x) = −∞ and lim g (x) = −∞, then x→a x→a lim (f (x) + g (x)) = −∞. That is, x→a −∞ − ∞ = −∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 15 / 37
  • 45. Rules of Thumb with infinite limits If lim f (x) = ∞ and lim g (x) = ∞, then lim (f (x) + g (x)) = ∞. x→a x→a x→a That is, ∞+∞=∞ If lim f (x) = −∞ and lim g (x) = −∞, then x→a x→a lim (f (x) + g (x)) = −∞. That is, x→a −∞ − ∞ = −∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 15 / 37
  • 46. Rules of Thumb with infinite limits If lim f (x) = L and lim g (x) = ±∞, then lim (f (x) + g (x)) = ±∞. x→a x→a x→a That is, L+∞=∞ L − ∞ = −∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 16 / 37
  • 47. Rules of Thumb with infinite limits Kids, don’t try this at home! The product of a finite limit and an infinite limit is infinite if the finite limit is not 0. ∞ if L > 0 L·∞= −∞ if L < 0. −∞ if L > 0 L · (−∞) = ∞ if L < 0. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 17 / 37
  • 48. Multiplying infinite limits Kids, don’t try this at home! The product of two infinite limits is infinite. ∞·∞=∞ ∞ · (−∞) = −∞ (−∞) · (−∞) = ∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 18 / 37
  • 49. Dividing by Infinity Kids, don’t try this at home! The quotient of a finite limit by an infinite limit is zero: L =0 ∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 19 / 37
  • 50. Dividing by zero is still not allowed 1 =∞ 0 There are examples of such limit forms where the limit is ∞, −∞, undecided between the two, or truly neither. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 20 / 37
  • 51. Indeterminate Limit forms L Limits of the form are indeterminate. There is no rule for evaluating 0 such a form; the limit must be examined more closely. Consider these: 1 −1 lim =∞ lim = −∞ x→0 x2 x→0 x2 1 1 lim+ = ∞ lim = −∞ x→0 x x→0− x 1 L Worst, lim is of the form , but the limit does not exist, even x sin(1/x) x→0 0 in the left- or right-hand sense. There are infinitely many vertical asymptotes arbitrarily close to 0! V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 21 / 37
  • 52. Indeterminate Limit forms Limits of the form 0 · ∞ and ∞ − ∞ are also indeterminate. Example 1 The limit lim+ sin x · is of the form 0 · ∞, but the answer is 1. x→0 x 1 The limit lim+ sin2 x · is of the form 0 · ∞, but the answer is 0. x→0 x 1 The limit lim+ sin x · 2 is of the form 0 · ∞, but the answer is ∞. x→0 x Limits of indeterminate forms may or may not “exist.” It will depend on the context. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 22 / 37
  • 53. Indeterminate forms are like Tug Of War Which side wins depends on which side is stronger. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 23 / 37
  • 54. Outline Infinite Limits Vertical Asymptotes Infinite Limits we Know Limit “Laws” with Infinite Limits Indeterminate Limit forms Limits at ∞ Algebraic rates of growth Rationalizing to get a limit V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 24 / 37
  • 55. Limits at infinity Definition Let f be a function defined on some interval (a, ∞). Then lim f (x) = L x→∞ means that the values of f (x) can be made as close to L as we like, by taking x sufficiently large. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 25 / 37
  • 56. Limits at infinity Definition Let f be a function defined on some interval (a, ∞). Then lim f (x) = L x→∞ means that the values of f (x) can be made as close to L as we like, by taking x sufficiently large. Definition The line y = L is a called a horizontal asymptote of the curve y = f (x) if either lim f (x) = L or lim f (x) = L. x→∞ x→−∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 25 / 37
  • 57. Limits at infinity Definition Let f be a function defined on some interval (a, ∞). Then lim f (x) = L x→∞ means that the values of f (x) can be made as close to L as we like, by taking x sufficiently large. Definition The line y = L is a called a horizontal asymptote of the curve y = f (x) if either lim f (x) = L or lim f (x) = L. x→∞ x→−∞ y = L is a horizontal line! V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 25 / 37
  • 58. Basic limits at infinity Theorem Let n be a positive integer. Then 1 lim =0 x→∞ x n 1 lim =0 x→−∞ x n V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 26 / 37
  • 59. Using the limit laws to compute limits at ∞ Example Find 2x 3 + 3x + 1 lim x→∞ 4x 3 + 5x 2 + 7 if it exists. A does not exist B 1/2 C 0 D ∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 27 / 37
  • 60. Using the limit laws to compute limits at ∞ Example Find 2x 3 + 3x + 1 lim x→∞ 4x 3 + 5x 2 + 7 if it exists. A does not exist B 1/2 C 0 D ∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 27 / 37
  • 61. Solution Factor out the largest power of x from the numerator and denominator. We have 2x 3 + 3x + 1 x 3 (2 + 3/x 2 + 1/x 3 ) = 3 4x 3 + 5x 2 + 7 x (4 + 5/x + 7/x 3 ) 2x 3 + 3x + 1 2 + 3/x 2 + 1/x 3 lim 3 + 5x 2 + 7 = lim x→∞ 4x x→∞ 4 + 5/x + 7/x 3 2+0+0 1 = = 4+0+0 2 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 28 / 37
  • 62. Solution Factor out the largest power of x from the numerator and denominator. We have 2x 3 + 3x + 1 x 3 (2 + 3/x 2 + 1/x 3 ) = 3 4x 3 + 5x 2 + 7 x (4 + 5/x + 7/x 3 ) 2x 3 + 3x + 1 2 + 3/x 2 + 1/x 3 lim 3 + 5x 2 + 7 = lim x→∞ 4x x→∞ 4 + 5/x + 7/x 3 2+0+0 1 = = 4+0+0 2 Upshot When finding limits of algebraic expressions at infinity, look at the highest degree terms. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 28 / 37
  • 63. Another Example Example x Find lim x→∞ x2 + 1 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 29 / 37
  • 64. Another Example Example x Find lim x→∞ x2 + 1 Answer The limit is 0. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 29 / 37
  • 65. Solution Again, factor out the largest power of x from the numerator and denominator. We have x x(1) 1 1 = 2 = · x2 +1 x (1 + 1/x 2) x 1 + 1/x 2 x 1 1 1 1 lim 2 = lim = lim · lim x→∞ x + 1 x→∞ x 1 + 1/x 2 x→∞ x x→∞ 1 + 1/x 2 1 =0· = 0. 1+0 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 30 / 37
  • 66. Another Example Example x Find lim x→∞ x2 + 1 Answer The limit is 0. y x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 31 / 37
  • 67. Another Example Example x Find lim x→∞ x2 + 1 Answer The limit is 0. y x Notice that the graph does cross the asymptote, which contradicts one of the heuristic definitions of asymptote. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 31 / 37
  • 68. Solution Again, factor out the largest power of x from the numerator and denominator. We have x x(1) 1 1 = 2 = · x2 +1 x (1 + 1/x 2) x 1 + 1/x 2 x 1 1 1 1 lim 2 = lim = lim · lim x→∞ x + 1 x→∞ x 1 + 1/x 2 x→∞ x x→∞ 1 + 1/x 2 1 =0· = 0. 1+0 Remark Had the higher power been in the numerator, the limit would have been ∞. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 32 / 37
  • 69. Another Example Example Find √ 3x 4 + 7 lim x→∞ x2 + 3 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 33 / 37
  • 70. Another Example Example Find √ √ 3x 4 + 7 ∼ 3x 4 = 3x 2 √ 3x 4 + 7 lim x→∞ x2 + 3 Answer √ The limit is 3. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 33 / 37
  • 71. Solution √ 3x 4 + 7 x 4 (3 + 7/x 4 ) lim = lim x→∞ x2 + 3 x→∞ x 2 (1 + 3/x 2 ) x 2 (3 + 7/x 4 ) = lim x→∞ x 2 (1 + 3/x 2 ) (3 + 7/x 4 ) = lim x→∞ 1 + 3/x 2 √ 3+0 √ = = 3. 1+0 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 34 / 37
  • 72. Rationalizing to get a limit Example Compute lim 4x 2 + 17 − 2x . x→∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 35 / 37
  • 73. Rationalizing to get a limit Example Compute lim 4x 2 + 17 − 2x . x→∞ Solution This limit is of the form ∞ − ∞, which we cannot use. So we rationalize the numerator (the denominator is 1) to get an expression that we can use the limit laws on. √ 4x 2 + 17 + 2x lim 4x 2 + 17 − 2x = lim 4x 2 + 17 − 2x · √ x→∞ x→∞ 4x 2 + 17 + 2x (4x 2 + 17) − 4x 2 = lim √ x→∞ 4x 2 + 17 + 2x 17 = lim √ =0 x→∞ 4x 2 + 17 + 2x V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 35 / 37
  • 74. Kick it up a notch Example Compute lim 4x 2 + 17x − 2x . x→∞ V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 36 / 37
  • 75. Kick it up a notch Example Compute lim 4x 2 + 17x − 2x . x→∞ Solution Same trick, different answer: lim 4x 2 + 17x − 2x x→∞ √ 4x 2 + 17x + 2x = lim 4x 2 + 17x − 2x · √ x→∞ 4x 2 + 17x + 2x (4x 2 + 17x) − 4x 2 = lim √ x→∞ 4x 2 + 17x + 2x 17x 17 17 = lim √ = lim = x→∞ 4x 2 + 17x + 2x x→∞ 4 + 17/x + 2 4 V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 36 / 37
  • 76. Summary Infinity is a more complicated concept than a single number. There are rules of thumb, but there are also exceptions. Take a two-pronged approach to limits involving infinity: Look at the expression to guess the limit. Use limit rules and algebra to verify it. V63.0121.002.2010Su, Calculus I (NYU) Section 1.6 Limits involving Infinity May 20, 2010 37 / 37