Upcoming SlideShare
×

# Lecture on solving1

21,537 views

Published on

Published in: Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
21,537
On SlideShare
0
From Embeds
0
Number of Embeds
19,027
Actions
Shares
0
63
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Lecture on solving1

1. 1. Solution Methods for DSGE Models and Applications using Linearization Lawrence J. Christiano
2. 2. Overall Outline• Perturbation and Projection Methods for DSGE  Models: an Overview• Simple New Keynesian model – Formulation and log‐linear solution. – Ramsey‐optimal policy. – Using Dynare to solve the model by log‐linearization: • Taylor principle, implications of working capital, News shocks,  monetary policy with the long rate.• Financial Frictions as in BGG – Risk shocks and the CKM critique of intertemporal shocks. – Dynare exercise.• Ramsey Optimal Policy, Time Consistency, Timeless  Perspective.
3. 3. Perturbation and Projection Methods for Solving DSGE Models Lawrence J. Christiano
4. 4. Outline• A Simple Example to Illustrate the basic ideas. – Functional form characterization of model  solution. – Use of Projections and Perturbations.• Neoclassical model. – Projection methods – Perturbation methods • Make sense of the proposition, ‘to a first order  approximation, can replace equilibrium conditions with  linear expansion about nonstochastic steady state and  solve the resulting system using certainty equivalence’
5. 5. Simple Example• Suppose that x is some exogenous variable  and that the following equation implicitly  defines y: hx, y  0, for all x ∈ X• Let the solution be defined by the ‘policy rule’,  g: y  gx ‘Error function’• satisfying Rx; g ≡ hx, gx  0• for all  x ∈ X
6. 6. The Need to Approximate• Finding the policy rule, g, is a big problem  outside special cases – ‘Infinite number of unknowns (i.e., one value of g for each possible x) in an infinite number of  equations (i.e., one equation for each possible x).’• Two approaches:  – projection and perturbation
7. 7. Projection ĝx;  • Find a parametric function,             , where     is a  vector of parameters chosen so that it imitates  Rx; g  0 the property of the exact solution, i.e.,                      for all x ∈ X , as well as possible.  • Choose values for     so that     ̂ Rx;   hx, ĝx;  x∈X• is close to zero for             .• The method is defined by how ‘close to zero’ is  ĝx;  defined and by the parametric function,              ,  that is used.
8. 8. Projection, continued• Spectral and finite element approximations ĝx;  – Spectral functions: functions,            , in which   ĝx;  x∈X each parameter in     influences              for all             example:      n 1ĝx;   ∑  i Hi x,    i0 n H i x  x i ~ordinary polynominal (not computationaly efficient) H i x  T i x, T i z : −1, 1 → −1, 1, i th order Chebyshev polynomial  : X → −1, 1
9. 9. Projection, continued ĝx; – Finite element approximations: functions,             ,   ĝx;  in which each parameter in     influences               over only a subinterval of  x ∈ Xĝx;   1 2 3 4 5 6 7 4 2 X
10. 10. Projection, continued • ‘Close to zero’: collocation and Galerkin x : x1 , x2 , . . . , xn ∈ X• Collocation, for n values of                                      1  n choose n elements of                                so that    ̂ Rx i ;   hx i , ĝx i ;   0, i  1, . . . , n – how you choose the grid of x’s matters…• Galerkin, for m>n values of                                      x : x1 , x2 , . . . , xm ∈ X choose the n elements of      1   n m ∑ wij hxj , ĝxj ;   0, i  1, . . . , n j1
11. 11. Perturbation• Projection uses the ‘global’ behavior of the functional  equation to approximate solution. – Problem: requires finding zeros of non‐linear equations.  Iterative methods for doing this are a pain. – Advantage: can easily adapt to situations the policy rule is  not continuous or simply non‐differentiable (e.g.,  occasionally binding zero lower bound on interest rate).• Perturbation method uses local properties of  functional equation and Implicit Function/Taylor’s  theorem to approximate solution. – Advantage:  can implement it using non‐iterative methods.  – Possible disadvantages:  • may require enormously high derivatives to achieve a  decent  global approximation. • Does not work when there are important non‐differentiabilities (e.g., occasionally binding zero lower bound on interest rate).
12. 12. Perturbation, cnt’d x∗ ∈ X• Suppose there is a point,           , where we  know the value taken on by the function, g,  that we wish to approximate: gx ∗   g ∗ , some x ∗• Use the implicit function theorem to  approximate g in a neighborhood of  x ∗• Note: Rx; g  0 for all x ∈ X → j R x; g ≡ d j Rx; g  0 for all j, all x ∈ X. dx j
13. 13. Perturbation, cnt’d• Differentiate R with respect to   and evaluate  x x∗ the result at       :R 1 x ∗   d hx, gx|xx ∗  h 1 x ∗ , g ∗   h 2 x ∗ , g ∗ g ′ x ∗   0 dx ′ ∗ h 1 x ∗ , g ∗  → g x   − h 2 x ∗ , g ∗ • Do it again! 2R x  ∗ d 2 hx, gx| ∗  h x ∗ , g ∗   2h x ∗ , g ∗ g ′ x ∗  xx 11 12 dx 2 h 22 x ∗ , g ∗ g ′ x ∗  2  h 2 x ∗ , g ∗ g ′′ x ∗ . → Solve this linearly for g ′′ x ∗ .
14. 14. Perturbation, cnt’d• Preceding calculations deliver (assuming  enough differentiability, appropriate  invertibility, a high tolerance for painful  notation!), recursively: g ′ x ∗ , g ′′ x ∗ , . . . , g n x ∗ • Then, have the following Taylor’s series  approximation: gx ≈ ĝx ĝx  g ∗  g ′ x ∗   x − x ∗   1 g ′′ x ∗   x − x ∗  2 . . .  1 g n x ∗   x − x ∗  n 2 n!
15. 15. Perturbation, cnt’d• Check….• Study the graph of Rx; ĝ x∈X – over                to verify that it is everywhere close  to zero (or, at least in the region of interest).
16. 16. Example of Implicit Function Theorem y hx, y  1 x 2  y 2  − 8  0 2 4 gx ≃ g∗ x ∗ x − x ∗  − ∗ g ‐4 4 x ‐4 h 1 x ∗ , g ∗  x ∗ h 2 had better not be zero!g′ ∗ x   − − ∗ ∗ ∗ h 2 x , g  g
17. 17. Neoclassical Growth Model• Objective:  1− c −1 E 0 ∑  t uc t , uc t   t 1− t0• Constraints: c t  expk t1  ≤ fk t , a t , t  0, 1, 2, . . . . a t  a t−1   t . fk t , a t   expk t  expa t   1 −  expk t .
18. 18. Efficiency Condition ct1E t u ′ fk t , a t  − expk t1  ct1 period t1 marginal product of capital − u ′ fk t1 , a t   t1  − expk t2  f K k t1 , a t   t1    0. • Here, k t , a t ~given numbers  t1 ~ iid, mean zero variance V  time t choice variable, k t1 • Convenient to suppose the model is the limit  →1  of a sequence of models,             , indexed by     t1 ~ 2 V  ,   1.
19. 19. Solution • A policy rule, k t1  gk t , a t , . • With the property: ctRk t , a t , ; g ≡ E t u ′ fk t , a t  − expgk t , a t ,  ct1 k t1 a t1 k t1 a t1 − u ′ f gk t , a t , , a t   t1 − exp g gk t , a t , , a t   t1 ,  k t1 a t1  fK gk t , a t , , a t   t1   0, • for all   a t , k t and   1.
20. 20. Projection Methods• Let                      ĝk t , a t , ;  – be a function with finite parameters (could be either  spectral or finite element, as before). • Choose parameters,   , to make Rk t , a t , ; ĝ – as close to zero as possible, over a range of values of  the state. – use Galerkin or Collocation.
21. 21. Occasionally Binding Constraints• Suppose we add the non‐negativity constraint on  investment: expgk t , a t ,  − 1 −  expk t  ≥ 0• Express problem in Lagrangian form and optimum is  characterized in terms of equality conditions with a  multiplier and with a complementary slackness condition  associated with the constraint.• Conceptually straightforward to apply preceding method.  For details, see Christiano‐Fisher, ‘Algorithms for Solving  Dynamic Models with Occasionally Binding Constraints’,  2000, Journal of Economic Dynamics and Control. – This paper describes alternative strategies, based on  parameterizing the expectation function, that may be easier,  when constraints are occasionally binding constraints.
22. 22. Perturbation Approach• Straightforward application of the perturbation approach, as in the simple  example, requires knowing the value taken on by the policy rule at a point.• The overwhelming majority of models used in macro do have this  property.  – In these models, can compute non‐stochastic steady state without any  knowledge of the policy rule, g. k∗ – Non‐stochastic steady state is      such that a0 (nonstochastic steady state in no uncertainty case) 0 (no uncertainty)∗ ∗  k g k , 0 , 0 1 – and     1− k∗  log . 1 − 1 − 
23. 23. Perturbation • Error function: ctRk t , a t , ; g ≡ E t u ′ fk t , a t  − expgk t , a t ,  ct1 − u ′ fgk t , a t , , a t   t1  − expggk t , a t , , a t   t1 ,   f K gk t , a t , , a t   t1   0, k t , a t , . – for all values of                 • So, all order derivatives of R with respect to its  arguments are zero (assuming they exist!).
24. 24. Four (Easy to Show) Results About  Perturbations • Taylor series expansion of policy rule: linear component of policy rulegk t , a t ,  ≃ k  g k k t − k  g a a t  g   second and higher order terms  1 g kk k t − k 2  g aa a 2  g   2   g ka k t − ka t  g k k t − k  g a a t  . . . t 2 – g   0 : to a first order approximation, ‘certainty equivalence’  – All terms found by solving linear equations, except coefficient on past  gk endogenous variable,        ,which requires solving for eigenvalues – To second order approximation: slope terms certainty equivalent – g k  g a  0 – Quadratic, higher order terms computed recursively.
25. 25. First Order Perturbation • Working out the following derivatives and  evaluating at  k t  k ∗ , a t    0 R k k t , a t , ; g  R a k t , a t , ; g  R  k t , a t , ; g  0 ‘problematic term’ Source of certainty equivalence • Implies: In linear approximationR k  u ′′ f k − e g g k  − u ′ f Kk g k − u ′′ f k g k − e g g 2 f K  0 kR a  u ′′ f a − e g g a  − u ′ f Kk g a  f Ka  − u ′′ f k g a  f a  − e g g k g a  g a f K  0R   −u ′ e g  u ′′ f k − e g g k f K g   0
26. 26. Technical notes for following slide u ′′ f k − e g g k  − u ′ f Kk g k − u ′′ f k g k − e g g 2 f K k 0 1 f − e g g  − u ′ f Kk g − f g − e g g 2 f K 0  k k u ′′ k k k k 1 f − 1 e g  u ′ f Kk  f f K g  e g g 2 f K 0  k  u ′′ k k k 1 fk − 1  u ′ f Kk  f k g  g 2 0 k  eg fK f K u ′′ e g f K eg k 1 − 1  1  u ′ f Kk gk  g2  0 k   u ′′ e g f K• Simplify this further using: f K  K−1 expa  1 − , K ≡ expk   exp − 1k  a  1 −  f k   expk  a  1 −  expk  f K e g f Kk   − 1 exp − 1k  a f KK   − 1K−2 expa   − 1 exp − 2k  a  f Kk e −g• to obtain polynomial on next slide.
27. 27. First Order, cont’d Rk  0• Rewriting                term: 1 − 1  1  u ′ f KK gk  g2  0   k u ′′ f K 0  g k  1, g k  1• There are two solutions,                                     – Theory (see Stokey‐Lucas) tells us to pick the smaller  one.  – In general, could be more than one eigenvalue less  than unity: multiple solutions. gk ga• Conditional on solution to     ,         solved for  Ra  0 linearly using                equation.• These results all generalize to multidimensional  case
28. 28. Numerical Example• Parameters taken from Prescott (1986):   2 20,   0. 36,   0. 02,   0. 95, Ve  0. 01 2• Second order approximation: 3.88 0.98 0.996 0.06 0.07 0    ĝk t , a t−1 ,  t ,   k ∗  gk k t − k ∗   ga at  g  0.014 0.00017 0.067 0.079 0.000024 0.00068 1     1 g kk k t − k  g aa 2 a2 t  g  2  2 −0.035 −0.028 0 0    g ka k t − ka t  g k k t − k  g a a t 
29. 29. Conclusion• For modest US‐sized fluctuations and for  aggregate quantities, it is reasonable to work  with first order perturbations.• First order perturbation: linearize (or, log‐ linearize) equilibrium conditions around non‐ stochastic steady state and solve the resulting  system.  – This approach assumes ‘certainty equivalence’. Ok, as  a first order approximation.
30. 30. List of endogenous variables determined at t Solution by Linearization • (log) Linearized Equilibrium Conditions: E t  0 z t1   1 z t   2 z t−1   0 s t1   1 s t   0 • Posit Linear Solution: s t − Ps t−1 −  t  0. z t  Az t−1  Bs t Exogenous shocks • To satisfy equil conditions, A and B must: 0 A2   1 A   2 I  0, F   0   0 BP   1   0 A   1 B  0 • If there is exactly one A with eigenvalues less  than unity in absolute value, that’s the solution.  Otherwise, multiple solutions. • Conditional on A, solve linear system for B.