Section	3.5
     Inverse	Trigonometric
           Functions
               V63.0121.006/016, Calculus	I



                      March	11, 2010


Announcements
   Exams	returned	in	recitation
   There	is	WebAssign	due	Tuesday	March	23	and	written	HW
   due	Thursday	March	25               .      .   .   .   .   .
Announcements




     Exams	returned	in	recitation
     There	is	WebAssign	due	Tuesday	March	23	and	written	HW
     due	Thursday	March	25
     next	quiz	is	Friday	April	2




                                        .   .   .   .   .     .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                              f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.




                                               .    .   .    .   .      .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                               f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.
   So
                    f−1 (f(x)) = x,      f(f−1 (x)) = x




                                                  .       .   .   .   .   .
What	functions	are	invertible?



   In	order	for f−1 to	be	a	function, there	must	be	only	one a in D
   corresponding	to	each b in E.
       Such	a	function	is	called one-to-one
       The	graph	of	such	a	function	passes	the horizontal	line	test:
       any	horizontal	line	intersects	the	graph	in	exactly	one	point
       if	at	all.
       If f is	continuous, then f−1 is	continuous.




                                                .    .   .   .    .    .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .



                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           .                .
                             2              2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .

                                             .
                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           . .              .
                             2              2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .
                                                  y
                                                  . =x
                                             .
                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           . .              .
                             2              2




                                                   .     .   .   .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                     y
                                     .
                                           . . rcsin
                                             a
                                                .
                             .       .         .                              x
                                                                              .
                             π               π                         s
                                                                       . in
                           −
                           . .               .
                             2               2
                                 .


         The	domain	of arcsin is [−1, 1]
                               [ π π]
         The	range	of arcsin is − ,
                                  2 2

                                                       .   .   .   .    .         .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .


                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .

                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .
                                               y
                                               . =x
                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]

                                . . rccos
                                  a
                                     y
                                     .

                                     .
                                                                       c
                                                                       . os
                                      .     .          .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .



         The	domain	of arccos is [−1, 1]
         The	range	of arccos is [0, π]

                                                 .         .   .   .    .      .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
                                                         y
                                                         . =x
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .

                                  π
                                  .                                         a
                                                                            . rctan
                                  2

                                        .                                   x
                                                                            .

                                    π
                                −
                                .
                                    2

         The	domain	of arctan is (−∞, ∞)
                               ( π π)
         The	range	of arctan is − ,
                                  2 2
                         π                  π
          lim arctan x = , lim arctan x = −
         x→∞             2  x→−∞            2
                                                  .   .    .    .       .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .




                                     .                                      x
                                                                            .
             3π              π             π                  3π
           −
           .               −
                           .               .                  .
              2              2             2                    2




                                               s
                                               . ec


                                                      .   .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                     .
                                     .                                          x
                                                                                .
             3π              π             π                      3π
           −
           .               −
                           .               .              .       .
              2              2             2                        2




                                               s
                                               . ec


                                                      .       .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                                          y
                                                          . =x
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                    .
                                    .                                          x
                                                                               .
             3π             π             π                      3π
           −
           .              −
                          .               .              .       .
              2             2             2                        2




                                              s
                                              . ec


                                                     .       .    .    .   .       .
arcsec                           3π
                                 .
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                   2
   [0, π/2) ∪ (π, 3π/2].
                                . .  y

                                  π
                                  .
                                  2 .

                                     .   .                                x
                                                                          .
                                                      .



         The	domain	of arcsec is (−∞, −1] ∪ [1, ∞)
                               [ π ) (π ]
         The	range	of arcsec is 0,   ∪    ,π
                                   2    2
                         π                 3π
          lim arcsec x = , lim arcsec x =
         x→∞             2 x→−∞             2
                                                  .       .   .   .   .       .
Values	of	Trigonometric	Functions

                  π        π        π                 π
       x 0
                  6        4        3                 2
                           √        √
                  1          2        3
    sin x 0                                           1
                  2         2        2
                  √        √
                    3        2      1
    cos x 1                                           0
                   2        2       2
                   1                √
    tan x 0       √       1           3               undef
                    3
                  √                      1
    cot x undef     3     1             √             0
                                          3
                  2         2
    sec x 1       √        √        2                 undef
                   3         2
                            2            2
    csc x undef   2        √            √             1
                             2            3
                                    .         .   .       .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2




                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6




                                    .   .   .   .   .   .
What	is arctan(−1)?

                 .


    3
    . π/4
            .




                 .                .




                      .
                          −
                          . π/4


                                      .   .   .   .   .   .
What	is arctan(−1)?

                          .

                                                          (        )
    3
    . π/4                                                     3π
            .                                 Yes, tan                 = −1
                                                               4
                             √
                              2
                s
                . in(3π/4) =
                             2
                      .
                      √                       .
                        2
       . os(3π/4) = −
       c
                       2

                                  .
                                      −
                                      . π/4


                                                  .   .       .        .   .   .
What	is arctan(−1)?

                          .

                                                          ( )
    3
    . π/4                                                3π
            .                                 Yes, tan        = −1
                                                          4
                             √                But, the	range	of arctan
                                                ( π π)
                              2
                s
                . in(3π/4) =                  is − ,
                             2                      2 2
                      .
                      √                       .
                        2
       . os(3π/4) = −
       c
                       2

                                  .
                                      −
                                      . π/4


                                                  .   .       .   .   .   .
What	is arctan(−1)?

                    .

                                                          (   )
    3
    . π/4                                                  3π
            .                                  Yes, tan          = −1
                                                            4
                                               But, the	range	of arctan
                                                 ( π π)
                               √               is − ,
                                 2                    2 2
                   c
                   . os(π/4) =
                     .          2              Another	angle	whose
                                               .                    π
                                               tangent	is −1 is − , and
                              √                                     4
                               2               this	is	in	the	right	range.
                . in(π/4) = −
                s
                              2
                                   .
                                       −
                                       . π/4


                                                 .    .       .   .   .   .
What	is arctan(−1)?

                    .

                                                          (   )
    3
    . π/4                                                  3π
            .                                  Yes, tan          = −1
                                                            4
                                               But, the	range	of arctan
                                                 ( π π)
                               √               is − ,
                                 2                    2 2
                   c
                   . os(π/4) =
                     .          2              Another	angle	whose
                                               .                    π
                                               tangent	is −1 is − , and
                              √                                     4
                               2               this	is	in	the	right	range.
                . in(π/4) = −
                s                                                     π
                              2                So arctan(−1) = −
                                                                      4
                                   .
                                       −
                                       . π/4


                                                 .    .       .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4



                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4
          3π
           4

                                    .   .   .   .   .   .
Caution: Notational	ambiguity




           . in2 x =.(sin x)2
           s                             . in−1 x = (sin x)−1
                                         s




      sinn x means	the nth	power	of sin x, except	when n = −1!
      The	book	uses sin−1 x for	the	inverse	of sin x, and	never	for
      (sin x)−1 .
                        1
      I use csc x for       and arcsin x for	the	inverse	of sin x.
                      sin x
                                               .   .    .       .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                              1
                       (f−1 )′ (b) =   ′ −1
                                       f (f   (b))




                                                     .   .   .   .   .    .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f   (b))


“Proof”.
If y = f−1 (x), then
                                 f(y ) = x ,
So	by	implicit	differentiation

                      dy        dy     1         1
             f′ (y)      = 1 =⇒    = ′     = ′ −1
                      dx        dx   f (y)   f (f (x))



                                                        .   .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                    dy        dy     1          1
            cos y      = 1 =⇒    =       =
                    dx        dx   cos y   cos(arcsin x)




                                             .   .   .     .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:




                                                  .



                                              .       .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                          1
                                                          .
                                                                      x
                                                                      .



                                                  .



                                              .       .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                           1
                                                           .
                                                                       x
                                                                       .


                                                      y
                                                      . = arcsin x
                                                  .



                                              .        .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                         1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .
   So
     d                1                             y
                                                    . = arcsin x
        arcsin(x) = √
     dx              1 − x2                       . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
Graphing	arcsin	and	its	derivative


                                                                 1
                                                        .√
                                                                1 − x2
     The	domain	of f is
     [−1, 1], but	the	domain                            . . rcsin
                                                          a
     of f′ is (−1, 1)
      lim f′ (x) = +∞
     x →1 −
      lim f′ (x) = +∞                  .
                                       |       .        .
                                                        |
     x→−1+                           −
                                     . 1               1
                                                       .


                                      .




                                      .    .       .        .        .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                   dy        dy      1             1
         − sin y      = 1 =⇒    =         =
                   dx        dx   − sin y   − sin(arccos x)




                                              .   .   .   .   .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                    dy        dy      1             1
          − sin y      = 1 =⇒    =         =
                    dx        dx   − sin y   − sin(arccos x)

  To	simplify, look	at	a	right
  triangle:
                     √
     sin(arccos x) = 1 − x2                          1
                                                     .           √
                                                                 . 1 − x2
  So
   d                  1                         y
                                                . = arccos x
      arccos(x) = − √                       .
   dx                1 − x2                          x
                                                     .


                                                 .       .   .      .   .   .
Graphing	arcsin	and	arccos



      . . rccos
        a


                   . . rcsin
                     a


       .
       |     .     |.
                   .
     −
     . 1          1
                  .


      .



                               .   .   .   .   .   .
Graphing	arcsin	and	arccos



      . . rccos
        a
                               Note
                                                     (π    )
                                         cos θ = sin    −θ
                   . . rcsin
                     a                                2
                                                 π
                                   =⇒ arccos x = − arcsin x
                                                 2
       .
       |     .     |.
                   .           So	it’s	not	a	surprise	that	their
     −
     . 1          1
                  .            derivatives	are	opposites.

      .



                                             .    .    .     .     .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                    dy        dy     1
           sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                    dx        dx   sec2 y




                                              .    .   .      .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:




                                                   .



                                               .       .   .   .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                   x
                                                                   .



                                                   .
                                                           1
                                                           .


                                               .       .   .   .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                    x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:


                                               √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                      1
    cos(arctan x) = √
                     1 + x2                    √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                      dy        dy     1
             sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                      dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                      1
    cos(arctan x) = √
                     1 + x2                     √
                                                . 1 + x2             x
                                                                     .
   So
        d                1                              y
                                                        . = arctan x
           arctan(x) =                              .
        dx             1 + x2
                                                            1
                                                            .


                                                .       .   .    .       .   .
Graphing	arctan	and	its	derivative


                              y
                              .
                                   . /2
                                   π
                                                             a
                                                             . rctan
                                                                 1
                                                             .
                                                             1 + x2
                               .                             x
                                                             .



                                   −
                                   . π/2


      The	domain	of f and f′ are	both (−∞, ∞)
      Because	of	the	horizontal	asymptotes, lim f′ (x) = 0
                                           x→±∞

                                            .   .    .   .   .    .
Example
                    √
Let f(x) = arctan    x. Find f′ (x).




                                       .   .   .   .   .   .
Example
                    √
Let f(x) = arctan    x. Find f′ (x).

Solution

         d        √       1     d√     1   1
            arctan x =    (√ )2    x=    · √
         dx            1+    x  dx    1+x 2 x
                           1
                     = √       √
                       2 x + 2x x




                                       .   .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first.




                           .   .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))




                                                 .       .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                              .



                                                  .      .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                              .



                                                  .      .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                      x
                                                      .



                                              .
                                                          1
                                                          .


                                                  .           .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                       x
                                                       .


                                                  y
                                                  . = arcsec x
                                              .
                                                           1
                                                           .


                                                   .           .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                   √
                          1                            x
                                                       .               . x2 − 1


                                                  y
                                                  . = arcsec x
                                              .
                                                           1
                                                           .


                                                   .           .   .      .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                      dy        dy        1                1
        sec y tan y      = 1 =⇒    =             =
                      dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                    √
                          1                             x
                                                        .               . x2 − 1
   So
    d                1                             y
                                                   . = arcsec x
       arcsec(x) = √                           .
    dx            x x2 − 1
                                                            1
                                                            .


                                                    .           .   .      .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).




                                        .   .   .   .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).

  Solution
                                                 1
                          f′ (x) = earcsec x · √
                                              x x2 − 1




                                                    .    .   .   .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Application


  Example
  One	of	the	guiding	principles
  of	most	sports	is	to	“keep
  your	eye	on	the	ball.” In
  baseball, a	batter	stands 2 ft
  away	from	home	plate	as	a
  pitch	is	thrown	with	a
  velocity	of 130 ft/sec (about
  90 mph). At	what	rate	does
  the	batter’s	angle	of	gaze
  need	to	change	to	follow	the
  ball	as	it	crosses	home	plate?



                                   .   .   .   .   .   .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
angle	the	batter’s	eyes	make	with	home	plate	while	following	the
ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
y = 0.




                                                              y
                                                              .


                                                              1
                                                              . 30 ft/sec

                                                   .
                                                   θ
                                           .
                                       .           2
                                                   . ft

                                               .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
   dθ        1         1 dy
      =              ·
                    2 2 dt
   dt   1 + ( y /2 )

                                                               y
                                                               .


                                                               1
                                                               . 30 ft/sec

                                                    .
                                                    θ
                                            .
                                        .           2
                                                    . ft

                                                .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
                                                .
                                            .           2
                                                        . ft

                                                    .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
 The	human	eye	can	only                         .
track	at 3 rad/sec!                         .           2
                                                        . ft

                                                    .    .     .       .   .     .
Recap

        y         y′

                   1
    arcsin x   √
                 1 − x2
                    1
    arccos x − √           Remarkable	that	the
                  1 − x2
                           derivatives	of	these
                   1       transcendental functions
    arctan x
                1 + x2     are	algebraic	(or	even
                    1      rational!)
    arccot x  −
                 1 + x2
                   1
    arcsec x   √
              x x2 − 1
                    1
    arccsc x − √
               x x2 − 1
                             .   .   .    .   .       .

Lesson 15: Inverse Trigonometric Functions

  • 1.
    Section 3.5 Inverse Trigonometric Functions V63.0121.006/016, Calculus I March 11, 2010 Announcements Exams returned in recitation There is WebAssign due Tuesday March 23 and written HW due Thursday March 25 . . . . . .
  • 2.
    Announcements Exams returned in recitation There is WebAssign due Tuesday March 23 and written HW due Thursday March 25 next quiz is Friday April 2 . . . . . .
  • 3.
    What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. . . . . . .
  • 4.
    What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x . . . . . .
  • 5.
    What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 6.
    Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 7.
    arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . π π s . in − . . 2 2 . . . . . .
  • 8.
    arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . . x . π π s . in − . . . 2 2 . . . . . .
  • 9.
    arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . y . =x . . . . x . π π s . in − . . . 2 2 . . . . . .
  • 10.
    arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . rcsin a . . . . x . π π s . in − . . . 2 2 . The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 2 2 . . . . . .
  • 11.
    arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . 0 . . π . . . . . .
  • 12.
    arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . c . os . . x . 0 . . π . . . . . . .
  • 13.
    arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . y . =x . c . os . . x . 0 . . π . . . . . . .
  • 14.
    arccos Arccos is the inverse of the cosine function after restriction to [0, π] . . rccos a y . . c . os . . . x . 0 . . π . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • 15.
    arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 16.
    arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 17.
    arctan Arctan is the inverse of the tangent function after restriction to y . =x [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 18.
    arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 . . . . . .
  • 19.
    arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 s . ec . . . . . .
  • 20.
    arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 21.
    arcsec Arcsecant is the inverse of secant after restriction to y . =x [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 22.
    arcsec 3π . Arcsecant is the inverse of secant after restriction to 2 [0, π/2) ∪ (π, 3π/2]. . . y π . 2 . . . x . . The domain of arcsec is (−∞, −1] ∪ [1, ∞) [ π ) (π ] The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 . . . . . .
  • 23.
    Values of Trigonometric Functions π π π π x 0 6 4 3 2 √ √ 1 2 3 sin x 0 1 2 2 2 √ √ 3 2 1 cos x 1 0 2 2 2 1 √ tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 . . . . . .
  • 24.
    Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 . . . . . .
  • 25.
    Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 . . . . . .
  • 26.
    What is arctan(−1)? . 3 . π/4 . . . . − . π/4 . . . . . .
  • 27.
    What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ 2 s . in(3π/4) = 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . .
  • 28.
    What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ But, the range of arctan ( π π) 2 s . in(3π/4) = is − , 2 2 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . .
  • 29.
    What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the range of arctan ( π π) √ is − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s 2 . − . π/4 . . . . . .
  • 30.
    What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the range of arctan ( π π) √ is − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s π 2 So arctan(−1) = − 4 . − . π/4 . . . . . .
  • 31.
    Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 . . . . . .
  • 32.
    Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 3π 4 . . . . . .
  • 33.
    Caution: Notational ambiguity . in2 x =.(sin x)2 s . in−1 x = (sin x)−1 s sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . 1 I use csc x for and arcsin x for the inverse of sin x. sin x . . . . . .
  • 34.
    Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 35.
    Theorem (The Inverse Function Theorem) Let f be differentiable ata, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 36.
    Theorem (The Inverse Function Theorem) Let f be differentiable ata, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y ) = x , So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ = ′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 37.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) . . . . . .
  • 38.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • 39.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • 40.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . . . . . . .
  • 41.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 42.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 43.
    The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 y . = arcsin x arcsin(x) = √ dx 1 − x2 . √ . 1 − x2 . . . . . .
  • 44.
    Graphing arcsin and its derivative 1 .√ 1 − x2 The domain of f is [−1, 1], but the domain . . rcsin a of f′ is (−1, 1) lim f′ (x) = +∞ x →1 − lim f′ (x) = +∞ . | . . | x→−1+ − . 1 1 . . . . . . . .
  • 45.
    The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) . . . . . .
  • 46.
    The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 1 . √ . 1 − x2 So d 1 y . = arccos x arccos(x) = − √ . dx 1 − x2 x . . . . . . .
  • 47.
    Graphing arcsin and arccos . . rccos a . . rcsin a . | . |. . − . 1 1 . . . . . . . .
  • 48.
    Graphing arcsin and arccos . . rccos a Note (π ) cos θ = sin −θ . . rcsin a 2 π =⇒ arccos x = − arcsin x 2 . | . |. . So it’s not a surprise that their − . 1 1 . derivatives are opposites. . . . . . . .
  • 49.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y . . . . . .
  • 50.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . . . . . . .
  • 51.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 52.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . y . = arctan x . 1 . . . . . . .
  • 53.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 54.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 55.
    The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . So d 1 y . = arctan x arctan(x) = . dx 1 + x2 1 . . . . . . .
  • 56.
    Graphing arctan and its derivative y . . /2 π a . rctan 1 . 1 + x2 . x . − . π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim f′ (x) = 0 x→±∞ . . . . . .
  • 57.
    Example √ Let f(x) = arctan x. Find f′ (x). . . . . . .
  • 58.
    Example √ Let f(x) = arctan x. Find f′ (x). Solution d √ 1 d√ 1 1 arctan x = (√ )2 x= · √ dx 1+ x dx 1+x 2 x 1 = √ √ 2 x + 2x x . . . . . .
  • 59.
    The derivative of arcsec Try this first. . . . . . .
  • 60.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) . . . . . .
  • 61.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 62.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 63.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 64.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . y . = arcsec x . 1 . . . . . . .
  • 65.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 y . = arcsec x . 1 . . . . . . .
  • 66.
    The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 So d 1 y . = arcsec x arcsec(x) = √ . dx x x2 − 1 1 . . . . . . .
  • 67.
    Another Example Example Let f(x) = earcsec x . Find f′ (x). . . . . . .
  • 68.
    Another Example Example Let f(x) = earcsec x . Find f′ (x). Solution 1 f′ (x) = earcsec x · √ x x2 − 1 . . . . . .
  • 69.
    Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 70.
    Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? . . . . . .
  • 71.
    Let y(t) be the distance from the ball to home plate,and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 72.
    Let y(t) be the distance from the ball to home plate,and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 73.
    Let y(t) be the distance from the ball to home plate,and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ . . 2 . ft . . . . . .
  • 74.
    Let y(t) be the distance from the ball to home plate,and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ The human eye can only . track at 3 rad/sec! . 2 . ft . . . . . .
  • 75.
    Recap y y′ 1 arcsin x √ 1 − x2 1 arccos x − √ Remarkable that the 1 − x2 derivatives of these 1 transcendental functions arctan x 1 + x2 are algebraic (or even 1 rational!) arccot x − 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .