SlideShare a Scribd company logo

学振特別研究員になるために~2019年度申請版

東京工業大学で開催された 日本学術振興会特別研究員 公募にかかる学内説明会 (2018年3月6日) での講演資料のslideshare用修正版です。

1 of 68
Download to read offline
東京工業大学 情報理工学院 情報工学系 助教
大上 雅史
ohue@c.titech.ac.jp
学振特別研究員になるために
(2019年度申請版)
私はナニモノか?
• 大上 雅史(おおうえ まさひと)
– 現在,東京工業大学 情報理工学院の助教
– 学振DC1,学振PDの採用を経験
– 主な研究内容はバイオインフォマティクス
• 計算機による生命科学の研究
• 主にタンパク質間相互作用や創薬支援計算に関する研究
• 機械学習、シミュレーション、TSUBAMEを使った大規模計算など
2018/3/6 学振特別研究員になるために(2019年度申請版) 大上雅史 2
「学振申請書の書き方とコツ」
著者:大上 雅史
出版社:講談社
好評発売中 (2016/4/6刊行)
価格:2,500円+tax
ページ数:186ページ
参考図書
2018/3/6 学振特別研究員になるために(2019年度申請版) 大上雅史 3
電子書籍もあります
どうやったら学振特別研究員になれるの?
必勝法があるなら私が知りたい
採択可能性を上げるための
コツがあります
2018/3/6 学振特別研究員になるために(2019年度申請版) 大上雅史 4
Take-home message
• 学振獲得のための調書作成には、研究者としての
能力以上に、一般的な能力が求められる。
– 内容を「伝える」ことが必要。
当たり前のようで、できていない人が多い。
– 人は第一印象が根強く残る。
第一印象が悪いとそれだけで落ちることもありうる。
• 申請書作成のコツを押さえることで、
学振の採用可能性は上げられる。
– 研究費獲得は研究者にとっては日常そのもの。
ただし、どんなに優れた研究者でも3割バッター。
– とにかく書いて出す。書くことが大切。経験を積もう。
– 学生のうちからチャレンジしよう。
2018/3/6 学振特別研究員になるために(2019年度申請版) 大上雅史 5
学生が応募できるもの(一例)
• 日本学術振興会 特別研究員DC1/DC2
– 通称「学振」
– 月20万円の奨励金と年100万円前後の研究費
– 博士課程の院生向け
• 理研 大学院生リサーチ・アソシエイト(JRA)
– 博士(後期)課程在籍者を非常勤として理研に受け入れ
– 月164,000円の給与+α
• 産総研 リサーチアシスタント(RA)
– 修士学生・博士学生が産総研の研究室で勤務(研究)
– 時給制。修士最大16万円程度、博士最大20万円程度。募集は随時。
• JST ACT-I
– 2016年からスタート。修士学生も応募可能。
– 300万円の研究費で1年4ヶ月+α
★今日は(ほぼ)学振DCに限って話をします
2018/3/6 学振特別研究員になるために(2019年度申請版) 大上雅史 6
Ad

Recommended

学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]Masahito Ohue
 
学振特別研究員になるために~2023年度申請版
学振特別研究員になるために~2023年度申請版学振特別研究員になるために~2023年度申請版
学振特別研究員になるために~2023年度申請版Masahito Ohue
 
学振特別研究員になるために~2024年度申請版
 学振特別研究員になるために~2024年度申請版 学振特別研究員になるために~2024年度申請版
学振特別研究員になるために~2024年度申請版Masahito Ohue
 
学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版Masahito Ohue
 
学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版Masahito Ohue
 
機械学習・機械発見から見るデータ中心型化学の野望と憂鬱
機械学習・機械発見から見るデータ中心型化学の野望と憂鬱機械学習・機械発見から見るデータ中心型化学の野望と憂鬱
機械学習・機械発見から見るデータ中心型化学の野望と憂鬱Ichigaku Takigawa
 
学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~Masahito Ohue
 
学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版学振特別研究員になるために~2022年度申請版
学振特別研究員になるために~2022年度申請版Masahito Ohue
 

More Related Content

What's hot

「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例
「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例
「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例takehikoihayashi
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
大学生及び大学院生の研究時間とメンタルヘルス
大学生及び大学院生の研究時間とメンタルヘルス大学生及び大学院生の研究時間とメンタルヘルス
大学生及び大学院生の研究時間とメンタルヘルスAtsuto ONODA
 
それでも私が研究を続ける理由
それでも私が研究を続ける理由それでも私が研究を続ける理由
それでも私が研究を続ける理由Hitomi Yanaka
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement LearningDeep Learning JP
 
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにーAtsuto ONODA
 
ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫るKen'ichi Matsui
 
研究の基本ツール
研究の基本ツール研究の基本ツール
研究の基本ツール由来 藤原
 
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)ryotat
 
大学院進学が切り拓く情報系学生のキャリア
大学院進学が切り拓く情報系学生のキャリア大学院進学が切り拓く情報系学生のキャリア
大学院進学が切り拓く情報系学生のキャリアTakayuki Itoh
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方ychtanaka
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Naoaki Okazaki
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有Naoaki Okazaki
 
心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]daiki hojo
 

What's hot (20)

「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例
「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例
「生態学における統計的因果推論」という大ネタへの挑戦:その理論的背景と適用事例
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
大学生及び大学院生の研究時間とメンタルヘルス
大学生及び大学院生の研究時間とメンタルヘルス大学生及び大学院生の研究時間とメンタルヘルス
大学生及び大学院生の研究時間とメンタルヘルス
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
それでも私が研究を続ける理由
それでも私が研究を続ける理由それでも私が研究を続ける理由
それでも私が研究を続ける理由
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
【DL輪読会】Contrastive Learning as Goal-Conditioned Reinforcement Learning
 
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
博士課程の誤解と真実 ー進学に向けて、両親を説得した資料をもとにー
 
ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
 
研究の基本ツール
研究の基本ツール研究の基本ツール
研究の基本ツール
 
ResNetの仕組み
ResNetの仕組みResNetの仕組み
ResNetの仕組み
 
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
行列およびテンソルデータに対する機械学習(数理助教の会 2011/11/28)
 
大学院進学が切り拓く情報系学生のキャリア
大学院進学が切り拓く情報系学生のキャリア大学院進学が切り拓く情報系学生のキャリア
大学院進学が切り拓く情報系学生のキャリア
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有
 
心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]
 

Similar to 学振特別研究員になるために~2019年度申請版

学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]Masahito Ohue
 
経済学で読み解く「働き方」と「イノベーション」2.0
経済学で読み解く「働き方」と「イノベーション」2.0経済学で読み解く「働き方」と「イノベーション」2.0
経済学で読み解く「働き方」と「イノベーション」2.0Yosuke YASUDA
 
同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと
同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと
同志社大学大学院への進学:授業や研究、習得したこと、大変だったことTakeshi Kuboyama
 
資本主義とお金の未来
資本主義とお金の未来資本主義とお金の未来
資本主義とお金の未来Yosuke YASUDA
 
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察Yuichi Inobori
 
学振と民間助成で自分がやりたい研究をする方法 (Short Version)
学振と民間助成で自分がやりたい研究をする方法 (Short Version)学振と民間助成で自分がやりたい研究をする方法 (Short Version)
学振と民間助成で自分がやりたい研究をする方法 (Short Version)Yasushi Hara
 
貯蓄から資産運用への新しい道筋
貯蓄から資産運用への新しい道筋貯蓄から資産運用への新しい道筋
貯蓄から資産運用への新しい道筋Yosuke YASUDA
 
20180721.kansaicv#36.mori a
20180721.kansaicv#36.mori a20180721.kansaicv#36.mori a
20180721.kansaicv#36.mori aNaoyuki Mori
 
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論Takanobu Mizuta
 
博士のキャリアデザインワークショップ講演
博士のキャリアデザインワークショップ講演博士のキャリアデザインワークショップ講演
博士のキャリアデザインワークショップ講演Takayuki Itoh
 
Dr. Katsurai's slide
Dr. Katsurai's slideDr. Katsurai's slide
Dr. Katsurai's slidemiraikenkyu
 
大学におけるICT教育の事例
大学におけるICT教育の事例大学におけるICT教育の事例
大学におけるICT教育の事例Hiroki OKAZAKI
 
情報社会学会発表スライド20130522
情報社会学会発表スライド20130522情報社会学会発表スライド20130522
情報社会学会発表スライド20130522Masahiko Shoji
 
20150605ゲンロンカフェ
20150605ゲンロンカフェ20150605ゲンロンカフェ
20150605ゲンロンカフェ亮介 西田
 
人材・組織を生かすコミュニティ戦略
人材・組織を生かすコミュニティ戦略人材・組織を生かすコミュニティ戦略
人材・組織を生かすコミュニティ戦略Yosuke YASUDA
 
Qiskit Advocate 自己紹介
Qiskit Advocate 自己紹介Qiskit Advocate 自己紹介
Qiskit Advocate 自己紹介ohken
 

Similar to 学振特別研究員になるために~2019年度申請版 (16)

学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
 
経済学で読み解く「働き方」と「イノベーション」2.0
経済学で読み解く「働き方」と「イノベーション」2.0経済学で読み解く「働き方」と「イノベーション」2.0
経済学で読み解く「働き方」と「イノベーション」2.0
 
同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと
同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと
同志社大学大学院への進学:授業や研究、習得したこと、大変だったこと
 
資本主義とお金の未来
資本主義とお金の未来資本主義とお金の未来
資本主義とお金の未来
 
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察
エステティクス(美学=感性論)概念を 視座とする「きれい事」の経営実現に関する考察
 
学振と民間助成で自分がやりたい研究をする方法 (Short Version)
学振と民間助成で自分がやりたい研究をする方法 (Short Version)学振と民間助成で自分がやりたい研究をする方法 (Short Version)
学振と民間助成で自分がやりたい研究をする方法 (Short Version)
 
貯蓄から資産運用への新しい道筋
貯蓄から資産運用への新しい道筋貯蓄から資産運用への新しい道筋
貯蓄から資産運用への新しい道筋
 
20180721.kansaicv#36.mori a
20180721.kansaicv#36.mori a20180721.kansaicv#36.mori a
20180721.kansaicv#36.mori a
 
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論
FIX委員会メンバーセミナー(2017/6/21) 人工市場を用いた 金融市場の制度・規制の議論
 
博士のキャリアデザインワークショップ講演
博士のキャリアデザインワークショップ講演博士のキャリアデザインワークショップ講演
博士のキャリアデザインワークショップ講演
 
Dr. Katsurai's slide
Dr. Katsurai's slideDr. Katsurai's slide
Dr. Katsurai's slide
 
大学におけるICT教育の事例
大学におけるICT教育の事例大学におけるICT教育の事例
大学におけるICT教育の事例
 
情報社会学会発表スライド20130522
情報社会学会発表スライド20130522情報社会学会発表スライド20130522
情報社会学会発表スライド20130522
 
20150605ゲンロンカフェ
20150605ゲンロンカフェ20150605ゲンロンカフェ
20150605ゲンロンカフェ
 
人材・組織を生かすコミュニティ戦略
人材・組織を生かすコミュニティ戦略人材・組織を生かすコミュニティ戦略
人材・組織を生かすコミュニティ戦略
 
Qiskit Advocate 自己紹介
Qiskit Advocate 自己紹介Qiskit Advocate 自己紹介
Qiskit Advocate 自己紹介
 

More from Masahito Ohue

第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話Masahito Ohue
 
Learning-to-rank for ligand-based virtual screening
Learning-to-rank for ligand-based virtual screeningLearning-to-rank for ligand-based virtual screening
Learning-to-rank for ligand-based virtual screeningMasahito Ohue
 
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...Masahito Ohue
 
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...Masahito Ohue
 
出会い系タンパク質を探す旅
出会い系タンパク質を探す旅出会い系タンパク質を探す旅
出会い系タンパク質を探す旅Masahito Ohue
 
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...Masahito Ohue
 
目バーチャルスクリーニング
目バーチャルスクリーニング目バーチャルスクリーニング
目バーチャルスクリーニングMasahito Ohue
 
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価Masahito Ohue
 
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)Masahito Ohue
 
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)Masahito Ohue
 
ISMB/ECCB2015読み会:大上
ISMB/ECCB2015読み会:大上ISMB/ECCB2015読み会:大上
ISMB/ECCB2015読み会:大上Masahito Ohue
 
IIBMP2014 Lightning Talk - MEGADOCK 4.0
IIBMP2014 Lightning Talk - MEGADOCK 4.0IIBMP2014 Lightning Talk - MEGADOCK 4.0
IIBMP2014 Lightning Talk - MEGADOCK 4.0Masahito Ohue
 
PrePPI: structure-based protein-protein interaction prediction
PrePPI: structure-based protein-protein interaction predictionPrePPI: structure-based protein-protein interaction prediction
PrePPI: structure-based protein-protein interaction predictionMasahito Ohue
 
Protein-protein docking-based virtual screening
Protein-protein docking-based virtual screeningProtein-protein docking-based virtual screening
Protein-protein docking-based virtual screeningMasahito Ohue
 
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...Masahito Ohue
 
Accurate protein-protein docking with rapid calculation
Accurate protein-protein docking with rapid calculationAccurate protein-protein docking with rapid calculation
Accurate protein-protein docking with rapid calculationMasahito Ohue
 
Protein-Protein Interaction Prediction
Protein-Protein Interaction PredictionProtein-Protein Interaction Prediction
Protein-Protein Interaction PredictionMasahito Ohue
 

More from Masahito Ohue (20)

第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
 
Learning-to-rank for ligand-based virtual screening
Learning-to-rank for ligand-based virtual screeningLearning-to-rank for ligand-based virtual screening
Learning-to-rank for ligand-based virtual screening
 
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
 
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
 
出会い系タンパク質を探す旅
出会い系タンパク質を探す旅出会い系タンパク質を探す旅
出会い系タンパク質を探す旅
 
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
 
目バーチャルスクリーニング
目バーチャルスクリーニング目バーチャルスクリーニング
目バーチャルスクリーニング
 
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
 
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
 
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
 
ISMB/ECCB2015読み会:大上
ISMB/ECCB2015読み会:大上ISMB/ECCB2015読み会:大上
ISMB/ECCB2015読み会:大上
 
IIBMP2014 Lightning Talk - MEGADOCK 4.0
IIBMP2014 Lightning Talk - MEGADOCK 4.0IIBMP2014 Lightning Talk - MEGADOCK 4.0
IIBMP2014 Lightning Talk - MEGADOCK 4.0
 
PrePPI: structure-based protein-protein interaction prediction
PrePPI: structure-based protein-protein interaction predictionPrePPI: structure-based protein-protein interaction prediction
PrePPI: structure-based protein-protein interaction prediction
 
Protein-protein docking-based virtual screening
Protein-protein docking-based virtual screeningProtein-protein docking-based virtual screening
Protein-protein docking-based virtual screening
 
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
 
PRML Chapter 14
PRML Chapter 14PRML Chapter 14
PRML Chapter 14
 
W8PRML5.1-5.3
W8PRML5.1-5.3W8PRML5.1-5.3
W8PRML5.1-5.3
 
Accurate protein-protein docking with rapid calculation
Accurate protein-protein docking with rapid calculationAccurate protein-protein docking with rapid calculation
Accurate protein-protein docking with rapid calculation
 
Protein-Protein Interaction Prediction
Protein-Protein Interaction PredictionProtein-Protein Interaction Prediction
Protein-Protein Interaction Prediction
 
PRML Chapter 5
PRML Chapter 5PRML Chapter 5
PRML Chapter 5
 

学振特別研究員になるために~2019年度申請版