Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Masahito Ohue
PDF, PPTX
5,634 views
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
FIT2016 第15回情報科学技術フォーラム @ 富山大学 助教が吼える! 各界の若手研究者大集合 9月9日(金) での講演スライド(一部修正有り)です.
Health & Medicine
◦
Read more
4
Save
Share
Embed
Embed presentation
Download
Download as PDF, PPTX
1
/ 50
2
/ 50
3
/ 50
4
/ 50
5
/ 50
6
/ 50
7
/ 50
8
/ 50
9
/ 50
10
/ 50
11
/ 50
12
/ 50
13
/ 50
14
/ 50
15
/ 50
16
/ 50
17
/ 50
18
/ 50
19
/ 50
20
/ 50
21
/ 50
22
/ 50
23
/ 50
24
/ 50
25
/ 50
26
/ 50
27
/ 50
28
/ 50
29
/ 50
30
/ 50
31
/ 50
32
/ 50
33
/ 50
34
/ 50
35
/ 50
36
/ 50
37
/ 50
38
/ 50
39
/ 50
40
/ 50
41
/ 50
42
/ 50
43
/ 50
44
/ 50
45
/ 50
46
/ 50
47
/ 50
48
/ 50
49
/ 50
50
/ 50
More Related Content
PDF
IIBMP2014 Lightning Talk - MEGADOCK 4.0
by
Masahito Ohue
PDF
歩行支援機能を有する前腕支持型四輪歩行器の開発に関する研究
by
harmonylab
PPTX
ECサイトにおける商品紹介文の作成支援システムの開発と評価に関する研究
by
harmonylab
PPTX
Calorie Estimation in a Real-World Recipe Service
by
harmonylab
PPTX
Efficient_Communication_in_Multi-Agent_Reinforcement_Learning_via_Variance_Ba...
by
harmonylab
PPTX
Reinforcement Mechanism Design:With Applications to Dynamic Pricing in Sponso...
by
harmonylab
PPTX
Semi-Supervised Neural Architecture Search
by
harmonylab
PPTX
言語モデルを用いた俳句評価器の構築と性能評価に関する研究
by
harmonylab
IIBMP2014 Lightning Talk - MEGADOCK 4.0
by
Masahito Ohue
歩行支援機能を有する前腕支持型四輪歩行器の開発に関する研究
by
harmonylab
ECサイトにおける商品紹介文の作成支援システムの開発と評価に関する研究
by
harmonylab
Calorie Estimation in a Real-World Recipe Service
by
harmonylab
Efficient_Communication_in_Multi-Agent_Reinforcement_Learning_via_Variance_Ba...
by
harmonylab
Reinforcement Mechanism Design:With Applications to Dynamic Pricing in Sponso...
by
harmonylab
Semi-Supervised Neural Architecture Search
by
harmonylab
言語モデルを用いた俳句評価器の構築と性能評価に関する研究
by
harmonylab
Similar to 計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
PDF
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
by
Masahito Ohue
PDF
Protein-protein docking-based virtual screening
by
Masahito Ohue
PPTX
R seminar on igraph
by
Kazuhiro Takemoto
PPTX
PrePPI: structure-based protein-protein interaction prediction
by
Masahito Ohue
PDF
FiberDock: Flexible Protein Docking with Normal Mode
by
Masahito Ohue
PDF
2012-03-08 MSS研究会
by
Kimikazu Kato
PPTX
Protein-Protein Interaction Prediction
by
Masahito Ohue
PDF
[All-in-one2016] ゲノム配列と蛋白質立体構造の統合的検索とモデリング
by
DNA Data Bank of Japan center
PDF
[All-in-one2016] 文献情報を利用したサービスの活用法
by
DNA Data Bank of Japan center
PDF
第8回 配信講義 計算科学技術特論B(2022)
by
RCCSRENKEI
PPTX
ISMB/ECCB2015読み会:大上
by
Masahito Ohue
PDF
Introduction of PSIVER (Japanese )
by
Mizuguchi Laboratory
PDF
Test for lab_j Psiver j
by
Maori Ito
PDF
CMSI計算科学技術特論A(14) 量子化学計算の大規模化1
by
Computational Materials Science Initiative
PDF
第9回 配信講義 計算科学技術特論B(2022)
by
RCCSRENKEI
PDF
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
by
Masahito Ohue
PPTX
Psiver j
by
Maori Ito
PPTX
clusDCA_ismb読み会2015
by
Mika Yoshimura
PDF
大規模ネットワークの性質と先端グラフアルゴリズム
by
Takuya Akiba
PDF
El text.tokuron a(2019).yoshii190704
by
RCCSRENKEI
Microsoft Azure上でのタンパク質間相互作用予測システムの並列計算と性能評価
by
Masahito Ohue
Protein-protein docking-based virtual screening
by
Masahito Ohue
R seminar on igraph
by
Kazuhiro Takemoto
PrePPI: structure-based protein-protein interaction prediction
by
Masahito Ohue
FiberDock: Flexible Protein Docking with Normal Mode
by
Masahito Ohue
2012-03-08 MSS研究会
by
Kimikazu Kato
Protein-Protein Interaction Prediction
by
Masahito Ohue
[All-in-one2016] ゲノム配列と蛋白質立体構造の統合的検索とモデリング
by
DNA Data Bank of Japan center
[All-in-one2016] 文献情報を利用したサービスの活用法
by
DNA Data Bank of Japan center
第8回 配信講義 計算科学技術特論B(2022)
by
RCCSRENKEI
ISMB/ECCB2015読み会:大上
by
Masahito Ohue
Introduction of PSIVER (Japanese )
by
Mizuguchi Laboratory
Test for lab_j Psiver j
by
Maori Ito
CMSI計算科学技術特論A(14) 量子化学計算の大規模化1
by
Computational Materials Science Initiative
第9回 配信講義 計算科学技術特論B(2022)
by
RCCSRENKEI
Finding correct protein–protein docking models using ProQDock (ISMB2016読み会, 大上)
by
Masahito Ohue
Psiver j
by
Maori Ito
clusDCA_ismb読み会2015
by
Mika Yoshimura
大規模ネットワークの性質と先端グラフアルゴリズム
by
Takuya Akiba
El text.tokuron a(2019).yoshii190704
by
RCCSRENKEI
More from Masahito Ohue
PDF
学振特別研究員になるために~2024年度申請版
by
Masahito Ohue
PDF
学振特別研究員になるために~2023年度申請版
by
Masahito Ohue
PDF
学振特別研究員になるために~2022年度申請版
by
Masahito Ohue
PDF
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
by
Masahito Ohue
PDF
Learning-to-rank for ligand-based virtual screening
by
Masahito Ohue
PDF
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
by
Masahito Ohue
PDF
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
by
Masahito Ohue
PDF
学振特別研究員になるために~2020年度申請版
by
Masahito Ohue
PPTX
出会い系タンパク質を探す旅
by
Masahito Ohue
PDF
学振特別研究員になるために~2019年度申請版
by
Masahito Ohue
PPTX
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
by
Masahito Ohue
PDF
目バーチャルスクリーニング
by
Masahito Ohue
PDF
学振特別研究員になるために~2018年度申請版
by
Masahito Ohue
PDF
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
by
Masahito Ohue
PDF
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
by
Masahito Ohue
PDF
学振特別研究員になるために~知っておくべき10のTips~
by
Masahito Ohue
PDF
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
by
Masahito Ohue
PDF
PRML Chapter 14
by
Masahito Ohue
PPTX
W8PRML5.1-5.3
by
Masahito Ohue
PDF
Accurate protein-protein docking with rapid calculation
by
Masahito Ohue
学振特別研究員になるために~2024年度申請版
by
Masahito Ohue
学振特別研究員になるために~2023年度申請版
by
Masahito Ohue
学振特別研究員になるために~2022年度申請版
by
Masahito Ohue
第43回分子生物学会年会フォーラム2F-11「インシリコ創薬を支える最先端情報科学」から抜粋したAlphaFold2の話
by
Masahito Ohue
Learning-to-rank for ligand-based virtual screening
by
Masahito Ohue
Parallelized pipeline for whole genome shotgun metagenomics with GHOSTZ-GPU a...
by
Masahito Ohue
Molecular Activity Prediction Using Graph Convolutional Deep Neural Network C...
by
Masahito Ohue
学振特別研究員になるために~2020年度申請版
by
Masahito Ohue
出会い系タンパク質を探す旅
by
Masahito Ohue
学振特別研究員になるために~2019年度申請版
by
Masahito Ohue
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a...
by
Masahito Ohue
目バーチャルスクリーニング
by
Masahito Ohue
学振特別研究員になるために~2018年度申請版
by
Masahito Ohue
学振特別研究員になるために~知っておくべき10のTips~[平成29年度申請版]
by
Masahito Ohue
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
by
Masahito Ohue
学振特別研究員になるために~知っておくべき10のTips~
by
Masahito Ohue
Protein-Protein Interaction Prediction Based on Template-Based and de Novo Do...
by
Masahito Ohue
PRML Chapter 14
by
Masahito Ohue
W8PRML5.1-5.3
by
Masahito Ohue
Accurate protein-protein docking with rapid calculation
by
Masahito Ohue
計算で明らかにするタンパク質の出会いとネットワーク(FIT2016 助教が吼えるセッション)
1.
計算で明らかにする タンパク質の出会いとネットワーク 東京工業大学 情報理工学院 情報工学系
助教 東京工業大学 科学技術創成研究院 スマート創薬研究ユニット 大上 雅史 FIT2016 第15回情報科学技術フォーラム 「助教が吼える! 各界の若手研究者大集合」 2016年9月9日(金) 於 富山大学 五福キャンパス ohue@c.titech.ac.jp
2.
はじめまして,大上(おおうえ)です • 大上 雅史(おおうえ
まさひと) – 略歴 • 2007年 石川工業高等専門学校 電子情報工学科 卒業 • 2009年 東京工業大学 工学部 情報工学科 卒業 • 2011年 同 大学院情報理工学研究科 修士課程修了 • 2014年 同 博士後期課程修了,博士(工学)(2014年3月26日) – 日本学術振興会 特別研究員 DC1(2011年4月~2014年3月) • 2014年4月~2015年3月 – 日本学術振興会 特別研究員 PD(2014年4月~) – 東京工業大学 特別研究員(称号付与, 2014年4月~) • 2015年4月~ 東京工業大学 助教 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 3
3.
はじめまして,大上(おおうえ)です • 大上 雅史(おおうえ
まさひと) – 著書 • 「これだけ!生化学」 秀和システム,2014(分担) (¥1,600+tax) • 「学振申請書の書き方とコツ」 講談社,2016(単著) (¥2,500+tax) – 受賞 • 日本学術振興会 育志賞 (2014) • 手島精一記念研究賞 (2015) 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 http://www.jsps.go.jp/j-ikushi-prize/ceremony_4_h25.html 4 - トレーナーレベル 22
5.
東工大科学技術創成研究院組織図 スマート創薬研究ユニットは,情報科学技術と生化学実験を融合する 「スマート創薬」の実証研究とオープンプラットフォームの形成 を目指す,東京工業大学の新しい研究ユニットです.2016年4月1日に東京工業大学 科学技術創成研究院と共に誕生しました. 東工大
科学技術創成研究院 准教授 スマート創薬研究ユニットでは、現在、一つの薬を上市するまでにかかる3000億 円もの費用を削減し10年にも及ぶ期間を短縮するために、バーチャルスクリーニ ングや機械学習、GPUを用いたスーパーコンピューティングというIT創薬と生化 学実験を融合し、オープンな創薬プラットフォームを構築することを目指していま す。オープン参加型のIT創薬コンテストやIT創薬の社会人人材養成を通じて、日 本の産業競争力強化への貢献も行って参ります。 スマート創薬の概念 6
6.
情報工学 生物学 物理学 化学 バイオインフォマティクス バイオインフォマティクスの研究をしています 2016/9/9
FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 7 近いけどちょっと違う分野 ・医療情報学 ・脳科学
7.
バイオインフォマティクスは怪しい? 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 8 (前略)このu[x][y][z]の計算は、こっちの点の計算とこっちの点の計 算を、同時にやっても大丈夫だということが、大概の解き方で成り立 つので、これは並列にできるということになります。 大体この世の中のHPCの90%ぐらいはこんなことをやっているわけで すが、もうちょっと広くするといろんな分野があります。例えばジェ ノミクスですか、遺伝子何たらとか、バイオインフォマティクスとか、 何か怪しい単語があるんですが、そういう分野もあります。(後略) 春の情報処理祭in京都 2015年3月16日 (リクルート x 情報処理学会) 京都大学 中島浩先生 http://logmi.jp/45043
8.
情報工学 生物学 物理学 化学 バイオインフォマティクス バイオインフォマティクスは学際領域のフロンティア 2016/9/9
FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 9
9.
バイオインフォマティクスは学際領域のフロンティア 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 10 情報工学 生物学 物理学 化学 バイオインフォマティクス HPC 文字列処理 数理最適化 探索 機械学習 人工知能 動画像処理 ゲノム タンパク質 転写 翻訳 シグナル伝達 疾病 個人情報 進化 暗号 言語処理 遺伝 多型 コホート 分子生物学 計算化学 量子 分子軌道 構造 活性 分子量QSAR QSPR 創薬 結合 記述子 電気 エネルギー 分子動力学 分子間力 統計力学 運動方程式 電荷 水 疎水性 解離接着 物性 Schrödinger エントロピー 毒性 オントロジー VR 細胞 酵素 GPU クラウド
10.
バイオインフォマティクスは学際領域のフロンティア 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 11 情報工学 生物学 物理学 化学 バイオインフォマティクス HPC 文字列処理 数理最適化 探索 機械学習 人工知能 動画像処理 ゲノム タンパク質 転写 翻訳 シグナル伝達 疾病 個人情報 進化 暗号 言語処理 遺伝 多型 コホート 分子生物学 計算化学 量子 分子軌道 構造 活性 分子量QSAR QSPR 創薬 結合 記述子 電気 エネルギー 分子動力学 分子間力 統計力学 運動方程式 電荷 水 疎水性 解離接着 物性 Schrödinger エントロピー 毒性 オントロジー VR 細胞 酵素 GPU クラウド
11.
大上の主研究対象→タンパク質間相互作用 (PPI) 2016/9/9 FIT2016
助教が吼える! 各界の若手研究者大集合 大上 雅史 12 タンパク質 #とは アミノ酸が繋がって 折りたたまれたもの アミノ酸 アミノ酸の繋がり (ペプチド) タンパク質
12.
タンパク質は1つじゃない 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 13 血中で酸素を運ぶ ヘモグロビン 卵の白身 アルブミン お鍋に嬉しい コラーゲン でんぷんを消化する酵素 アミラーゼ 髪の毛の材料 ケラチン 史上最強の毒物 ボツリヌストキシン
13.
タンパク質は他のタンパク質と相互作用する 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 14 Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science, 333, 601-607, 2011. string-db.org
14.
タンパク質の出会い(タンパク質間相互作用) 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 タンパク質間相互作用 (Protein-Protein Interaction) 生体内のタンパク質の制御関係を大規模かつ網羅的に理解することは がんや自己免疫疾患などをはじめとする病因の理解・創薬に重要 全てのタンパク質ペアについて相互作用の有無を網羅的に検証する場合... 例:肺がん(EGFR系)500タンパク質 → 500×500=250,000ペアの検証を要する 大腸がん抗がん剤 アバスチン 抗がん剤候補化合物 ABT-737 Bcl-2とBaxタンパク質の相互作用を阻害 Oltersdorf T, et al. Nature 2005. タンパク質間相互作用阻害薬の台頭 関節リウマチ治療薬 アクテムラ VEGFとVEGFRの 相互作用を阻害 IL-6とIL-6Rの 相互作用を阻害 ©中外製薬 Bcl-2 Bax Bcl-2 ABT-737 ABT-737 15
15.
タンパク質構造情報が大量に蓄積されてきた 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 タンパク質の立体構造情報の件数 タンパク質構造データの大量蓄積 Protein Data Bankより ©RIKEN 大量のタンパク質の立体構造情報が蓄積されてきた ©CellPress ©Nature Publishing Group 16
16.
我が国も先導するHPC 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 並列計算機の発展 超並列計算機の発展によって大規模データ解析への道が拓かれた 「京」スーパーコンピュータ(理研) 理論性能:23.2 PetaFlops TSUBAME 2.5(東工大) 理論性能:5.7 PetaFlops 2万CPUコア+4000枚のGPU 70万CPUコア 17
17.
タンパク質間相互作用を計算機で予測する 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 (Protein Data Bank) 大量のタンパク質構造情報 大量のタンパク質の構造情報を用いて タンパク質間相互作用を計算機で予測する タンパク質間相互作用ネットワーク 独自技術 (MEGADOCK) の特徴 1. アルゴリズムレベルの高速化 • 高速フーリエ変換の利用 • 複合体構造の高速評価モデル開発 2. 並列計算機,アクセラレータの利用 • MPI/OpenMPハイブリッド並列実装 • GPUやMICによる計算高速化 18 • Shimoda T, et al. BMC Syst Biol, 9, 2015. • Ohue M, et al. Bioinformatics, 30, 2014. • Ohue M, et al. Protein Pept Lett, 21, 2014. • Ohue M, et al. BMC Proc, 7, 2013. • Shimoda T, et al. In Proc ACM-BCB, 2013. • Matsuzaki Y, et al. Source Code Biol Med, 8, 2013. • Ohue M, et al. In Proc PRIB, 2012. • Ohue M, et al. Genome Inform, 2011.
18.
タンパク質間相互作用を計算機で予測する 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 数理モデル化 数式による表現 コンピューター 19
19.
2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 20 全編を見たい方はYoutubeで→「ライフサイエンス分野のグランドチャレンジに挑む」 https://www.youtube.com/watch?v=O5iePlpqjCU
20.
MEGADOCKの数理モデル 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 タンパク質が結合したときの評価値を高速に評価 21
21.
MEGADOCKの数理モデル 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 22 ②2つのタンパク質の 重なったマスの 掛け算を全部足す. →結合の良さ(評価値) ①タンパク質をグリッド化, 点数を付与
22.
MEGADOCKの数理モデル 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 23 -27×0 -5×0 -5×0 -5×0 1×0 2×0 1×0 1×0 1×0 1×0 1×0 0×00×0 0×0 -5×1 1×1 1×1 1×1 1×1 1×1 5×1 0×1 0×0 0×0 0×0 -5×1 0×0 0×0 = 0+1+1+0 +(-5)+(-5)+1+0 +0+1+1+0 +0+0+0+0 +0+0+0+0 +0+0+0+0 = -5
23.
MEGADOCKの数理モデル ③片方のタンパク質を平行移動させて全てのくっつき方を見る 2N 2N ・グリッドの1辺の数:N ・平行移動パターン数:8N3 (↑実際は3次元) 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 24 ④片方のタンパク質を 回転させて①~③を 繰り返す
24.
タンパク質を数式に 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 ①タンパク質をグリッド化, 点数を付与 タンパク質の表面空間 タンパク質の内部 それ以外 タンパク質の内部 それ以外 A B 25
25.
タンパク質を数式に 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 ②2つのタンパク質の 重なったマスの 掛け算を全部足す. →結合の良さ(評価値) タンパク質Bの位置 (平行移動ベクトル) 掛け算 全部足す 26
26.
タンパク質を数式に 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 27 ③片方のタンパク質を平行移動させて全てのくっつき方を見る 2N 2N この部分が1~Nで動く
27.
タンパク質を数式に 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 28 ④片方のタンパク質を回転させて①~③を繰り返す ※x-z-x系のオイラー角として回転を定義する.
28.
フーリエ変換による書き換え 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 29 タンパク質Bの位置 (平行移動ベクトル) 掛け算 全部足す 離散フーリエ変換(DFT)による式変形
29.
高速フーリエ変換の活用 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 30 高速フーリエ変換(FFT)の利用による高速化 離散フーリエ変換(DFT)による式変形 O(N6)→O(N3 log N) 直接計算に比べて約10万~100万倍高速
30.
タンパク質の数理モデルのまとめ 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 31 並進移動ベクトル たくさんの回転パターン で並進探索を繰り返す タンパク質がどこでくっつきそうかを計算する
31.
点数付けの方法 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 32 ①タンパク質をグリッド化, 点数を付与 A B 形状相補性 静電相互作用 疎水性相互作用 の組み合わせで 点数付けを定義する.
32.
例:静電相互作用 静電相互作用の世界を掛け算と足し算で表す (電荷の間にかかる力の計算) 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 33 静電エネルギーの式(物理学) グリッドの数理モデル φ 0 0 0 0 φ φ 0 0 φ φ φ 0 0 0 0 φ φ φ φ φ φ φ φ φ q q q q q q q q q φ φ φ φφ 電界 電荷
33.
MEGADOCKの超並列化 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 プロセス並列(MPI) スレッド並列(CUDA & OpenMP) L R 34 … … Receptor FFT Ligand FFT Ligand 回転 Receptor ボクセル化 複素畳込み 逆FFT 高評価値の構造を抽出 Ligand ボクセル化 GPUクラスタ向け MPI/OpenMP/CUDA ハイブリッド並列化 Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y. Source Code for Biology and Medicine 8:18 (2013) Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y. Bioinformatics 30:3281-3283 (2014) 34
34.
マルチGPU化による高速化の寄与 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 単一ノード計測の結果(TSUBAME node: Intel Xeon 12core + 3 GPUs) Shimoda T, Ishida T, Suzuki S, Ohue M, Akiyama Y. ACM-BCB 2013, 884-890, 2013. GPUとIntel Xeon Phi (MIC)の比較 の結果,PPI予測ではGPUが有利 Shimoda T, Suzuki S, Ohue M, Ishida T, Akiyama Y. BMC Syst Biol, 9(Suppl 1): S6, 2015. GPU利用により,CPU単独計算に比べて大幅な速度向上を達成 35
35.
マルチCPUノード並列 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 36 TSUBAME 2.0,「京」の両計算機において 94%以上の並列化効率を達成 Matsuzaki Y, Uchikoga N, Ohue M, et al. Source Code for Biol Med, 8(1):18, 2013. マルチノード並列の並列化効率
36.
マルチGPUノード並列 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 TSUBAME 2.5 node (Intel Xeon X5670 2.93 GHz & NVIDIA Tesla K20X) 30,976ペアの計算にかかった総計算時間 Ohue M, Shimoda T, Suzuki S, Ishida T, Akiyama Y. Bioinformatics, 30(22): 2014. • 420ノードで97%以上のstrong scalingを達成 (対70ノードでの値) • 100万件のPPI予測が (GPUノード420基で) 約半日で完了 単一CPUノードとの 高速化率の比較 ノード数に対する計算時間の推移 約8万件/hour 37
37.
CUDA (CUFFT) versionにおける速度比較 データセット:
ZLAB Benchmark 5.0 (bound) 230タンパク質ペア TSUBAME 2.5 Thin nodeで,それぞれ3回計測した平均値 ① 1 core (Xeon X5670 2.93 GHz) + 1 GPU (Tesla K20x) ② 12 core/24 HT (Xeon X5670 2.93 GHz×2) + 3 GPUs (Tesla K20x) *CUDA 5.0はOSがサポート外としているので注意 参考 CUDAのバージョンで速度が変わる 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 38
38.
他手法との比較 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 立体構造情報を用いたタンパク質間相互作用(PPI)予測 Dror RO, et al. PNAS 2011. 原子レベルの詳細な 分子シミュレーション 既知の複合体構造との 類似性を利用 相互作用 する?しない? 既知の 複合体構造 Tuncbag N, et al. Nat Protoc 2011. 他 単体の立体構造のみを 利用(独自技術) Ohue M, et al. LNCS 2012. 他 時系列変化を捉えられる 膨大な計算時間(1ペアで数日) 類似の構造があれば高精度 複合体構造の蓄積は不十分 単体の構造のみで計算可能 大規模計算(約105~107件)は 高速化や並列化が必須 39
39.
タンパク質間相互作用予測の関連研究 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 40 配列情報 共進化情報 立体構造情報 既知の複合体構造情報 PPI(A’, B’)=true [Shen+2007] 他 [Valencia+2009] 他 [Tucbag+2011] 他
40.
応用事例:EGFRシグナル伝達系 https://www.pharmgkb.org/pathway/PA162356267 上皮成長因子受容体 (Epidermal Growth Factor
Receptor) • チロシンキナーゼ(TK)型受容体 • 腫瘍増殖,細胞死などに関わる • 肺がんの創薬標的 EGFR阻害薬 ゲフィチニブ • 商品名イレッサ • 非小細胞肺がん治療薬 • 重篤な副作用に注意が必要 ※遺伝子型によって効き目が異なる 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 ©AstraZeneca 41
41.
応用事例:EGFRシグナル伝達系 肺がん(非小細胞肺がん)に関係する 未知のタンパク質間相互作用を予測する イレッサ投与患者の遺伝子発現から 推定された関連タンパク質 1424構造 Yamauchi M,
et al. PLOS ONE, 2012. 非小細胞性肺がんに関わる EGFR周辺のタンパク質 497構造 東大医科研 宮野 悟 教授, 金沢大がん研 後藤 典子 教授 提供 全1921構造の全対全計算 (3,690,241件) を実施 → 3,873件のタンパク質構造ペアが計算によって予測された 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 ©AstraZeneca ©Riken 42
42.
応用事例:EGFRシグナル伝達系 実験検証の結果, 6ペアに今まで知られていなかった相互作用が確認された MEGADOCKのスコアによる絞り込み (80%以上の選択度を見込める閾値を利用) 重複をデータベースを参照して除去 既に知られているものを除去 がんの遺伝子ネットワークを利用して より確度の高いものを抽出 薬の標的となり得るタンパク質を選択 3,690,241ペア→3,873ペア 3,873ペア→175ペア 175ペア→35ペア 35ペア→11ペア MIPS Pair 1
Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 KD 値 70.5nM 22.4nM NA 610nM 233pM 1.35nM 83.0nM 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 43
43.
誰でも使えるように (Ongoing) タンパク質の相互作用ネットワークを 網羅的に予測し活用するクラウドシステム開発 MEGADOCKの要素技術を拡充+統合化し,クラウドシステムを構築する GUIクライアント (開発中) Web表示系 (開発中) MS Azure上でのHPC計算 (開発中) 3つの課題 1
Azure上での網羅的PPI計算の実行 2 ウェブインターフェースとGUIクライアントの整備 3 リクエストに応じたAzure上での再計算機構の整備 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 44
44.
なぜスパコンでなくクラウドか? 1. ソフトウェアを世界中で,気軽に,そこそこの規模で試せる ウェブサーバでの提供では管理側のリスクがつきまとう 2. 誰でも利用できる アカデミアのスパコンでは外部の人間がアカウントを取得するのが困難 3.
“イメージ” で同一環境を保持・提供できる ライブラリ違い,バージョン違い,データベースの更新, といったサポートが必要になりがちな問題点を減らせる 4. 高稼働率・セキュアな計算環境 Microsoft AzureはCSゴールドマークを取得, 高度なセキュリティで秘匿性の高い情報・サービスも運用可能 5. 新しいハードウェアへの投資が不要 クラウド提供側が対応すれば常に最新の環境が利用可能 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 45
45.
Microsoft Azure上でのHPC計算 MEGADOCK on
Microsoft Azure 現状の性能(DS14/A9インスタンス比較) EGFR pathway proteins 50 x 50 = total 2,500 docking 0 20 40 60 80 100 0 200 400 600 800 1000 1200 Speedup(docking/min) No. of worker cores 10.2x faster than #VM=5 (strong scaling = 0.729) #VM=1 #VM=10 #VM=30 VM: DS14 (16 core) 112GB Memory 224GB SSD MPI 4 process x 4 thread VM: A9 (16 core) 112GB Memory MPI 4 process x 4 thread 11.7x faster than #VM=5 (strong scaling = 0.836) 1.44x faster #VM=5 #VM=50 #VM=70 ※一部はMicrosoft導入事例で紹介 https://www.microsoft.com/ja-jp/casestudies/titech4.aspx 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 46
46.
MEGADOCK-WEB クエリタンパク質を入力 PPI予測結果ページ 相互作用の相手を選択興味のあるタンパク質選択 • 速度向上のため一覧では候補構造 を画像を生成して表示 • 分子ビューワを利用した3Dモデル のインタラクティブな可視化も →その場で予測PPIの 視覚的な評価が可能 3Dモデル表示 生物学者による検証を容易にするため,MEGADOCKによるドッキングも 考慮した網羅的な
PPI予測情報を集約した新しいデータベースと表示系 長澤,他. IPSJ SIGBIO45, 2016. 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 47
47.
生物学者との真の協働を可能にするプラットフォーム 予測計算が必要な タンパク質のリスト PPI予測結果 Local DB Protein Data Bank 参照,更新 公共DB更新時に ファイルの取得 タンパク質の リクエスト 2016/9/9
FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 48
48.
バイオインフォマティクスは学際領域のフロンティア 2016/9/9 FIT2016 助教が吼える!
各界の若手研究者大集合 大上 雅史 49 情報工学 生物学 物理学 化学 バイオインフォマティクス HPC 文字列処理 数理最適化 探索 機械学習 人工知能 動画像処理 ゲノム タンパク質 転写 翻訳 シグナル伝達 疾病 個人情報 進化 暗号 言語処理 遺伝 多型 コホート 分子生物学 計算化学 量子 分子軌道 構造 活性 分子量QSAR QSPR 創薬 結合 記述子 電気 エネルギー 分子動力学 分子間力 統計力学 運動方程式 電荷 水 疎水性 解離接着 物性 Schrödinger エントロピー 毒性 オントロジー VR 細胞 酵素 GPU クラウド
49.
Take-Home Message • バイオインフォマティクスは怪しくない! –
情報工学と生命科学をつなぐ架け橋 – もちろん情報工学としての魅力も満載 • 新鮮なリアル “ビッグ” データ • 誤差にまみれた実験値との戦い • 医療,創薬,健康へ貢献してる感じ • タンパク質の出会い(相互作用)が知りたい! – 1対1を知るだけでは生命現象は理解できない →MEGADOCK w/ スパコンで,網羅的に • 生物学者にも優しいインフォマティクスを! – BLASTの爆発的流行はウェブでポチポチできるお陰(もある) – 貴重なデータをウェブに投げたくない人にも – 情報系と生命系が密にコラボできる環境づくり 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 50
50.
謝辞 • 東京工業大学 – 秋山
泰 教授 (情報理工学院) – 石田 貴士 准教授 (情報理工学院) – 松崎 由理 特任助教 (ACLS) • 中央大学 – 内古閑 伸之 助教 (理工学部) • 東京大学 – 宮野 悟 教授 (医科学研究所) – 玉田 嘉紀 助教 (コンピュータ科学専攻) • 理化学研究所 AICS (京) • 東京工業大学 GSIC (TSUBAME 2.5) • 文部科学省 次世代生命体統合シミュレーション ソフトウェアの研究開発プロジェクト ISLiM 2016/9/9 FIT2016 助教が吼える! 各界の若手研究者大集合 大上 雅史 51
Download