SlideShare a Scribd company logo
1 of 5
Download to read offline
Thi thử Đại học www.toanpt.net
0
Së GD Vµ §T HOµ B×NH §Ò THI §¹I HäC N¡M 2011
TR¦êNG THPT C¤NG NGHIÖP M«n To¸n - Khèi D
§Ò THI THö Thêi gian lµm bµi: 180 phót, kh«ng kÓ thêi gian ph¸t ®Ò
PHÇN CHUNG CHO TÊT C¶ THÝ SINH (7,0 ®iÓm).
C©u I (2,0 ®iÓm). Cho hµm sè y = x3
– (m + 2)x2
+ (1 – m)x + 3m – 1, ®å thÞ (Cm), m lµ tham sè.
1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ víi m = 1.
2. X¸c ®Þnh gi¸ trÞ m ®Ó hµm sè ®· cho ®¹t cùc trÞ t¹i x1, x2: x1 – x2 = 2
C©u II (2,0 ®iÓm).
1. Gi¶i ph­¬ng tr×nh: 2cos6x + 2cos4x – 3 cos2x = sin2x + 3
2. T×m gi¸ trÞ m ®Ó hÖ ph­¬ng tr×nh sau cã nghiÖm:






1m2yx
m1y1x
C©u III (1,0 ®iÓm). TÝnh tÝch ph©n: I =
  
1
0
3
1x
xdx
C©u IV (1,0 ®iÓm). Cho h×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh thoi. SA = a, (0 < a < 3 ), c¸c c¹nh cßn
l¹i ®Òu b»ng 1. TÝnh thÓ tÝch h×nh chãp S.ABCD theo a.
C©u V (1,0 ®iÓm). Cho a, b, c thuéc [0; 2]. Chøng minh: 2(a + b + c) – (ab + bc + ca)  4
PHÇN RI£NG (3,0 ®iÓm).
ThÝ sinh chØ ®­îc lµm mét trong hai phÇn (phÇn A hoÆc phÇn B)
A. Theo ch­¬ng tr×nh ChuÈn.
C©u VI.a (2,0 ®iÓm)
1. Trong mÆt ph¼ng víi hÖ to¹ ®é Oxy. Cho c¸c ®iÓm A(1; 0), B(2; 1) vµ ®­êng th¼ng d:
2x  y + 3 = 0. T×m ®iÓm M trªn d sao cho MA + MB nhá nhÊt.
2. Trong kh«ng gian víi hÖ to¹ ®é Oxyz, cho tam gi¸c ABC. BiÕt to¹ ®é A(–1; 0; 1), B(1; 2; –1), C(–1;
2; 3). X¸c ®Þnh täa ®é t©m vµ b¸n kÝnh ®­êng trßn ngo¹i tiÕp tam gi¸c ABC.
C©u VII.a (1,0 ®iÓm) Cho z1, z2 lµ c¸c nghiÖm phøc cña ph­¬ng tr×nh: 2z2
– 4z + 11 = 0.
TÝnh gi¸ trÞ cña biÓu thøc P =
 2
21
2
2
2
1
zz
zz


B. Theo ch­¬ng tr×nh N©ng cao.
C©u VI.b (2,0 ®iÓm)
1. Trong mÆt ph¼ng víi hÖ to¹ ®é Oxy, cho elÝp (E): x2
+ 4y2
= 4. T×m c¸c ®iÓm M trªn elÝp (E) sao cho
gãc F1MF2 = 600
.
2. Trong kh«ng gian víi hÖ täa ®é Oxyz, cho ®iÓm I(1; 5; 0) vµ 2 ®­êng th¼ng:
1:
2
1z
1
4y
1
x 



 ; 2:
3
z
3
2y
1
x





ViÕt ph­¬ng tr×nh tham sè cña ®­êng th¼ng  ®i qua ®iÓm I vµ c¾t c¶ 2 ®­êng th¼ng 1 vµ 2.
C©u VII.b (1,0 ®iÓm) T×m sè phøc z tho¶ m·n:
 






4zz
i2zziz2
22
---------- HÕt ----------
ThÝ sinh kh«ng ®­îc sö dông tµi liÖu. C¸n bé coi thi kh«ng gi¶i thÝch g× thªm.
Hä vµ tªn thÝ sinh:......................................................... ; Sè b¸o danh:.........................................
Thi thử Đại học www.toanpt.net
1
§¸P ¸N Vµ thang §IÓM
M«n To¸n - Khèi D
C©u Néi dung ®¸p ¸n §iÓm
C©u I
(2,0 ®iÓm)
1. (1,0 ®iÓm) Kh¶o s¸t hµm sè
Khi m = 1  y = x3
– 3x2
+ 2
 TËp x¸c ®Þnh: D =
 Sù biÕn thiªn: y' = 3x2
– 6x
x
lim y = +;
x
lim y = 
0,25
B¶ng biÕn
thiªn
x  0 2 +
0,25y' + 0  0 +
y  2 2 +
Kho¶ng ®ång biÕn: (; 0), (2; +)
Kho¶ng nghÞch biÕn: (0; 2)
Cùc ®¹i: x = 0; y = 2 Cùc tiÓu: x = 2; y = 2
0,25
 §å thÞ
T©m ®èi xøng (1; 0) lµ ®iÓm uèn cña ®å thÞ.
0,25
2) (1,0 ®iÓm) X¸c ®Þnh gi¸ trÞ m
Ta cã y' = 3x2
– 2(m + 2)x + 1 – m
' = (m + 2)2
– 3(1 – m) = m2
+ 7m + 1
0,25
x1 – x2 = 2  (x1 – x2)2
= 4  x2
1 + x2
2 – 2x1x2 = 4
 (x1 + x2)2
– 4x1x2 – 4 = 0 
  2
3
2m2



 
– 4.
3
m1
– 4 = 0
 m2
+ 7m – 8 = 0
0,25
YCBT 





2xx
0'
21







08m7m
01m7m
2
2
 m = 1 hoÆc m = –8 0,50
C©u II
(2,0 ®iÓm)
1. (1,0 ®iÓm) Gi¶i ph­¬ng tr×nh
2cos6x + 2cos4x – 3 cos2x = sin2x + 3  2(cos6x + cos4x) – sin2x
– 3 (1 + cos2x) = 0  4cos5xcosx – 2sinxcosx – 2 3 cos2
x = 0
0,25
 2cosx(2cos5x – sinx – 2 3 cosx) = 0
 




xcos3xsinx5cos2
0xcos











 


6
xcosx5cos
0xcos
0,25
 x =
2

+ k, x = –
24

+ k
2

, x =
36

+ k
3

0,50
2. (1,0 ®iÓm) T×m gi¸ trÞ m
Víi ®iÒu kiÖn x  –1 vµ y  1, ta cã:






1m2yx
m1y1x
0,25
4-1 1 2 3
-2
-1
1
2
x
y
O
Thi thử Đại học www.toanpt.net
2
S
A
B
C
D
OH

   





1m21y1x
m1y1x
22

 





1m2m1y.1x2
m1y1x
2
Khi ®ã 1x  vµ 1y  lµ nghiÖm kh«ng ©m cña ph­¬ng tr×nh:
t2
– mt +
2
1
(m2
– 2m – 1) = 0  2t2
– 2mt + m2
– 2m – 1 = 0.
0,25
Ta ph¶i cã








0P
0S
0'

 








01m2m
0m
01m2m2m
2
22









01m2m
0m
02m4m
2
2









21m21m
0m
62m62
 1 + 2  m  2 + 6
0,50
C©u III
(1,0 ®iÓm)
TÝnh tÝch ph©n:
Ta cã: 3
x
(x 1)
=
A
x 1
+ 2
B
(x 1)
+ 3
C
(x 1)
= 2
1
(x 1)
 3
1
(x 1)
Cã thÓ xÐt: 3
x
(x 1)
= 3
(x 1) 1
(x 1)
 

= 2
1
(x 1)
 3
1
(x 1)
0,25
Tõ ®ã suy ra: I =
    








1
0
32
dx
1x
1
1x
1
=  


1
0
2
dx1x –  


1
0
3
dx1x 0,25
=
1
01x
1


–
 
1
0
2
1x2
1


= –
2
1
+ 1 +
8
1
–
2
1
=
8
1
0,50
C©u IV
(1,0 ®iÓm)
TÝnh thÓ tÝch h×nh chãp
Gäi O  AC  BD, ta cã:
BDA = BDC = BDS (c.c.c)
 OA = OC = OS
 CSA vu«ng t¹i A
 AC = 1a2

Trong h×nh thoi ABCD:
AC2
+ BD2
= 2(AB2
+ BC2
)
 1 + a2
= 22
 BD = 2
a3  (v× 0 < a < 3 )
 DiÖn tÝch ®¸y: SABCD =
2
1
AC.BD =
2
1
1a2
 . 2
a3 
0,50
Gäi H lµ h×nh chiÕu cña S trªn mÆt ph¼ng (ABCD), ta thÊy:
SB = SD  HB = HD  HOC
Trong CSA vu«ng t¹i A: 222
SC
1
SA
1
SH
1

 2
SH
1
= 2
a
1
+ 1 = 2
2
a
1a 
 SH =
1a
a
2

0,25
Tõ ®ã thu ®­îc thÓ tÝch V =
3
1
.
2
1
1a2
 . 2
a3  .
1a
a
2

=
6
a 2
a3  0,25
C©u V
(1,0 ®iÓm)
Chøng minh bÊt ®¼ng thøc:
Víi gi¶ thiÕt a, b, c thuéc [0; 2], ta cã (2 – a)(2 – b)(2 – c)  0
 8 – 4(a + b + c) + 2(ab + bc + ca) – abc  0
0,50
Thi thử Đại học www.toanpt.net
3
 2(a + b + c) – (ab + bc + ca)  4 +
2
1
abc  4
DÊu “=” x¶y ra  Cã 2 gi¸ trÞ b»ng 0 vµ 1 gi¸ trÞ b»ng 2 hoÆc ng­îc l¹i.
0,50
C©u VI.a
(2,0 ®iÓm)
1. (1,0 ®iÓm) T×m ®iÓm M
Ta thÊy (2xA  yA + 3)(2xB  yB + 3) = (2  0 + 3)(2.2  1 + 3) = 30 > 0 nªn
A, B cïng phÝa ®èi víi ®­êng th¼ng d.
Qua A, xÐt ®­êng th¼ng   d cã ph­¬ng tr×nh: x + 2y  1 = 0.
0,25
Ta cã  c¾t d t¹i H = (1; 1).
Gäi A' lµ ®iÓm ®èi xøng víi A qua d th× H lµ trung ®iÓm AA'
 'OA = 2OH  OA  A' = (3; 2)  B'A = (5; 1)
0,25
Ph­¬ng tr×nh ®­êng th¼ng A'B lµ: x + 5y  7 = 0
Víi mäi ®iÓm Md, ta cã MA' = MA nªn MA + MB = MA' + MB.
0,25
Trong ®ã MA' + MB nhá nhÊt khi A', M, B th¼ng hµng. VËy M  A'B  d.
Ta thu ®­îc M = 






11
17
;
11
8 0,25
2. (1,0 ®iÓm) X¸c ®Þnh t©m vµ b¸n kÝnh ®­êng trßn ngo¹i tiÕp
Ta cã AB = (2; 2; –2) vµ AC = (0; 2; 2)  Ph­¬ng tr×nh mÆt ph¼ng trung
trùc cña AB vµ AC lµ (P): x + y – z – 1 = 0 vµ (Q): y + z – 3 = 0
0,25
Víi [AB, AC] = (8; –4; 4)
 vect¬ ph¸p tuyÕn cña mÆt ph¼ng (ABC) lµ n = (2; –1; 1)
 Ph­¬ng tr×nh mÆt ph¼ng (ABC): 2x – y + z + 1 = 0.
0,25
Ba mÆt ph¼ng (P), (Q) vµ (ABC) c¾t nhau t¹i I(0; 2; 1) lµ t©m ®­êng trßn
ngo¹i tiÕp ABC.
0,25
B¸n kÝnh t­¬ng øng lµ R = IA =      112001
22
 = 5 0,25
C©u VII.a
(1,0 ®iÓm)
TÝnh gi¸ trÞ biÓu thøc
Ta cã 2z2
– 4z + 11 = 0  z1 = 1 –
2
23
i vµ z2 = 1 +
2
23
i
 z1 = z2 =
4
18
1 =
2
22
0,50
vµ z1 + z2 = 2  P =
4
4
22
4
22

=
4
11 0,50
C©u VI.b
(2,0 ®iÓm)
1. (1,0 ®iÓm) T×m c¸c ®iÓm M trªn elÝp
Ta cã x2
+ 4y2
= 1 
4
x2
+ y2
= 1  a = 2 vµ b = 1  c = 3  e =
2
3
0,25
Trong tam gi¸c F1MF2, theo ®Þnh lÝ cosin ta cã: F1F2
2 = MF2
1 + MF2
2 –
2.MF1.MF2.cos600
 F1F2
2 = (MF1 + MF2)2
– 2.MF1.MF2 – MF1.MF2
= (MF1 + MF2)2
– 3.MF1.MF2  12 = 42
– 3.MF1.MF2  MF1.MF2 =
3
4
0,25
 (a – ex)(a + ex) =
3
4
 a2
– e2
x2
=
3
4

4
3
x2
= 4 –
3
4
=
3
8
 x2
=
9
32
 y2
=
4
x4 2

=
9
1
 x = 
3
24
vµ y = 
3
1
0,25
Thu ®­îc: M1(
3
24
;
3
1
), M2(
3
24
; –
3
1
), M3(–
3
24
;
3
1
), M4(–
3
24
; 0,25
Thi thử Đại học www.toanpt.net
4
–
3
1
).
2. (1,0 ®iÓm) ViÕt ph­¬ng tr×nh tham sè
Ta cã: M1(0; 4; 1), 1u = (1; 1; 2), M2(0; 2; 0), 2u = (1; 3; 3)
XÐt mÆt ph¼ng (P) chøa I vµ 1 cã [ IM1 , 1u ] = Pn = (3; 1; 2)
 (P): 3x – y – 2z + 2 = 0
XÐt mÆt ph¼ng (Q) chøa I vµ 2 cã [ IM2 , 2u ] = (9; 3; 6) = 3(3; 1; 2)
 Qn = (3; 1; 2)  (Q): 3x – y + 2z + 2 = 0.
0,50
Víi [ Pn , Qn ] = (4; 12; 0) = 4(1; 3; 0) th× d = (P)  (Q) vµ du = (1; 3; 0)
 Ph­¬ng tr×nh tham sè cña d lµ:








0z
t35y
t1x
0,50
C©u VII.b
(1,0 ®iÓm)
T×m sè phøc
Gäi z = x + yi, (x, y  ). Ta cã z = x – yi, z – i = x + (y – 1)i,
z – z + 2i = 2(y + 1)i, z2
= x2
– y2
+ 2xyi, z 2
= x2
– y2
– 2xyi
 z2
– z 2
= 4xyi
0,25
Khi ®ã:
 






4zz
i2zziz2
22

   






4xyi4
i1y2i1yx2

   






1xyi
1y21yx2
222






1xy
y4x2
. Ta thÊy y =
4
x2
 0
nªn thu ®­îc x3
= 4  x =  3
4  y =
4
43 2
= 3
4
1
0,50
Ta thu ®­îc 2 sè phøc lµ z1 = 3
4 + 3
4
1
i vµ z2 = –3
4 + 3
4
1
i 0,25
Chó ý: Mäi lêi gi¶i kh¸c, nÕu ®óng vÉn chÊm ®iÓm tèi ®a.
-------- HÕt --------
§¸p ¸n nµy cã 4 trang.

More Related Content

What's hot

3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)
3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)
3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)Dr. I. Uma Maheswari Maheswari
 
Finding coordinates parabol,cubic
Finding coordinates   parabol,cubicFinding coordinates   parabol,cubic
Finding coordinates parabol,cubicshaminakhan
 
Identitate Nabarmenak
Identitate NabarmenakIdentitate Nabarmenak
Identitate Nabarmenakguestafbade
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Lesson 10: Functions and Level Sets
Lesson 10: Functions and Level SetsLesson 10: Functions and Level Sets
Lesson 10: Functions and Level SetsMatthew Leingang
 
เอกนาม
เอกนามเอกนาม
เอกนามkrookay2012
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 

What's hot (17)

3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)
3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)
3d. Pedagogy of Mathematics (Part II) - Algebra (Ex 3.4)
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
Finding coordinates parabol,cubic
Finding coordinates   parabol,cubicFinding coordinates   parabol,cubic
Finding coordinates parabol,cubic
 
Integral
IntegralIntegral
Integral
 
10th Maths
10th Maths10th Maths
10th Maths
 
Identitate Nabarmenak
Identitate NabarmenakIdentitate Nabarmenak
Identitate Nabarmenak
 
Sect3 7
Sect3 7Sect3 7
Sect3 7
 
Đề Thi HK2 Toán 8 - THCS Trần Danh Ninh
Đề Thi HK2 Toán 8 - THCS Trần Danh NinhĐề Thi HK2 Toán 8 - THCS Trần Danh Ninh
Đề Thi HK2 Toán 8 - THCS Trần Danh Ninh
 
Đề Thi HK2 Toán 6 - THCS Bình Lợi Chung
Đề Thi HK2 Toán 6 - THCS Bình Lợi ChungĐề Thi HK2 Toán 6 - THCS Bình Lợi Chung
Đề Thi HK2 Toán 6 - THCS Bình Lợi Chung
 
ЗНО-2021 (математика)
ЗНО-2021 (математика)ЗНО-2021 (математика)
ЗНО-2021 (математика)
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Linear eqn
Linear eqnLinear eqn
Linear eqn
 
Lesson 10: Functions and Level Sets
Lesson 10: Functions and Level SetsLesson 10: Functions and Level Sets
Lesson 10: Functions and Level Sets
 
Leidy rivadeneira deber_1
Leidy rivadeneira deber_1Leidy rivadeneira deber_1
Leidy rivadeneira deber_1
 
เอกนาม
เอกนามเอกนาม
เอกนาม
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 

Viewers also liked

Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010BẢO Hí
 
Toan pt.de032.2011
Toan pt.de032.2011Toan pt.de032.2011
Toan pt.de032.2011BẢO Hí
 
Toan pt.de111.2011
Toan pt.de111.2011Toan pt.de111.2011
Toan pt.de111.2011BẢO Hí
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011BẢO Hí
 
Toan pt.de031.2012
Toan pt.de031.2012Toan pt.de031.2012
Toan pt.de031.2012BẢO Hí
 
Toan pt.de108.2011
Toan pt.de108.2011Toan pt.de108.2011
Toan pt.de108.2011BẢO Hí
 
Toan pt.de027.2012
Toan pt.de027.2012Toan pt.de027.2012
Toan pt.de027.2012BẢO Hí
 
Toan pt.de045.2011
Toan pt.de045.2011Toan pt.de045.2011
Toan pt.de045.2011BẢO Hí
 
Toan pt.de042.2011
Toan pt.de042.2011Toan pt.de042.2011
Toan pt.de042.2011BẢO Hí
 
Toan pt.de024.2010
Toan pt.de024.2010Toan pt.de024.2010
Toan pt.de024.2010BẢO Hí
 
Toan pt.de030.2012
Toan pt.de030.2012Toan pt.de030.2012
Toan pt.de030.2012BẢO Hí
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011BẢO Hí
 
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012BẢO Hí
 
Toan pt.de026.2011
Toan pt.de026.2011Toan pt.de026.2011
Toan pt.de026.2011BẢO Hí
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012BẢO Hí
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)BẢO Hí
 

Viewers also liked (16)

Toan pt.de043.2010
Toan pt.de043.2010Toan pt.de043.2010
Toan pt.de043.2010
 
Toan pt.de032.2011
Toan pt.de032.2011Toan pt.de032.2011
Toan pt.de032.2011
 
Toan pt.de111.2011
Toan pt.de111.2011Toan pt.de111.2011
Toan pt.de111.2011
 
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
 
Toan pt.de031.2012
Toan pt.de031.2012Toan pt.de031.2012
Toan pt.de031.2012
 
Toan pt.de108.2011
Toan pt.de108.2011Toan pt.de108.2011
Toan pt.de108.2011
 
Toan pt.de027.2012
Toan pt.de027.2012Toan pt.de027.2012
Toan pt.de027.2012
 
Toan pt.de045.2011
Toan pt.de045.2011Toan pt.de045.2011
Toan pt.de045.2011
 
Toan pt.de042.2011
Toan pt.de042.2011Toan pt.de042.2011
Toan pt.de042.2011
 
Toan pt.de024.2010
Toan pt.de024.2010Toan pt.de024.2010
Toan pt.de024.2010
 
Toan pt.de030.2012
Toan pt.de030.2012Toan pt.de030.2012
Toan pt.de030.2012
 
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
 
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
 
Toan pt.de026.2011
Toan pt.de026.2011Toan pt.de026.2011
Toan pt.de026.2011
 
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
 
Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)Toan pt.de019.2010(+17de)
Toan pt.de019.2010(+17de)
 

Similar to Toan pt.de048.2011

Đề Thi HK2 Toán 8 - THCS Nguyễn Văn Trỗi
Đề Thi HK2 Toán 8 - THCS Nguyễn Văn TrỗiĐề Thi HK2 Toán 8 - THCS Nguyễn Văn Trỗi
Đề Thi HK2 Toán 8 - THCS Nguyễn Văn TrỗiCông Ty TNHH VIETTRIGROUP
 
T ugaa kelompok mtk soal 2
T ugaa kelompok mtk soal 2T ugaa kelompok mtk soal 2
T ugaa kelompok mtk soal 2xak3d
 
Tugas kelompok mtk soal 2
Tugas kelompok mtk soal 2Tugas kelompok mtk soal 2
Tugas kelompok mtk soal 2xak3d
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions PatrickMumba7
 
Toan pt.de086.2011
Toan pt.de086.2011Toan pt.de086.2011
Toan pt.de086.2011BẢO Hí
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec mathsAndrew Smith
 

Similar to Toan pt.de048.2011 (20)

Đề Thi HK2 Toán 7 - THCS Doi Lầu
Đề Thi HK2 Toán 7 - THCS Doi LầuĐề Thi HK2 Toán 7 - THCS Doi Lầu
Đề Thi HK2 Toán 7 - THCS Doi Lầu
 
Tugas ii (2)
Tugas ii (2)Tugas ii (2)
Tugas ii (2)
 
Đề Thi HK2 Toán 8 - THCS Nguyễn Văn Trỗi
Đề Thi HK2 Toán 8 - THCS Nguyễn Văn TrỗiĐề Thi HK2 Toán 8 - THCS Nguyễn Văn Trỗi
Đề Thi HK2 Toán 8 - THCS Nguyễn Văn Trỗi
 
Tugas ii (2)
Tugas ii (2)Tugas ii (2)
Tugas ii (2)
 
Đề Thi HK2 Toán 8 - Hermann Gmeiner
Đề Thi HK2 Toán 8 - Hermann GmeinerĐề Thi HK2 Toán 8 - Hermann Gmeiner
Đề Thi HK2 Toán 8 - Hermann Gmeiner
 
T ugaa kelompok mtk soal 2
T ugaa kelompok mtk soal 2T ugaa kelompok mtk soal 2
T ugaa kelompok mtk soal 2
 
Tugas kelompok mtk soal 2
Tugas kelompok mtk soal 2Tugas kelompok mtk soal 2
Tugas kelompok mtk soal 2
 
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ ViệtĐề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
 
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ ViệtĐề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
Đề Thi HK2 Toán 9 - TH THCS THPT  Mỹ Việt
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
 
jacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equationsjacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equations
 
Đề Thi HK2 Toán 6 - THCS Trần Phú
Đề Thi HK2 Toán 6 - THCS Trần PhúĐề Thi HK2 Toán 6 - THCS Trần Phú
Đề Thi HK2 Toán 6 - THCS Trần Phú
 
Đề Thi HK2 Toán 6 - THCS Tùng Thiện Lương
Đề Thi HK2 Toán 6 - THCS Tùng Thiện Lương Đề Thi HK2 Toán 6 - THCS Tùng Thiện Lương
Đề Thi HK2 Toán 6 - THCS Tùng Thiện Lương
 
Toan pt.de086.2011
Toan pt.de086.2011Toan pt.de086.2011
Toan pt.de086.2011
 
Basic m4-2-chapter1
Basic m4-2-chapter1Basic m4-2-chapter1
Basic m4-2-chapter1
 
Đề Thi HK2 Toán 6 - THCS Trần Hưng Đạo
Đề Thi HK2 Toán 6 - THCS Trần Hưng ĐạoĐề Thi HK2 Toán 6 - THCS Trần Hưng Đạo
Đề Thi HK2 Toán 6 - THCS Trần Hưng Đạo
 
Đề Thi HK2 Toán 8 - THCS Hậu Giang
Đề Thi HK2 Toán 8 - THCS Hậu GiangĐề Thi HK2 Toán 8 - THCS Hậu Giang
Đề Thi HK2 Toán 8 - THCS Hậu Giang
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Đề Thi HK2 Toán 8 - THCS Bình Chánh
Đề Thi HK2 Toán 8 - THCS Bình ChánhĐề Thi HK2 Toán 8 - THCS Bình Chánh
Đề Thi HK2 Toán 8 - THCS Bình Chánh
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 

More from BẢO Hí

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012BẢO Hí
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012BẢO Hí
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012BẢO Hí
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012BẢO Hí
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012BẢO Hí
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012BẢO Hí
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012BẢO Hí
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012BẢO Hí
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012BẢO Hí
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012BẢO Hí
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012BẢO Hí
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012BẢO Hí
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012BẢO Hí
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012BẢO Hí
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012BẢO Hí
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012BẢO Hí
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012BẢO Hí
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012BẢO Hí
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012BẢO Hí
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012BẢO Hí
 

More from BẢO Hí (20)

Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
 
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
 
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
 
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
 
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
 
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
 
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
 
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
 
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
 
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
 
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
 
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
 
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
 
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
 
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
 
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
 
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
 
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
 
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
 
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
 

Toan pt.de048.2011

  • 1. Thi thử Đại học www.toanpt.net 0 Së GD Vµ §T HOµ B×NH §Ò THI §¹I HäC N¡M 2011 TR¦êNG THPT C¤NG NGHIÖP M«n To¸n - Khèi D §Ò THI THö Thêi gian lµm bµi: 180 phót, kh«ng kÓ thêi gian ph¸t ®Ò PHÇN CHUNG CHO TÊT C¶ THÝ SINH (7,0 ®iÓm). C©u I (2,0 ®iÓm). Cho hµm sè y = x3 – (m + 2)x2 + (1 – m)x + 3m – 1, ®å thÞ (Cm), m lµ tham sè. 1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ víi m = 1. 2. X¸c ®Þnh gi¸ trÞ m ®Ó hµm sè ®· cho ®¹t cùc trÞ t¹i x1, x2: x1 – x2 = 2 C©u II (2,0 ®iÓm). 1. Gi¶i ph­¬ng tr×nh: 2cos6x + 2cos4x – 3 cos2x = sin2x + 3 2. T×m gi¸ trÞ m ®Ó hÖ ph­¬ng tr×nh sau cã nghiÖm:       1m2yx m1y1x C©u III (1,0 ®iÓm). TÝnh tÝch ph©n: I =    1 0 3 1x xdx C©u IV (1,0 ®iÓm). Cho h×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh thoi. SA = a, (0 < a < 3 ), c¸c c¹nh cßn l¹i ®Òu b»ng 1. TÝnh thÓ tÝch h×nh chãp S.ABCD theo a. C©u V (1,0 ®iÓm). Cho a, b, c thuéc [0; 2]. Chøng minh: 2(a + b + c) – (ab + bc + ca)  4 PHÇN RI£NG (3,0 ®iÓm). ThÝ sinh chØ ®­îc lµm mét trong hai phÇn (phÇn A hoÆc phÇn B) A. Theo ch­¬ng tr×nh ChuÈn. C©u VI.a (2,0 ®iÓm) 1. Trong mÆt ph¼ng víi hÖ to¹ ®é Oxy. Cho c¸c ®iÓm A(1; 0), B(2; 1) vµ ®­êng th¼ng d: 2x  y + 3 = 0. T×m ®iÓm M trªn d sao cho MA + MB nhá nhÊt. 2. Trong kh«ng gian víi hÖ to¹ ®é Oxyz, cho tam gi¸c ABC. BiÕt to¹ ®é A(–1; 0; 1), B(1; 2; –1), C(–1; 2; 3). X¸c ®Þnh täa ®é t©m vµ b¸n kÝnh ®­êng trßn ngo¹i tiÕp tam gi¸c ABC. C©u VII.a (1,0 ®iÓm) Cho z1, z2 lµ c¸c nghiÖm phøc cña ph­¬ng tr×nh: 2z2 – 4z + 11 = 0. TÝnh gi¸ trÞ cña biÓu thøc P =  2 21 2 2 2 1 zz zz   B. Theo ch­¬ng tr×nh N©ng cao. C©u VI.b (2,0 ®iÓm) 1. Trong mÆt ph¼ng víi hÖ to¹ ®é Oxy, cho elÝp (E): x2 + 4y2 = 4. T×m c¸c ®iÓm M trªn elÝp (E) sao cho gãc F1MF2 = 600 . 2. Trong kh«ng gian víi hÖ täa ®é Oxyz, cho ®iÓm I(1; 5; 0) vµ 2 ®­êng th¼ng: 1: 2 1z 1 4y 1 x      ; 2: 3 z 3 2y 1 x      ViÕt ph­¬ng tr×nh tham sè cña ®­êng th¼ng  ®i qua ®iÓm I vµ c¾t c¶ 2 ®­êng th¼ng 1 vµ 2. C©u VII.b (1,0 ®iÓm) T×m sè phøc z tho¶ m·n:         4zz i2zziz2 22 ---------- HÕt ---------- ThÝ sinh kh«ng ®­îc sö dông tµi liÖu. C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh:......................................................... ; Sè b¸o danh:.........................................
  • 2. Thi thử Đại học www.toanpt.net 1 §¸P ¸N Vµ thang §IÓM M«n To¸n - Khèi D C©u Néi dung ®¸p ¸n §iÓm C©u I (2,0 ®iÓm) 1. (1,0 ®iÓm) Kh¶o s¸t hµm sè Khi m = 1  y = x3 – 3x2 + 2  TËp x¸c ®Þnh: D =  Sù biÕn thiªn: y' = 3x2 – 6x x lim y = +; x lim y =  0,25 B¶ng biÕn thiªn x  0 2 + 0,25y' + 0  0 + y  2 2 + Kho¶ng ®ång biÕn: (; 0), (2; +) Kho¶ng nghÞch biÕn: (0; 2) Cùc ®¹i: x = 0; y = 2 Cùc tiÓu: x = 2; y = 2 0,25  §å thÞ T©m ®èi xøng (1; 0) lµ ®iÓm uèn cña ®å thÞ. 0,25 2) (1,0 ®iÓm) X¸c ®Þnh gi¸ trÞ m Ta cã y' = 3x2 – 2(m + 2)x + 1 – m ' = (m + 2)2 – 3(1 – m) = m2 + 7m + 1 0,25 x1 – x2 = 2  (x1 – x2)2 = 4  x2 1 + x2 2 – 2x1x2 = 4  (x1 + x2)2 – 4x1x2 – 4 = 0    2 3 2m2      – 4. 3 m1 – 4 = 0  m2 + 7m – 8 = 0 0,25 YCBT       2xx 0' 21        08m7m 01m7m 2 2  m = 1 hoÆc m = –8 0,50 C©u II (2,0 ®iÓm) 1. (1,0 ®iÓm) Gi¶i ph­¬ng tr×nh 2cos6x + 2cos4x – 3 cos2x = sin2x + 3  2(cos6x + cos4x) – sin2x – 3 (1 + cos2x) = 0  4cos5xcosx – 2sinxcosx – 2 3 cos2 x = 0 0,25  2cosx(2cos5x – sinx – 2 3 cosx) = 0       xcos3xsinx5cos2 0xcos                6 xcosx5cos 0xcos 0,25  x = 2  + k, x = – 24  + k 2  , x = 36  + k 3  0,50 2. (1,0 ®iÓm) T×m gi¸ trÞ m Víi ®iÒu kiÖn x  –1 vµ y  1, ta cã:       1m2yx m1y1x 0,25 4-1 1 2 3 -2 -1 1 2 x y O
  • 3. Thi thử Đại học www.toanpt.net 2 S A B C D OH           1m21y1x m1y1x 22         1m2m1y.1x2 m1y1x 2 Khi ®ã 1x  vµ 1y  lµ nghiÖm kh«ng ©m cña ph­¬ng tr×nh: t2 – mt + 2 1 (m2 – 2m – 1) = 0  2t2 – 2mt + m2 – 2m – 1 = 0. 0,25 Ta ph¶i cã         0P 0S 0'            01m2m 0m 01m2m2m 2 22          01m2m 0m 02m4m 2 2          21m21m 0m 62m62  1 + 2  m  2 + 6 0,50 C©u III (1,0 ®iÓm) TÝnh tÝch ph©n: Ta cã: 3 x (x 1) = A x 1 + 2 B (x 1) + 3 C (x 1) = 2 1 (x 1)  3 1 (x 1) Cã thÓ xÐt: 3 x (x 1) = 3 (x 1) 1 (x 1)    = 2 1 (x 1)  3 1 (x 1) 0,25 Tõ ®ã suy ra: I =              1 0 32 dx 1x 1 1x 1 =     1 0 2 dx1x –     1 0 3 dx1x 0,25 = 1 01x 1   –   1 0 2 1x2 1   = – 2 1 + 1 + 8 1 – 2 1 = 8 1 0,50 C©u IV (1,0 ®iÓm) TÝnh thÓ tÝch h×nh chãp Gäi O  AC  BD, ta cã: BDA = BDC = BDS (c.c.c)  OA = OC = OS  CSA vu«ng t¹i A  AC = 1a2  Trong h×nh thoi ABCD: AC2 + BD2 = 2(AB2 + BC2 )  1 + a2 = 22  BD = 2 a3  (v× 0 < a < 3 )  DiÖn tÝch ®¸y: SABCD = 2 1 AC.BD = 2 1 1a2  . 2 a3  0,50 Gäi H lµ h×nh chiÕu cña S trªn mÆt ph¼ng (ABCD), ta thÊy: SB = SD  HB = HD  HOC Trong CSA vu«ng t¹i A: 222 SC 1 SA 1 SH 1   2 SH 1 = 2 a 1 + 1 = 2 2 a 1a   SH = 1a a 2  0,25 Tõ ®ã thu ®­îc thÓ tÝch V = 3 1 . 2 1 1a2  . 2 a3  . 1a a 2  = 6 a 2 a3  0,25 C©u V (1,0 ®iÓm) Chøng minh bÊt ®¼ng thøc: Víi gi¶ thiÕt a, b, c thuéc [0; 2], ta cã (2 – a)(2 – b)(2 – c)  0  8 – 4(a + b + c) + 2(ab + bc + ca) – abc  0 0,50
  • 4. Thi thử Đại học www.toanpt.net 3  2(a + b + c) – (ab + bc + ca)  4 + 2 1 abc  4 DÊu “=” x¶y ra  Cã 2 gi¸ trÞ b»ng 0 vµ 1 gi¸ trÞ b»ng 2 hoÆc ng­îc l¹i. 0,50 C©u VI.a (2,0 ®iÓm) 1. (1,0 ®iÓm) T×m ®iÓm M Ta thÊy (2xA  yA + 3)(2xB  yB + 3) = (2  0 + 3)(2.2  1 + 3) = 30 > 0 nªn A, B cïng phÝa ®èi víi ®­êng th¼ng d. Qua A, xÐt ®­êng th¼ng   d cã ph­¬ng tr×nh: x + 2y  1 = 0. 0,25 Ta cã  c¾t d t¹i H = (1; 1). Gäi A' lµ ®iÓm ®èi xøng víi A qua d th× H lµ trung ®iÓm AA'  'OA = 2OH  OA  A' = (3; 2)  B'A = (5; 1) 0,25 Ph­¬ng tr×nh ®­êng th¼ng A'B lµ: x + 5y  7 = 0 Víi mäi ®iÓm Md, ta cã MA' = MA nªn MA + MB = MA' + MB. 0,25 Trong ®ã MA' + MB nhá nhÊt khi A', M, B th¼ng hµng. VËy M  A'B  d. Ta thu ®­îc M =        11 17 ; 11 8 0,25 2. (1,0 ®iÓm) X¸c ®Þnh t©m vµ b¸n kÝnh ®­êng trßn ngo¹i tiÕp Ta cã AB = (2; 2; –2) vµ AC = (0; 2; 2)  Ph­¬ng tr×nh mÆt ph¼ng trung trùc cña AB vµ AC lµ (P): x + y – z – 1 = 0 vµ (Q): y + z – 3 = 0 0,25 Víi [AB, AC] = (8; –4; 4)  vect¬ ph¸p tuyÕn cña mÆt ph¼ng (ABC) lµ n = (2; –1; 1)  Ph­¬ng tr×nh mÆt ph¼ng (ABC): 2x – y + z + 1 = 0. 0,25 Ba mÆt ph¼ng (P), (Q) vµ (ABC) c¾t nhau t¹i I(0; 2; 1) lµ t©m ®­êng trßn ngo¹i tiÕp ABC. 0,25 B¸n kÝnh t­¬ng øng lµ R = IA =      112001 22  = 5 0,25 C©u VII.a (1,0 ®iÓm) TÝnh gi¸ trÞ biÓu thøc Ta cã 2z2 – 4z + 11 = 0  z1 = 1 – 2 23 i vµ z2 = 1 + 2 23 i  z1 = z2 = 4 18 1 = 2 22 0,50 vµ z1 + z2 = 2  P = 4 4 22 4 22  = 4 11 0,50 C©u VI.b (2,0 ®iÓm) 1. (1,0 ®iÓm) T×m c¸c ®iÓm M trªn elÝp Ta cã x2 + 4y2 = 1  4 x2 + y2 = 1  a = 2 vµ b = 1  c = 3  e = 2 3 0,25 Trong tam gi¸c F1MF2, theo ®Þnh lÝ cosin ta cã: F1F2 2 = MF2 1 + MF2 2 – 2.MF1.MF2.cos600  F1F2 2 = (MF1 + MF2)2 – 2.MF1.MF2 – MF1.MF2 = (MF1 + MF2)2 – 3.MF1.MF2  12 = 42 – 3.MF1.MF2  MF1.MF2 = 3 4 0,25  (a – ex)(a + ex) = 3 4  a2 – e2 x2 = 3 4  4 3 x2 = 4 – 3 4 = 3 8  x2 = 9 32  y2 = 4 x4 2  = 9 1  x =  3 24 vµ y =  3 1 0,25 Thu ®­îc: M1( 3 24 ; 3 1 ), M2( 3 24 ; – 3 1 ), M3(– 3 24 ; 3 1 ), M4(– 3 24 ; 0,25
  • 5. Thi thử Đại học www.toanpt.net 4 – 3 1 ). 2. (1,0 ®iÓm) ViÕt ph­¬ng tr×nh tham sè Ta cã: M1(0; 4; 1), 1u = (1; 1; 2), M2(0; 2; 0), 2u = (1; 3; 3) XÐt mÆt ph¼ng (P) chøa I vµ 1 cã [ IM1 , 1u ] = Pn = (3; 1; 2)  (P): 3x – y – 2z + 2 = 0 XÐt mÆt ph¼ng (Q) chøa I vµ 2 cã [ IM2 , 2u ] = (9; 3; 6) = 3(3; 1; 2)  Qn = (3; 1; 2)  (Q): 3x – y + 2z + 2 = 0. 0,50 Víi [ Pn , Qn ] = (4; 12; 0) = 4(1; 3; 0) th× d = (P)  (Q) vµ du = (1; 3; 0)  Ph­¬ng tr×nh tham sè cña d lµ:         0z t35y t1x 0,50 C©u VII.b (1,0 ®iÓm) T×m sè phøc Gäi z = x + yi, (x, y  ). Ta cã z = x – yi, z – i = x + (y – 1)i, z – z + 2i = 2(y + 1)i, z2 = x2 – y2 + 2xyi, z 2 = x2 – y2 – 2xyi  z2 – z 2 = 4xyi 0,25 Khi ®ã:         4zz i2zziz2 22            4xyi4 i1y2i1yx2            1xyi 1y21yx2 222       1xy y4x2 . Ta thÊy y = 4 x2  0 nªn thu ®­îc x3 = 4  x =  3 4  y = 4 43 2 = 3 4 1 0,50 Ta thu ®­îc 2 sè phøc lµ z1 = 3 4 + 3 4 1 i vµ z2 = –3 4 + 3 4 1 i 0,25 Chó ý: Mäi lêi gi¶i kh¸c, nÕu ®óng vÉn chÊm ®iÓm tèi ®a. -------- HÕt -------- §¸p ¸n nµy cã 4 trang.