SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical PendulumA
P

The Conical PendulumA

h
rO P

The Conical PendulumA Force Diagram

h
rO P

The Conical PendulumA Force Diagram

h
rO P

The Conical PendulumA Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
The Conical PendulumA
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
The Conical PendulumA
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
The Conical PendulumA
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
The Conical PendulumA
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
The Conical PendulumA
r
mv
xm
2

mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal  0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
r
mv
T
2
sin 
0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
r
mv
T
2
sin   2
mr
0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
r
mv
T
2
sin   2
mr
0forcesvertical 
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
r
mv
T
2
sin   2
mr
0forcesvertical 
mg
cosT
The Conical PendulumA
r
mv
xm
2
 0ym 
mg
Force Diagram

h
rO P

T
T= tension in the string
(always away from object)
icalwith vertmakesstring
pendulumoflocityangular ve
Resultant Forces
r
mv2
forceshorizontal 

sinT
r
mv
T
2
sin   2
mr
0forcesvertical 
mg
cosT
mgT
mgT




cos
0cos
mgr
mv
T
T 1
cos
sin 2



mgr
mv
T
T 1
cos
sin 2



rg
v2
tan 
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
2
2
v
gr
h 
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
2
2
v
gr
h  




 2

g
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
2
2
v
gr
h  




 2

g
Implications
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
2
2
v
gr
h  




 2

g
Implications
•depth of the pendulum below A is independent of the length of the
string.
mgr
mv
T
T 1
cos
sin 2



rg
v2
tan  






g
r 2

h
r
AOP  taninBut
h
r
rg
v

2
2
2
v
gr
h  




 2

g
Implications
•depth of the pendulum below A is independent of the length of the
string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
T
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal  0forcesvertical 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal  0forcesvertical 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
sinT
0forcesvertical 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
sinT
2
sin  mrT 
0forcesvertical 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
sinT
2
sin  mrT 
0forcesvertical 
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
sinT
2
sin  mrT 
0forcesvertical 
mg
cosT
e.g. The number of revolutions per minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
mg
T
h
r
r
mv2
forceshorizontal 
sinT
2
sin  mrT 
0forcesvertical 
mg
cosT
mgT
mgT




cos
0cos
g
r
mg
mr
2
2 1
tan




g
r
mg
mr
2
2 1
tan




h
r
tanBut
g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


rad/s2
rad/s
60
120
60rev/minwhen






g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


rad/s2
rad/s
60
120
60rev/minwhen






 
m
4
2
2
2


g
g
h


g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


rad/s2
rad/s
60
120
60rev/minwhen






 
m
4
2
2
2


g
g
h


rad/s3
rad/s
60
180
rev/min09when






g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


rad/s2
rad/s
60
120
60rev/minwhen






 
m
4
2
2
2


g
g
h


rad/s3
rad/s
60
180
rev/min09when






 
m
9
3
2
2


g
g
h


g
r
mg
mr
2
2 1
tan




h
r
tanBut
2
2


g
h
h
r
g
r


rad/s2
rad/s
60
120
60rev/minwhen






 
m
4
2
2
2


g
g
h


rad/s3
rad/s
60
180
rev/min09when






 
m
9
3
2
2


g
g
h


0.14m
m
94
heightinrise 22




 

gg
(ii) (2002)
A particle of mass m is suspended by a string of length l from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .
The angle of the cone at its vertex is
where , and the string makes an
2
4

 
angle of with the horizontal as shown in
the diagram. The forces acting on the
particle are the tension in the string T, the
normal reaction N and the gravitational
force mg.
(ii) (2002)
A particle of mass m is suspended by a string of length l from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .
The angle of the cone at its vertex is
where , and the string makes an
2
4

 
angle of with the horizontal as shown in
the diagram. The forces acting on the
particle are the tension in the string T, the
normal reaction N and the gravitational
force mg.
Note: whenever a particle makes contact with a surface there will be
a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
T
a) Show, with the aid of a diagram, that the vertical component of
N is sinN

T
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
 
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
  
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T


 

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


 

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN

a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT cosN
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT
2
coscos  mrNT 
cosN
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT
2
coscos  mrNT 
cosN
0forcesvertical 
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT
2
coscos  mrNT 
cosN
0forcesvertical 
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT
2
coscos  mrNT 
cosN
0forcesvertical 
mg
sinT sinN
a) Show, with the aid of a diagram, that the vertical component of
N is sinN
N
T
mg


c
 



sin
sin
Nc
N
c


sinisof
componentverticalthe
NN



and,ofterms
inforexpressionanfindand,
sin
thatShowb)
lm
NT
mg
NT 
2
forceshorizontal mr
cosT
2
coscos  mrNT 
cosN
0forcesvertical 
mg
sinT
mgNT
mgNT




sinsin
0sinsin
sinN
mgNT   sinsin
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


;0When N
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


;0When N
sin
mg
T 
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


;0When N
sin
mg
T  2
and mlT 
mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


;0When N
sin
mg
T  2
and mlT 
2
sin


ml
mg

mgNT   sinsin
 


sin
sin
mg
NT
mgNT


2
coscos  mrNT 
 



cos
cos
2
2
mr
NT
mrNT


cosBut 
l
r 2
mlNT 
and,ofin termsofvaluefor thisexpressionanFind
cone.th thecontact wiloseabout tois
particlewhen theis,that0,untilincreasedislocityangular veThec)
gl
N


;0When N
sin
mg
T  2
and mlT 
2
sin


ml
mg





sin
sin
2
l
g
l
g


Exercise 9C; all

More Related Content

What's hot

Simple harmonic motion
Simple harmonic motion Simple harmonic motion
Simple harmonic motion Sachin Jangid
 
Simple Harmonic Motion by Armughan
Simple Harmonic Motion by ArmughanSimple Harmonic Motion by Armughan
Simple Harmonic Motion by ArmughanMalik Armughan
 
Oscillations
OscillationsOscillations
Oscillationsfathimakk
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motionkampkorten
 
04 Oscillations, Waves After Class
04 Oscillations, Waves After Class04 Oscillations, Waves After Class
04 Oscillations, Waves After ClassSteve Koch
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic MotionChris Staines
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionMichael Marty
 
4.1 simple harmonic motion
4.1 simple harmonic motion4.1 simple harmonic motion
4.1 simple harmonic motionJohnPaul Kennedy
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic MotionNigel Simmons
 
Physics lo1
Physics lo1Physics lo1
Physics lo1book1126
 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsDebashis Baidya
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : OscillationsPooja M
 
The simple pendulum (using O.D.E)
The simple pendulum (using O.D.E)The simple pendulum (using O.D.E)
The simple pendulum (using O.D.E)darshan231995
 

What's hot (20)

Simple harmonic motion
Simple harmonic motion Simple harmonic motion
Simple harmonic motion
 
Simple Harmonic Motion by Armughan
Simple Harmonic Motion by ArmughanSimple Harmonic Motion by Armughan
Simple Harmonic Motion by Armughan
 
Simple harmonic oscillator
Simple harmonic oscillatorSimple harmonic oscillator
Simple harmonic oscillator
 
Oscillations
OscillationsOscillations
Oscillations
 
Shm 1
Shm 1Shm 1
Shm 1
 
Oscillations
OscillationsOscillations
Oscillations
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
 
04 Oscillations, Waves After Class
04 Oscillations, Waves After Class04 Oscillations, Waves After Class
04 Oscillations, Waves After Class
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motion
 
4.1 simple harmonic motion
4.1 simple harmonic motion4.1 simple harmonic motion
4.1 simple harmonic motion
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion
 
Physics lo1
Physics lo1Physics lo1
Physics lo1
 
Oscillation 2017
Oscillation 2017Oscillation 2017
Oscillation 2017
 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical Mechanics
 
Simple harmonic oscillator
Simple harmonic oscillator Simple harmonic oscillator
Simple harmonic oscillator
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
 
HSC Physics - Torque
HSC Physics - TorqueHSC Physics - Torque
HSC Physics - Torque
 
The simple pendulum (using O.D.E)
The simple pendulum (using O.D.E)The simple pendulum (using O.D.E)
The simple pendulum (using O.D.E)
 

Similar to X2 t06 05 conical pendulum (2013)

X2 t06 06 banked curves (2013)
X2 t06 06 banked curves (2013)X2 t06 06 banked curves (2013)
X2 t06 06 banked curves (2013)Nigel Simmons
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)Nigel Simmons
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)Nigel Simmons
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)Nigel Simmons
 
X2 t06 04 uniform circular motion (2013)
X2 t06 04 uniform circular motion (2013)X2 t06 04 uniform circular motion (2013)
X2 t06 04 uniform circular motion (2013)Nigel Simmons
 
Structure Design-I (Moments)
Structure Design-I (Moments)Structure Design-I (Moments)
Structure Design-I (Moments)Simran Vats
 
12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)Nigel Simmons
 
Electrical Machines Notes 3 (Mechanical Work Done in a Singly excited system ...
Electrical Machines Notes 3 (Mechanical Work Donein a Singly excited system ...Electrical Machines Notes 3 (Mechanical Work Donein a Singly excited system ...
Electrical Machines Notes 3 (Mechanical Work Done in a Singly excited system ...Dinesh Sharma
 
X2 T07 05 conical pendulum
X2 T07 05 conical pendulumX2 T07 05 conical pendulum
X2 T07 05 conical pendulumNigel Simmons
 
lecture 5&6 of mechanics .ppt
lecture 5&6 of mechanics .pptlecture 5&6 of mechanics .ppt
lecture 5&6 of mechanics .pptHammadGujjar9
 
Grade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect MagGrade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect Maggruszecki1
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionOlaug S
 
2nd codition of equilibrium
2nd codition of equilibrium2nd codition of equilibrium
2nd codition of equilibriumNestor Enriquez
 
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)Pooja M
 
Chapter -3mdddd.pptx
Chapter -3mdddd.pptxChapter -3mdddd.pptx
Chapter -3mdddd.pptxKemishaTemam
 
Lecture Ch 08
Lecture Ch 08Lecture Ch 08
Lecture Ch 08rtrujill
 
Chapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxChapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxPooja M
 

Similar to X2 t06 05 conical pendulum (2013) (20)

X2 t06 06 banked curves (2013)
X2 t06 06 banked curves (2013)X2 t06 06 banked curves (2013)
X2 t06 06 banked curves (2013)
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)
 
X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)X2 t06 05 conical pendulum (2012)
X2 t06 05 conical pendulum (2012)
 
X2 t06 04 uniform circular motion (2013)
X2 t06 04 uniform circular motion (2013)X2 t06 04 uniform circular motion (2013)
X2 t06 04 uniform circular motion (2013)
 
ANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadavANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadav
 
Structure Design-I (Moments)
Structure Design-I (Moments)Structure Design-I (Moments)
Structure Design-I (Moments)
 
12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)12 x1 t07 03 simple harmonic motion (2013)
12 x1 t07 03 simple harmonic motion (2013)
 
9 29
9 299 29
9 29
 
Electrical Machines Notes 3 (Mechanical Work Done in a Singly excited system ...
Electrical Machines Notes 3 (Mechanical Work Donein a Singly excited system ...Electrical Machines Notes 3 (Mechanical Work Donein a Singly excited system ...
Electrical Machines Notes 3 (Mechanical Work Done in a Singly excited system ...
 
X2 T07 05 conical pendulum
X2 T07 05 conical pendulumX2 T07 05 conical pendulum
X2 T07 05 conical pendulum
 
lecture 5&6 of mechanics .ppt
lecture 5&6 of mechanics .pptlecture 5&6 of mechanics .ppt
lecture 5&6 of mechanics .ppt
 
Grade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect MagGrade 11, U5 Acad-Elect Mag
Grade 11, U5 Acad-Elect Mag
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
2nd codition of equilibrium
2nd codition of equilibrium2nd codition of equilibrium
2nd codition of equilibrium
 
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
 
Chapter -3mdddd.pptx
Chapter -3mdddd.pptxChapter -3mdddd.pptx
Chapter -3mdddd.pptx
 
Lecture Ch 08
Lecture Ch 08Lecture Ch 08
Lecture Ch 08
 
Chapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxChapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptx
 
13200777.ppt
13200777.ppt13200777.ppt
13200777.ppt
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 

X2 t06 05 conical pendulum (2013)

  • 4. The Conical PendulumA Force Diagram  h rO P 
  • 5. The Conical PendulumA Force Diagram  h rO P 
  • 6. The Conical PendulumA Force Diagram  h rO P  T T= tension in the string (always away from object)
  • 7. The Conical PendulumA mg Force Diagram  h rO P  T T= tension in the string (always away from object)
  • 8. The Conical PendulumA mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring
  • 9. The Conical PendulumA mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve
  • 10. The Conical PendulumA mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces
  • 11. The Conical PendulumA r mv xm 2  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces
  • 12. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces
  • 13. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal 
  • 14. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal  0forcesvertical 
  • 15. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   0forcesvertical 
  • 16. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   0forcesvertical 
  • 17. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT 0forcesvertical 
  • 18. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT r mv T 2 sin  0forcesvertical 
  • 19. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT r mv T 2 sin   2 mr 0forcesvertical 
  • 20. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT r mv T 2 sin   2 mr 0forcesvertical 
  • 21. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT r mv T 2 sin   2 mr 0forcesvertical  mg cosT
  • 22. The Conical PendulumA r mv xm 2  0ym  mg Force Diagram  h rO P  T T= tension in the string (always away from object) icalwith vertmakesstring pendulumoflocityangular ve Resultant Forces r mv2 forceshorizontal   sinT r mv T 2 sin   2 mr 0forcesvertical  mg cosT mgT mgT     cos 0cos
  • 25. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2 
  • 26. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut
  • 27. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2
  • 28. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2 2 2 v gr h 
  • 29. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2 2 2 v gr h        2  g
  • 30. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2 2 2 v gr h        2  g Implications
  • 31. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2 2 2 v gr h        2  g Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. mgr mv T T 1 cos sin 2    rg v2 tan         g r 2  h r AOP  taninBut h r rg v  2 2 2 v gr h        2  g Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal 
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  0forcesvertical 
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  0forcesvertical 
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  sinT 0forcesvertical 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  sinT 2 sin  mrT  0forcesvertical 
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  sinT 2 sin  mrT  0forcesvertical 
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  sinT 2 sin  mrT  0forcesvertical  mg cosT
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. mg T h r r mv2 forceshorizontal  sinT 2 sin  mrT  0forcesvertical  mg cosT mgT mgT     cos 0cos
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is where , and the string makes an 2 4    angle of with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is where , and the string makes an 2 4    angle of with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is sinN
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is sinN
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is sinN T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is sinN  T
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg 
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T     
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg     
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c   
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c  
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT 
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT cosN
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT 2 coscos  mrNT  cosN
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT 2 coscos  mrNT  cosN 0forcesvertical 
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT 2 coscos  mrNT  cosN 0forcesvertical 
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT 2 coscos  mrNT  cosN 0forcesvertical  mg sinT sinN
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is sinN N T mg   c      sin sin Nc N c   sinisof componentverticalthe NN    and,ofterms inforexpressionanfindand, sin thatShowb) lm NT mg NT  2 forceshorizontal mr cosT 2 coscos  mrNT  cosN 0forcesvertical  mg sinT mgNT mgNT     sinsin 0sinsin sinN
  • 79. mgNT   sinsin     sin sin mg NT mgNT  
  • 80. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT 
  • 81. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT  
  • 82. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r
  • 83. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT 
  • 84. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N  
  • 85. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N   ;0When N
  • 86. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N   ;0When N sin mg T 
  • 87. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N   ;0When N sin mg T  2 and mlT 
  • 88. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N   ;0When N sin mg T  2 and mlT  2 sin   ml mg 
  • 89. mgNT   sinsin     sin sin mg NT mgNT   2 coscos  mrNT       cos cos 2 2 mr NT mrNT   cosBut  l r 2 mlNT  and,ofin termsofvaluefor thisexpressionanFind cone.th thecontact wiloseabout tois particlewhen theis,that0,untilincreasedislocityangular veThec) gl N   ;0When N sin mg T  2 and mlT  2 sin   ml mg      sin sin 2 l g l g  