SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical Pendulum
  A




      
      P
The Conical Pendulum
  A
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                 T= tension in the string
                          T         (always away from object)
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h

                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg     angular velocity of pendulum
 O        r   P
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x
         r
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x                                           m  0
                                                y
         r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                              T          (always away from object)
      h                                   string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                         m  0
                                                 y
            r
                    mv 2
horizontal forces 
                     r
The Conical Pendulum
       A              Force Diagram
                                       T= tension in the string
                              T           (always away from object)
      h                                    string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                           m  0
                                                   y
            r
                    mv 2
horizontal forces                     vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin 
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin  2
           mv
 T sin  
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos
   T sin  2
 T sin  
           mv       mr 2              mg
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos       T cos  mg  0
   T sin  2
 T sin  
           mv       mr 2              mg                    T cos  mg
            r
T sin  mv 2 1
           
T cos   r    mg
T sin  mv 2 1
            
T cos     r   mg
          v2
  tan  
          rg
T sin  mv 2 1
            
T cos     r   mg
          v2         r 2 
  tan                  
          rg         g 
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g
                   h 2
                      v
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g           g 
                   h 2              2 
                      v             
T sin  mv 2 1
                           
               T cos     r   mg
                         v2         r 2 
                 tan                  
                         rg         g 
                         r
But in AOP      tan  
                         h
                   v2 r
                  
                   rg h
                      r2g           g 
                    h 2              2 
                       v             
Implications
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                          2 
                         v                         
Implications
•depth of the pendulum below A is independent of the length of the
 string.
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                          2 
                         v                         
Implications
•depth of the pendulum below A is independent of the length of the
 string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T



                                mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                             T
                      h


                              r
                                  mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces 
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos

   T sin   mr 2                      mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos T cos  mg  0

   T sin   mr 2                      mg          T cos  mg
1
 tan   mr 2 
                    mg
         r 2
       
          g
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min
                    mg
                                  120
         r 2                         rad/s
                                  60
          g
                                 2rad/s
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min
       r 2 r
                                180
        g     h                       rad/s
                                   60
          h 2
               g                 3rad/s
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                        m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min              g
                                               h
   
       r 2 r
                                 180
                                                    3 2
        g     h                       rad/s          g
                                   60                        m
               g                 3rad/s           9    2
          h 2
                
1
 tan   mr 2              when   60rev/min     h
                                                            g
                    mg
                                       120
                                                          2 2
         r 2                              rad/s          g
                                       60                         m
          g
                                      2rad/s            4   2


              r
  But tan  
              h               when   90rev/min               g
                                                     h
   
       r 2 r
                                      180
                                                          3 2
        g     h                            rad/s           g
                                        60                         m
               g                      3rad/s            9    2
          h 2
                

                                        g  g m
                     rise in height   2
                                        4 9 2 
                                                 
                                     0.14m
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
 Note: whenever a particle makes contact with a surface there will be
 a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T

        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                  N
        
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                 
        T                                                   
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                  
        T                                                   
                  N
                                                     
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                   
        T c                                                 
                   N
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                         c
        T c                   sin 
                          N                                 
                   N
                           c  N sin 
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                
                   N
                            c  N sin 
                                                 
                        the vertical component        
              mg
                        of N isN sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                   
                  N
                            c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin     N sin 
T cos   N cos   mr 2                   mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin    N sin 
                                                 T sin   N sin   mg  0
T cos   N cos   mr 2                   mg
                                                       T sin   N sin   mg
T sin   N sin   mg
T sin   N sin   mg
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg       T  N  cos   mr 2
                 mg                        mr 2
          TN                      T N 
                sin                       cos 
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                           mr 2
          TN                         T N 
                sin                          cos 
                            r
                         But  cos 
                            l
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                         mr 2
          TN                       T N 
                sin                        cos 
                            r
                         But  cos  T  N  ml 2
                            l
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                     mg                                     mr 2
              TN                                   T N 
                    sin                                    cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T       and T  ml 2
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                     ml 2
                                              sin 
         mg
    T          and T  ml 2
        sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                      ml 2
                                              sin 
         mg                                                g
    T          and T  ml  2
                                                 2

        sin                                           l sin 
                                                             g
                                                 
                                                          l sin 
Exercise 9C; all

More Related Content

What's hot (13)

Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
 
Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqm
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Projekt
ProjektProjekt
Projekt
 
Lec10
Lec10Lec10
Lec10
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)
 
Ja Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosJa Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor Trasgos
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densities
 

Viewers also liked

Elasticity Ppt
Elasticity PptElasticity Ppt
Elasticity Ppt
mar_09
 

Viewers also liked (9)

Properties of matter Class XI
Properties of matter Class XIProperties of matter Class XI
Properties of matter Class XI
 
Gravity
GravityGravity
Gravity
 
Inverted Pendulum
Inverted PendulumInverted Pendulum
Inverted Pendulum
 
Diploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticityDiploma sem 2 applied science physics-unit 2-chap-1 elasticity
Diploma sem 2 applied science physics-unit 2-chap-1 elasticity
 
Gravitation (Class XI Brief)
Gravitation (Class XI Brief)Gravitation (Class XI Brief)
Gravitation (Class XI Brief)
 
Ppt of physics xii science
Ppt of physics xii sciencePpt of physics xii science
Ppt of physics xii science
 
Elasticity Ppt
Elasticity PptElasticity Ppt
Elasticity Ppt
 
Gravitation
GravitationGravitation
Gravitation
 
Elasticityprepwalk
ElasticityprepwalkElasticityprepwalk
Elasticityprepwalk
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

X2 t06 05 conical pendulum (2012)

  • 3. The Conical Pendulum A  h  O r P
  • 4. The Conical Pendulum A Force Diagram  h  O r P
  • 5. The Conical Pendulum A Force Diagram  h  O r P
  • 6. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  O r P
  • 7. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  mg O r P
  • 8. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg O r P
  • 9. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P
  • 10. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces
  • 11. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x r
  • 12. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r
  • 13. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  r
  • 14. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 15. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 16. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 17. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin 
  • 18. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 mv T sin   r
  • 19. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 20. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 21. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T sin  2 T sin   mv  mr 2 mg r
  • 22. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T cos  mg  0 T sin  2 T sin   mv  mr 2 mg T cos  mg r
  • 23. T sin  mv 2 1   T cos r mg
  • 24. T sin  mv 2 1   T cos r mg v2 tan   rg
  • 25. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g 
  • 26. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h
  • 27. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h
  • 28. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g h 2 v
  • 29. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2  2  v   
  • 30. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2  2  v    Implications
  • 31. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2  2  v    Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2  2  v    Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T mg
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  r
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T sin   mr 2 mg
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T cos  mg  0 T sin   mr 2 mg T cos  mg
  • 46. 1  tan   mr 2  mg r 2  g
  • 47. 1  tan   mr 2  mg r 2  g r But tan   h
  • 48. 1  tan   mr 2  mg r 2  g r But tan   h r 2 r   g h g h 2 
  • 49. 1  tan   mr 2  when   60rev/min mg 120 r 2  rad/s  60 g  2rad/s r But tan   h r 2 r   g h g h 2 
  • 50. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h r 2 r   g h g h 2 
  • 51. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min r 2 r   180 g h  rad/s 60 h 2 g  3rad/s 
  • 52. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2 
  • 53. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2   g  g m  rise in height   2  4 9 2    0.14m
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T 
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  mg
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N   
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N    mg
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T c  N    mg
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     mg
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos 
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos  T cos   N cos   mr 2
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T cos   N cos   mr 2 mg
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T sin   N sin   mg  0 T cos   N cos   mr 2 mg T sin   N sin   mg
  • 78. T sin   N sin   mg
  • 79. T sin   N sin   mg T  N  sin   mg mg TN  sin 
  • 80. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg mg TN  sin 
  • 81. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos 
  • 82. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  l
  • 83. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l
  • 84. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g
  • 85. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;
  • 86. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T sin 
  • 87. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T and T  ml 2 sin 
  • 88. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg T and T  ml 2 sin 
  • 89. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg g T and T  ml 2  2 sin  l sin  g  l sin 