SlideShare a Scribd company logo
1 of 116
Download to read offline
Miscellaneous Dynamics
Questions
e.g. (i) (1992) – variable angular velocity
The diagram shows a model train T that is
moving around a circular track, centre O
and radius a metres.
The train is travelling at a constant speed of
u m/s. The point N is in the same plane as
the track and is x metres from the nearest
point on the track. The line NO produced
meets the track at S.
diagramin theasandLet   TOSTNS
ua
dt
dθ
andofin termsExpressa)
ua
dt
dθ
andofin termsExpressa) al 
ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




   
 
   






coscos
cos
that;deduceand0sinsinthatShowb)
aax
u
dt
d
ax-a
ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




   
 
   






coscos
cos
that;deduceand0sinsinthatShowb)
aax
u
dt
d
ax-a
),(exterior OTNTOSTNONTO 
ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




   
 
   






coscos
cos
that;deduceand0sinsinthatShowb)
aax
u
dt
d
ax-a
),(exterior OTNTOSTNONTO 




NTO
NTO
ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




   
 
   






coscos
cos
that;deduceand0sinsinthatShowb)
aax
u
dt
d
ax-a
),(exterior OTNTOSTNONTO 




NTO
NTO
  


sinsin
;In
xaa
NTO
ua
dt
dθ
andofin termsExpressa) al 
dt
d
a
dt
dl 

a
u
dt
d
dt
d
au




   
 
   






coscos
cos
that;deduceand0sinsinthatShowb)
aax
u
dt
d
ax-a
),(exterior OTNTOSTNONTO 




NTO
NTO
  


sinsin
;In
xaa
NTO
   
    0sinsin
sinsin




xaa
xaa
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


when NT is a tangent;
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
when NT is a tangent;
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
when NT is a tangent;
radius)(tangent90  
NTO
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
when NT is a tangent;
radius)(tangent90  
NTO

90 
    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
when NT is a tangent;
radius)(tangent90  
NTO

90 
  

cos90cos
90cos
xaa
u
dt
d

 

    0coscos
respect towithatedifferenti





 
dt
d
xa
dt
d
dt
d
a
t




       0coscoscos 
dt
d
xaa
dt
d
a




      
a
u
a
dt
d
xaa  

 coscoscos
 
    

coscos
cos
xaa
u
dt
d



track.thetoltangentiaiswhen0thatShowc) NT
dt
d


N
T
O
when NT is a tangent;
radius)(tangent90  
NTO

90 
  

cos90cos
90cos
xaa
u
dt
d

 

0
dt
d
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
5
3
0
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

0when 
d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

0when 
0cos20cos
0cos
aa
u
dt
d



d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

0when 
0cos20cos
0cos
aa
u
dt
d



a
u
3

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

0when 
0cos20cos
0cos
aa
u
dt
d



a
u
3

a
u
53
5

d) Suppose that x = a
Show that the train’s angular velocity about N when is
times the angular velocity about N when 2

 
2
when

 
5
3
0
T
ON

a
2a
a5 5
2
cos 
5
1
2
cos 




 






cos2
2
cos
2
cos
aa
u
dt
d












 

  

















5
2
2
5
1
5
1
aa
u
a
u
5

0when 
0cos20cos
0cos
aa
u
dt
d



a
u
3

a
u
53
5

0nlocity wheangular vethe
times
5
3
is
2
nlocity wheangular vetheThus





(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

ls 
(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

ls 
dt
d
l
dt
ds
v



(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



dt
d
d
dv 


(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



dt
d
d
dv 


l
v
d
dv


(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



dt
d
d
dv 


l
v
d
dv


v
d
dv
l


1
(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



dt
d
d
dv 


l
v
d
dv


v
d
dv
l


1





 2
2
11
v
dv
d
d
dv
l 
(ii) (2000) A string of length l is initially vertical and has a mass
P of m kg attached to it. The mass P is given a
horizontal velocity of magnitude V and begins to
move along the arc of a circle in a counterclockwise
direction.
Let O be the centre of this circle and A the initial
position of P. Let s denote the arc length AP, ,
dt
ds
v 
AOP and let the tension in the string be T. The acceleration due to
gravity is g and there are no frictional forces acting on P.
For parts a) to d), assume the mass is moving along the circle.
a) Show that the tangential acceleration of P is given by 




 2
2
2
2
11
v
d
d
ldt
sd

dt
dv
dt
sd
2
2
ls 
dt
d
l
dt
ds
v



dt
d
d
dv 


l
v
d
dv


v
d
dv
l


1





 2
2
11
v
dv
d
d
dv
l 





 2
2
11
v
d
d
l 
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sinmg
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV


sin
2
11 2
gv
d
d
l






b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV


sin
2
11 2
gv
d
d
l








sin
2
1 2
glv
d
d






b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV


sin
2
11 2
gv
d
d
l








sin
2
1 2
glv
d
d






cglv
cglv




cos2
cos
2
1
2
2
b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV


sin
2
11 2
gv
d
d
l








sin
2
1 2
glv
d
d






cglv
cglv




cos2
cos
2
1
2
2
glVc
cglV
Vv
2
2
0,when
2
2



b) Show that the equation of motion of P is 

sin
2
11 2
gv
d
d
l






T
mg

sm 
sinmg
sinmgsm 
sings 


sin
2
11 2
gv
d
d
l






 cos12thatDeducec) 22
 glvV


sin
2
11 2
gv
d
d
l








sin
2
1 2
glv
d
d






cglv
cglv




cos2
cos
2
1
2
2
glVc
cglV
Vv
2
2
0,when
2
2



 


cos12
cos22
2cos2
22
22
22



glvV
glglvV
glVglv
21
cosyExplain whd) mv
l
θT-mg 
21
cosyExplain whd) mv
l
θT-mg 
21
cosyExplain whd) mv
l
θT-mg 
T
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
But, the resultant force towards the centre is
centripetal force.
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
   cos123
1
cos0  glglm
l
mg
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
   cos123
1
cos0  glglm
l
mg
  cos2cos ggmmg 
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
   cos123
1
cos0  glglm
l
mg
  cos2cos ggmmg 
mgmg cos3
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
   cos123
1
cos0  glglm
l
mg
  cos2cos ggmmg 
mgmg cos3
3
1
cos 
21
cosyExplain whd) mv
l
θT-mg 
T cosmg
xm 
cosmgTxm 
2
2
1
cos
cos
mv
l
mgT
mgT
l
mv




But, the resultant force towards the centre is
centripetal force.
0at whichofvaluetheFind.3thatSupposee) 2
 TglV 
   cos12
1
cos 2
 glVm
l
mgT
   cos123
1
cos0  glglm
l
mg
  cos2cos ggmmg 
mgmg cos3
3
1
cos 
radians911.1
f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


f) Consider the situation in part e). Briefly describe, in words, the path of
P after the tension T becomes zero.
When T = 0, the particle would undergo projectile motion, i.e. it
would follow a parabolic arc.
Its initial velocity would be tangential to the circle with magnitude;
21
cos mv
l
mgT  
21
3
1
mv
l
mg 





3
3
2
gl
v
gl
v


(iii) (2003)
A particle of mass m is thrown from the top, O, of a very tall building
with an initial velocity u at an angle of to the horizontal. The
particle experiences the effect of gravity, and a resistance
proportional to its velocity in both directions.

The equations of motion in the horizontal and
vertical directions are given respectively by
gykyxkx   and
where k is a constant and the acceleration due
to gravity is g.
(You are NOT required to show these)
cosresulttheDerivea) kt
uex 

cosresulttheDerivea) kt
uex 

xk
dt
xd



cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  
cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
  y
ugyk
k
t

 sinlog
1

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
  y
ugyk
k
t

 sinlog
1

   gkugykkt  sinloglog 
cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
  y
ugyk
k
t

 sinlog
1

   gkugykkt  sinloglog 









gku
gyk
kt
sin
log

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
  y
ugyk
k
t

 sinlog
1

   gkugykkt  sinloglog 









gku
gyk
kt
sin
log

kt
e
gku
gyk 



sin

cosresulttheDerivea) kt
uex 

xk
dt
xd




x
u
x
xd
k
t



cos
1
 x
ux
k
t

 coslog
1

  cosloglog
1
ux
k
t  






cos
log
1
u
x
k
t




cos
cos
cos
log
kt
kt
uex
e
u
x
u
x
kt













  
conditioninitialandmotionofequation
eappropriatthesatisfiessin
1
tVerify thab) gegku
k
y kt
 

gyk
dt
yd
 

 

y
u
gyk
yd
t



sin
  y
ugyk
k
t

 sinlog
1

   gkugykkt  sinloglog 









gku
gyk
kt
sin
log

kt
e
gku
gyk 



sin

  gegku
k
y kt
 
sin
1

c) Find the value of t when the particle reaches its maximum height
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?
c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?


cos
cos
kt
kt
ue
dt
dx
uex




c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?


cos
cos
kt
kt
ue
dt
dx
uex



 




0
coslim dteux kt
t

c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?


cos
cos
kt
kt
ue
dt
dx
uex



 




0
coslim dteux kt
t

t
kt
t
e
k
ux
0
1
coslim 


 


c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?


cos
cos
kt
kt
ue
dt
dx
uex



 




0
coslim dteux kt
t

t
kt
t
e
k
ux
0
1
coslim 


 


 1
cos
lim  

kt
t
e
k
u
x

c) Find the value of t when the particle reaches its maximum height
0whenoccursheightMaximum y
  0
sinlog
1
ugyk
k
t  
    gkug
k
t  sinloglog
1





 

g
gku
k
t
sin
log
1
d) What is the limiting value of the horizontal displacement of the
particle?


cos
cos
kt
kt
ue
dt
dx
uex



 




0
coslim dteux kt
t

t
kt
t
e
k
ux
0
1
coslim 


 


 1
cos
lim  

kt
t
e
k
u
x

k
u
x
cos

Exercise 9E; 1 to 4, 7
Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

More Related Content

What's hot

English math - where should a pilot start descent
English math - where should a pilot start descentEnglish math - where should a pilot start descent
English math - where should a pilot start descentVisca Amelia S
 
18 dynamics applications of derivative -
18   dynamics   applications of derivative -18   dynamics   applications of derivative -
18 dynamics applications of derivative -vivieksunder
 
Golden Ratio Tetrahedral Spiral
Golden Ratio Tetrahedral Spiral Golden Ratio Tetrahedral Spiral
Golden Ratio Tetrahedral Spiral Grayham Forscutt
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)KarunaGupta1982
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)Nigel Simmons
 
Robust SINS/GNSS Integration Method for High Dynamic Applications
Robust SINS/GNSS Integration Method for High Dynamic ApplicationsRobust SINS/GNSS Integration Method for High Dynamic Applications
Robust SINS/GNSS Integration Method for High Dynamic ApplicationsRadita Apriana
 
Decision directed carrier signal
Decision directed carrier signalDecision directed carrier signal
Decision directed carrier signalsunil kumar
 
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasoundWk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasoundchris lembalemba
 
Knight’s tour algorithm
Knight’s tour algorithmKnight’s tour algorithm
Knight’s tour algorithmHassan Tariq
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolarinipslab
 
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...Amrinder Arora
 
toroidwork07-12-2012
toroidwork07-12-2012toroidwork07-12-2012
toroidwork07-12-2012Martin Jones
 
Purdue Prelecture Content IMPACT
Purdue Prelecture Content IMPACTPurdue Prelecture Content IMPACT
Purdue Prelecture Content IMPACTdoylejackd
 
Convex Hull Algorithm Analysis
Convex Hull Algorithm AnalysisConvex Hull Algorithm Analysis
Convex Hull Algorithm AnalysisRex Yuan
 
Scan14
Scan14Scan14
Scan14lrewis
 

What's hot (20)

English math - where should a pilot start descent
English math - where should a pilot start descentEnglish math - where should a pilot start descent
English math - where should a pilot start descent
 
18 dynamics applications of derivative -
18   dynamics   applications of derivative -18   dynamics   applications of derivative -
18 dynamics applications of derivative -
 
Golden Ratio Tetrahedral Spiral
Golden Ratio Tetrahedral Spiral Golden Ratio Tetrahedral Spiral
Golden Ratio Tetrahedral Spiral
 
Convex hulls & Chan's algorithm
Convex hulls & Chan's algorithmConvex hulls & Chan's algorithm
Convex hulls & Chan's algorithm
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
convex hull
convex hullconvex hull
convex hull
 
Robust SINS/GNSS Integration Method for High Dynamic Applications
Robust SINS/GNSS Integration Method for High Dynamic ApplicationsRobust SINS/GNSS Integration Method for High Dynamic Applications
Robust SINS/GNSS Integration Method for High Dynamic Applications
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
 
convex hull
convex hullconvex hull
convex hull
 
Decision directed carrier signal
Decision directed carrier signalDecision directed carrier signal
Decision directed carrier signal
 
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasoundWk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
Wk 1 p7 wk 3-p8_13.1-13.3 & 14.6_oscillations & ultrasound
 
Noe
NoeNoe
Noe
 
Knight’s tour algorithm
Knight’s tour algorithmKnight’s tour algorithm
Knight’s tour algorithm
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolari
 
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...
Convex Hull - Chan's Algorithm O(n log h) - Presentation by Yitian Huang and ...
 
toroidwork07-12-2012
toroidwork07-12-2012toroidwork07-12-2012
toroidwork07-12-2012
 
Purdue Prelecture Content IMPACT
Purdue Prelecture Content IMPACTPurdue Prelecture Content IMPACT
Purdue Prelecture Content IMPACT
 
Convex Hull Algorithm Analysis
Convex Hull Algorithm AnalysisConvex Hull Algorithm Analysis
Convex Hull Algorithm Analysis
 
Scan14
Scan14Scan14
Scan14
 

Viewers also liked

iOS-Binus STAGE 01- Ismail Fahmi
iOS-Binus STAGE 01- Ismail FahmiiOS-Binus STAGE 01- Ismail Fahmi
iOS-Binus STAGE 01- Ismail Fahmibinusgamelab
 
Implementing TWI into Daily Work
Implementing TWI into Daily WorkImplementing TWI into Daily Work
Implementing TWI into Daily WorkBusiness901
 
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...Le Huynh Long
 
API Best Practices
API Best PracticesAPI Best Practices
API Best PracticesSai Koppala
 
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...Blastline Institute
 
Bihar an overview
Bihar an overviewBihar an overview
Bihar an overviewSuman Singh
 
Wis5 process 04 (new )
Wis5 process 04 (new )Wis5 process 04 (new )
Wis5 process 04 (new )Thang Do Minh
 
Cswip plant inspector course level i week 2
Cswip plant inspector course level i week 2Cswip plant inspector course level i week 2
Cswip plant inspector course level i week 2ram111eg
 
Cswip plant inspector course level i week 1
Cswip plant inspector course level i week 1Cswip plant inspector course level i week 1
Cswip plant inspector course level i week 1ram111eg
 
Welding visual inspection
Welding visual inspectionWelding visual inspection
Welding visual inspectionbusinespartner
 
Cswip 11-01 - plant inspection
Cswip 11-01 - plant inspectionCswip 11-01 - plant inspection
Cswip 11-01 - plant inspectionRafik Guerbous
 

Viewers also liked (20)

Nothing but Personal
Nothing but PersonalNothing but Personal
Nothing but Personal
 
Daily work journal
Daily work journalDaily work journal
Daily work journal
 
iOS-Binus STAGE 01- Ismail Fahmi
iOS-Binus STAGE 01- Ismail FahmiiOS-Binus STAGE 01- Ismail Fahmi
iOS-Binus STAGE 01- Ismail Fahmi
 
Implementing TWI into Daily Work
Implementing TWI into Daily WorkImplementing TWI into Daily Work
Implementing TWI into Daily Work
 
Bihar
BiharBihar
Bihar
 
Cswip3.2 notes
Cswip3.2  notesCswip3.2  notes
Cswip3.2 notes
 
CSWIP 3.2 MATERIALS
CSWIP 3.2 MATERIALSCSWIP 3.2 MATERIALS
CSWIP 3.2 MATERIALS
 
Ultrasonics aws
Ultrasonics awsUltrasonics aws
Ultrasonics aws
 
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...
Electromagnetic testing non-destructive-techniques_based_on_eddy_current_test...
 
API Best Practices
API Best PracticesAPI Best Practices
API Best Practices
 
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...
BGAS Training | CSWIP Training | API, NDT And ISO Training | WPS/WPQR Trainin...
 
Bihar an overview
Bihar an overviewBihar an overview
Bihar an overview
 
2015 API 510 PRESSURE VESSEL INSPECTOR CERTIFICATION PREPARATION COURSE
2015 API 510 PRESSURE VESSEL INSPECTOR CERTIFICATION PREPARATION COURSE2015 API 510 PRESSURE VESSEL INSPECTOR CERTIFICATION PREPARATION COURSE
2015 API 510 PRESSURE VESSEL INSPECTOR CERTIFICATION PREPARATION COURSE
 
Api 510 study plan
Api 510 study planApi 510 study plan
Api 510 study plan
 
Ultrasonic testing
Ultrasonic testingUltrasonic testing
Ultrasonic testing
 
Wis5 process 04 (new )
Wis5 process 04 (new )Wis5 process 04 (new )
Wis5 process 04 (new )
 
Cswip plant inspector course level i week 2
Cswip plant inspector course level i week 2Cswip plant inspector course level i week 2
Cswip plant inspector course level i week 2
 
Cswip plant inspector course level i week 1
Cswip plant inspector course level i week 1Cswip plant inspector course level i week 1
Cswip plant inspector course level i week 1
 
Welding visual inspection
Welding visual inspectionWelding visual inspection
Welding visual inspection
 
Cswip 11-01 - plant inspection
Cswip 11-01 - plant inspectionCswip 11-01 - plant inspection
Cswip 11-01 - plant inspection
 

Similar to X2 t06 07 miscellaneous dynamics questions (2013)

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of conenarayana dash
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUniversity of California, San Diego
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
17-markov-chains.pdf
17-markov-chains.pdf17-markov-chains.pdf
17-markov-chains.pdfmelda49
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativityMuhammad Ishaq
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Transmission lines
Transmission linesTransmission lines
Transmission linesumavijay
 
11 x1 t11 07 chord of contact (2013)
11 x1 t11 07 chord of contact (2013)11 x1 t11 07 chord of contact (2013)
11 x1 t11 07 chord of contact (2013)Nigel Simmons
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptVivekDixit100
 
"How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?""How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?"Ednexa
 

Similar to X2 t06 07 miscellaneous dynamics questions (2013) (20)

Ch r ssm
Ch r ssmCh r ssm
Ch r ssm
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Relativity
RelativityRelativity
Relativity
 
lecture11.ppt
lecture11.pptlecture11.ppt
lecture11.ppt
 
Problem a ph o 3
Problem a ph o 3Problem a ph o 3
Problem a ph o 3
 
MECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptxMECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptx
 
Mid term solution
Mid term solutionMid term solution
Mid term solution
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of cone
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
17-markov-chains.pdf
17-markov-chains.pdf17-markov-chains.pdf
17-markov-chains.pdf
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativity
 
Geophysical prospecting
Geophysical prospectingGeophysical prospecting
Geophysical prospecting
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
Problem i ph o 17
Problem i ph o 17Problem i ph o 17
Problem i ph o 17
 
11 x1 t11 07 chord of contact (2013)
11 x1 t11 07 chord of contact (2013)11 x1 t11 07 chord of contact (2013)
11 x1 t11 07 chord of contact (2013)
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.ppt
 
"How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?""How to Study Circular Motion (Physics) for JEE Main?"
"How to Study Circular Motion (Physics) for JEE Main?"
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 

Recently uploaded (20)

Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 

X2 t06 07 miscellaneous dynamics questions (2013)

  • 1. Miscellaneous Dynamics Questions e.g. (i) (1992) – variable angular velocity The diagram shows a model train T that is moving around a circular track, centre O and radius a metres. The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S. diagramin theasandLet   TOSTNS
  • 4. ua dt dθ andofin termsExpressa) al  dt d a dt dl  
  • 5. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au    
  • 6. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au                     coscos cos that;deduceand0sinsinthatShowb) aax u dt d ax-a
  • 7. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au                     coscos cos that;deduceand0sinsinthatShowb) aax u dt d ax-a ),(exterior OTNTOSTNONTO 
  • 8. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au                     coscos cos that;deduceand0sinsinthatShowb) aax u dt d ax-a ),(exterior OTNTOSTNONTO      NTO NTO
  • 9. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au                     coscos cos that;deduceand0sinsinthatShowb) aax u dt d ax-a ),(exterior OTNTOSTNONTO      NTO NTO      sinsin ;In xaa NTO
  • 10. ua dt dθ andofin termsExpressa) al  dt d a dt dl   a u dt d dt d au                     coscos cos that;deduceand0sinsinthatShowb) aax u dt d ax-a ),(exterior OTNTOSTNONTO      NTO NTO      sinsin ;In xaa NTO         0sinsin sinsin     xaa xaa
  • 11.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t    
  • 12.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a    
  • 13.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos
  • 14.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d   
  • 15.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   when NT is a tangent;
  • 16.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O
  • 17.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O when NT is a tangent;
  • 18.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O when NT is a tangent; radius)(tangent90   NTO
  • 19.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O when NT is a tangent; radius)(tangent90   NTO  90 
  • 20.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O when NT is a tangent; radius)(tangent90   NTO  90      cos90cos 90cos xaa u dt d    
  • 21.     0coscos respect towithatedifferenti        dt d xa dt d dt d a t            0coscoscos  dt d xaa dt d a            a u a dt d xaa     coscoscos         coscos cos xaa u dt d    track.thetoltangentiaiswhen0thatShowc) NT dt d   N T O when NT is a tangent; radius)(tangent90   NTO  90      cos90cos 90cos xaa u dt d     0 dt d
  • 22. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    5 3 0
  • 23. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0
  • 24. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON 
  • 25. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a
  • 26. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a
  • 27. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5
  • 28. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos 
  • 29. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos        
  • 30. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d               
  • 31. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u
  • 32. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5 
  • 33. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5  0when 
  • 34. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5  0when  0cos20cos 0cos aa u dt d   
  • 35. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5  0when  0cos20cos 0cos aa u dt d    a u 3 
  • 36. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5  0when  0cos20cos 0cos aa u dt d    a u 3  a u 53 5 
  • 37. d) Suppose that x = a Show that the train’s angular velocity about N when is times the angular velocity about N when 2    2 when    5 3 0 T ON  a 2a a5 5 2 cos  5 1 2 cos              cos2 2 cos 2 cos aa u dt d                                    5 2 2 5 1 5 1 aa u a u 5  0when  0cos20cos 0cos aa u dt d    a u 3  a u 53 5  0nlocity wheangular vethe times 5 3 is 2 nlocity wheangular vetheThus     
  • 38. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
  • 39. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd 
  • 40. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  ls 
  • 41. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  ls  dt d l dt ds v   
  • 42. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v   
  • 43. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v    dt d d dv   
  • 44. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v    dt d d dv    l v d dv  
  • 45. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v    dt d d dv    l v d dv   v d dv l   1
  • 46. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v    dt d d dv    l v d dv   v d dv l   1       2 2 11 v dv d d dv l 
  • 47. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial position of P. Let s denote the arc length AP, , dt ds v  AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. a) Show that the tangential acceleration of P is given by       2 2 2 2 11 v d d ldt sd  dt dv dt sd 2 2 ls  dt d l dt ds v    dt d d dv    l v d dv   v d dv l   1       2 2 11 v dv d d dv l        2 2 11 v d d l 
  • 48. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l      
  • 49. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l      
  • 50. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T
  • 51. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg
  • 52. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg 
  • 53. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sinmg
  • 54. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg
  • 55. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm 
  • 56. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings 
  • 57. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l      
  • 58. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV
  • 59. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV   sin 2 11 2 gv d d l      
  • 60. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV   sin 2 11 2 gv d d l         sin 2 1 2 glv d d      
  • 61. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV   sin 2 11 2 gv d d l         sin 2 1 2 glv d d       cglv cglv     cos2 cos 2 1 2 2
  • 62. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV   sin 2 11 2 gv d d l         sin 2 1 2 glv d d       cglv cglv     cos2 cos 2 1 2 2 glVc cglV Vv 2 2 0,when 2 2   
  • 63. b) Show that the equation of motion of P is   sin 2 11 2 gv d d l       T mg  sm  sinmg sinmgsm  sings    sin 2 11 2 gv d d l        cos12thatDeducec) 22  glvV   sin 2 11 2 gv d d l         sin 2 1 2 glv d d       cglv cglv     cos2 cos 2 1 2 2 glVc cglV Vv 2 2 0,when 2 2        cos12 cos22 2cos2 22 22 22    glvV glglvV glVglv
  • 68. 21 cosyExplain whd) mv l θT-mg  T cosmg xm 
  • 69. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm 
  • 70. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  But, the resultant force towards the centre is centripetal force.
  • 71. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force.
  • 72. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV 
  • 73. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT
  • 74. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT    cos123 1 cos0  glglm l mg
  • 75. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT    cos123 1 cos0  glglm l mg   cos2cos ggmmg 
  • 76. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT    cos123 1 cos0  glglm l mg   cos2cos ggmmg  mgmg cos3
  • 77. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT    cos123 1 cos0  glglm l mg   cos2cos ggmmg  mgmg cos3 3 1 cos 
  • 78. 21 cosyExplain whd) mv l θT-mg  T cosmg xm  cosmgTxm  2 2 1 cos cos mv l mgT mgT l mv     But, the resultant force towards the centre is centripetal force. 0at whichofvaluetheFind.3thatSupposee) 2  TglV     cos12 1 cos 2  glVm l mgT    cos123 1 cos0  glglm l mg   cos2cos ggmmg  mgmg cos3 3 1 cos  radians911.1
  • 79. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.
  • 80. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude;
  • 81. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT  
  • 82. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg      
  • 83. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 84. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 85. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 86. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 87. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 88. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 21 cos mv l mgT   21 3 1 mv l mg       3 3 2 gl v gl v  
  • 89. (iii) (2003) A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions.  The equations of motion in the horizontal and vertical directions are given respectively by gykyxkx   and where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these)
  • 94. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t  
  • 95. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t 
  • 96. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt             
  • 97. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt   
  • 98. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd   
  • 99. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin
  • 100. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin   y ugyk k t   sinlog 1 
  • 101. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin   y ugyk k t   sinlog 1     gkugykkt  sinloglog 
  • 102. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin   y ugyk k t   sinlog 1     gkugykkt  sinloglog           gku gyk kt sin log 
  • 103. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin   y ugyk k t   sinlog 1     gkugykkt  sinloglog           gku gyk kt sin log  kt e gku gyk     sin 
  • 104. cosresulttheDerivea) kt uex   xk dt xd     x u x xd k t    cos 1  x ux k t   coslog 1    cosloglog 1 ux k t         cos log 1 u x k t     cos cos cos log kt kt uex e u x u x kt                 conditioninitialandmotionofequation eappropriatthesatisfiessin 1 tVerify thab) gegku k y kt    gyk dt yd       y u gyk yd t    sin   y ugyk k t   sinlog 1     gkugykkt  sinloglog           gku gyk kt sin log  kt e gku gyk     sin    gegku k y kt   sin 1 
  • 105. c) Find the value of t when the particle reaches its maximum height
  • 106. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y
  • 107. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t  
  • 108. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1
  • 109. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1
  • 110. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?
  • 111. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?   cos cos kt kt ue dt dx uex    
  • 112. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?   cos cos kt kt ue dt dx uex          0 coslim dteux kt t 
  • 113. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?   cos cos kt kt ue dt dx uex          0 coslim dteux kt t  t kt t e k ux 0 1 coslim       
  • 114. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?   cos cos kt kt ue dt dx uex          0 coslim dteux kt t  t kt t e k ux 0 1 coslim         1 cos lim    kt t e k u x 
  • 115. c) Find the value of t when the particle reaches its maximum height 0whenoccursheightMaximum y   0 sinlog 1 ugyk k t       gkug k t  sinloglog 1         g gku k t sin log 1 d) What is the limiting value of the horizontal displacement of the particle?   cos cos kt kt ue dt dx uex          0 coslim dteux kt t  t kt t e k ux 0 1 coslim         1 cos lim    kt t e k u x  k u x cos 
  • 116. Exercise 9E; 1 to 4, 7 Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25