Vending machine
Student name : Rand F. Al-Aqrabawi
Dr. Abaza M. GH.
History
• Vending machine became popular during the
industrial revolution .
• The first modern coin-operated vending
machines were introduced in England in the
early 1880s .
• The first vending machine in the U.S. was built
in 1888 by the Thomas Adams Gum
Company.
• In 1897 games has been added to these
machine .
• In December 1970, Ussery Industries of
Dallas, Texas at its Dallas convention displayed
its "talking" vending machine, the Venda
Talker.
What is the vending machine
• Electronic machine used to disperse a product to a
consumer after a certain amount of money has been
put into the machine.
• Vending machines are commonly used to disperse
beverages and snack items, but in recent
years companies have introduced vending machines
that disperse other items, even including electronic
items such as digital cameras or iPods.
Simple vending machine
The vending machine delivers an item after it
has received 15 cents in coins.
The machine has a single coin slot that accepts
nickels and dimes, one coin at a time.
A mechanical sensor indicates whether a dime
or a nickel has been inserted into the coin slot.
The controller's output causes a single item to
be released down a chute to the customer.
Block diagram
N
D open
Reset
CLK
Vending machine
FSM
coin
sensor
Gum
release
mechanism
assume that N is asserted for one clock period
when a nickel is inserted into the coin slot and
that D is asserted when a dime has been
deposited.
Furthermore, we'll postulate that it is enough if
the machine asserts Open for one clock period
to release an item after 15 cents (or more) has
been deposited since the last reset.
Abstract representations
• Three nickels in sequence: N, N, N
• Two nickels followed by a dime: N, N, D
• A nickel followed by a dime: N, D
• A dime followed by a nickel: D, N
• Two dimes in sequence: D, D
State diagram
s1
s0
s3
s7
s2
s6
s8
s4 s5
reset
N
D
N
D
N
D
N
D
The machine will pass through the states S0, S1,
S3, S7 if the input sequence is three nickels.
in state S0 if neither input N or D is asserted, we
assume the machine remains in state S0 (the
specification allows us to assume that N and D
are never asserted at the same time).
Also, we include the output Open only in states
in which it is asserted. Open is implicitly
unasserted in any other state.
State Minimization
This nine-state description isn't the "best" possible.
For one thing, since states S4, S5, S6,S7 and S8
have identical behavior, they can be combined
into a single state.
To reduce the number of states even further, we
can think of each state as representing the
amount of money received so far. For example, it
shouldn't matter whether the state representing
10 cents was reached through two nickels or one
dime.
0
5
10
15
reset
N
N
N
D
D
State table
Minimized symbolic state transition
FSM IMPLEMENTATION
Vending machine kinds
There are so many types of vending machines available
from different vending machine manufacturers and
suppliers.
Some machines need electricity to vend the products,
while some others use mechanical motion to vend.
They come in several sizes, shapes, colors, and prices.
Vending machines are found mostly in shopping
malls, waiting areas, bowling alleys, businesses, and
schools.
Commonly vending machines
• Soda vending machine
• Gumball vending machine
• Snack vending machine
• Food and toy vending machine
• Coffee vending machine
• Cigarette vending machines
• Pop corn vending machine
Gumball vending machine
Coffee vending machine
Cigarette vending machine
Toys vending machine
Cold drinks vending machine
Snack vending machine
Designing coffee vending machine
Present state Input Next state Output
QA QB N D DA DB C
0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 1 1 X X 0
0 1 0 0 0 1 0
0 1 0 1 1 1 0
0 1 1 0 1 0 0
0 1 1 1 X X 0
1 0 0 0 1 0 0
1 0 0 1 1 1 0
1 0 1 0 1 1 0
1 0 1 1 X X 0
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 X X 1
DA 00 01 11 10
00 1 1
01 1 1 1 1
11 X X X X
10 1 1 1
C 00 01 11 10
00 1
01 1
11 1
10 1
DB 00 01 11 10
00 1 1
01 1 1 1
11 X X X X
10 1 1 1
QA QB QA AB
QA QB
N
D
N
D
N
D
Flip-flop Inputs Equations and System Output
Equation and it’s conversion to NAND Gates:
• DA = QA + D + NQB
= (QA + D + NQB)”
= (QA’D’(NQB)’)’
• DB = NQB’ + NQA + DQA + N’QB
= (NQB’ + NQA + DQA + N’QB)”
= ((NQB’)’(NQA)’(DQA)’(N’QB)’)’
• C’ = (QAQB)’
= ((QAQB)’)”
= (QA’QB’)’
Logic circuit diagram using NAND gates and two Flip
Flops
References
• http://EzineArticles.com/352816 ^
• "Old World, High Tech". Smithsonian
Magazine.
• http://en.wikipedia.org/wiki/Vending_machin
e
• http://www.ecgf.uakron.edu/grover/web/ee2
63/labs/ASimpleVendingMachine.pdf
• : http://www.businessdictionary.com/definitio
n/vending-machine.html#ixzz2XoOXrsBt

Vending machine

  • 1.
    Vending machine Student name: Rand F. Al-Aqrabawi Dr. Abaza M. GH.
  • 2.
    History • Vending machinebecame popular during the industrial revolution . • The first modern coin-operated vending machines were introduced in England in the early 1880s . • The first vending machine in the U.S. was built in 1888 by the Thomas Adams Gum Company.
  • 3.
    • In 1897games has been added to these machine . • In December 1970, Ussery Industries of Dallas, Texas at its Dallas convention displayed its "talking" vending machine, the Venda Talker.
  • 4.
    What is thevending machine • Electronic machine used to disperse a product to a consumer after a certain amount of money has been put into the machine. • Vending machines are commonly used to disperse beverages and snack items, but in recent years companies have introduced vending machines that disperse other items, even including electronic items such as digital cameras or iPods.
  • 5.
    Simple vending machine Thevending machine delivers an item after it has received 15 cents in coins. The machine has a single coin slot that accepts nickels and dimes, one coin at a time. A mechanical sensor indicates whether a dime or a nickel has been inserted into the coin slot. The controller's output causes a single item to be released down a chute to the customer.
  • 6.
    Block diagram N D open Reset CLK Vendingmachine FSM coin sensor Gum release mechanism
  • 7.
    assume that Nis asserted for one clock period when a nickel is inserted into the coin slot and that D is asserted when a dime has been deposited. Furthermore, we'll postulate that it is enough if the machine asserts Open for one clock period to release an item after 15 cents (or more) has been deposited since the last reset.
  • 8.
    Abstract representations • Threenickels in sequence: N, N, N • Two nickels followed by a dime: N, N, D • A nickel followed by a dime: N, D • A dime followed by a nickel: D, N • Two dimes in sequence: D, D
  • 9.
  • 10.
    The machine willpass through the states S0, S1, S3, S7 if the input sequence is three nickels. in state S0 if neither input N or D is asserted, we assume the machine remains in state S0 (the specification allows us to assume that N and D are never asserted at the same time). Also, we include the output Open only in states in which it is asserted. Open is implicitly unasserted in any other state.
  • 11.
    State Minimization This nine-statedescription isn't the "best" possible. For one thing, since states S4, S5, S6,S7 and S8 have identical behavior, they can be combined into a single state. To reduce the number of states even further, we can think of each state as representing the amount of money received so far. For example, it shouldn't matter whether the state representing 10 cents was reached through two nickels or one dime.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
    Vending machine kinds Thereare so many types of vending machines available from different vending machine manufacturers and suppliers. Some machines need electricity to vend the products, while some others use mechanical motion to vend. They come in several sizes, shapes, colors, and prices. Vending machines are found mostly in shopping malls, waiting areas, bowling alleys, businesses, and schools.
  • 17.
    Commonly vending machines •Soda vending machine • Gumball vending machine • Snack vending machine • Food and toy vending machine • Coffee vending machine • Cigarette vending machines • Pop corn vending machine
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 26.
    Present state InputNext state Output QA QB N D DA DB C 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 X X 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 X X 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 X X 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 X X 1
  • 27.
    DA 00 0111 10 00 1 1 01 1 1 1 1 11 X X X X 10 1 1 1 C 00 01 11 10 00 1 01 1 11 1 10 1 DB 00 01 11 10 00 1 1 01 1 1 1 11 X X X X 10 1 1 1 QA QB QA AB QA QB N D N D N D
  • 28.
    Flip-flop Inputs Equationsand System Output Equation and it’s conversion to NAND Gates: • DA = QA + D + NQB = (QA + D + NQB)” = (QA’D’(NQB)’)’ • DB = NQB’ + NQA + DQA + N’QB = (NQB’ + NQA + DQA + N’QB)” = ((NQB’)’(NQA)’(DQA)’(N’QB)’)’ • C’ = (QAQB)’ = ((QAQB)’)” = (QA’QB’)’
  • 29.
    Logic circuit diagramusing NAND gates and two Flip Flops
  • 30.
    References • http://EzineArticles.com/352816 ^ •"Old World, High Tech". Smithsonian Magazine. • http://en.wikipedia.org/wiki/Vending_machin e • http://www.ecgf.uakron.edu/grover/web/ee2 63/labs/ASimpleVendingMachine.pdf • : http://www.businessdictionary.com/definitio n/vending-machine.html#ixzz2XoOXrsBt