SlideShare a Scribd company logo
1 of 7
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 6, December 2020, pp. 3019~3025
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i6.16133  3019
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Vehicle logo recognition using histograms of oriented gradient
descriptor and sparsity score
Kittikhun Meethongjan1
, Thongchai Surinwarangkoon2
, Vinh Truong Hoang3
1
Faculty of Science and Technology, Suan Sunandha Rajabhat University, Thailand
2
Faculty of Management Science, Suan Sunandha Rajabhat University, Thailand
3
Faculty of Computer Science, Ho Chi Minh City Open University, Vietnam
Article Info ABSTRACT
Article history:
Received Mar 24, 2020
Revised May 24, 2020
Accepted Jun 25, 2020
Most of vehicle have the similar structures and designs. It is extremely
complicated and difficult to identify and classify vehicle brands based on their
structure and shape. As we require a quick and reliable response, so vehicle
logos are an alternative method of determining the type of a vehicle. In this
paper, we propose a method for vehicle logo recognition based on feature
selection method in a hybrid way. Vehicle logo images are first characterized
by Histograms of Oriented Gradient descriptors and the final features vector
are then applied feature selection method to reduce the irrelevant information.
Moreover, we release a new benchmark dataset for vehicle logo recognition
and retrieval task namely, VLR-40. The experimental results are evaluated on
this database which show the efficiency of the proposed approach.
Keywords:
Feature selection
HOG descriptor
Image classification
Sparsity score
Vehicle logo recognition This is an open access article under the CC BY-SA license.
Corresponding Author:
Vinh Truong Hoang,
Faculty of Computer Science,
Ho Chi Minh City Open University,
97 Vo Van Tan Street, Ward 6, District 3, HCM City, Vietnam.
Email: vinh.th@ou.edu.vn
1. INTRODUCTION
How to identify a brand and distinguish with the others visually? Each brand has its own logo that
represent a trademark, contain a certain meaning symbolizing that brand and its manufacturer. To create
an impressive logo, specific characteristics need to pay attention to many details including: layout, colors, lines,
angles, and all information must be arranged in coherent and harmony way. Traditional vehicle recognition
systems identify vehicle based on manual human observations via license plate or model of vehicles. Thus,
automatic vehicle identification is a key problem in intelligent transportation system. Each vehicle has a unique
license plate, but it is difficult to track and identify since these images are in very low quality in in smart
surveillance systems.
Various works have been proposed for vehicle logo recognition in the past. We briefly review several
works in this field. For example, Llorca et al. [1] apply histograms of oriented gradients and support vector
machines (SVM) classifier for vehicle manufacturer recognition. A region of interest is applied before
extracting histograms of oriented gradient (HOG) features from logo images. Huang et al. [2] propose a system
for car logo segmentation and recognition based on an efficient pre-trained convolutional neural network
(CNN) model. Huan et al. [3] present a new algorithm based on Hough transform and Deep Learning is for
vehicle logo retrieval task which combine shape detection and deep belief networks. Pan et al. [4] use scale
invariant feature transform (SIFT) descriptor and CNN as the feature extraction method from vehicle logo
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025
3020
images. An enhanced logo-recognition system is presented by Psyllos et al. [5] on the Medialab license plate
recognition (LPR) dataset. Huang et al. [6] apply Faster-RCNN model with two different CNNs (VGG-16 and
ResNet-50) for vehicle logo recognition. Sotheeswaran and Ramanan [7] present a study focuses on local
features that describe structural characteristics of the logo of a car using a coarse-to-fine strategy. Nie et al. [8]
present a new VLR method based on foreground-background pixel-pair feature. Different hand-crafted
descriptors (HOG, LBP and SIFT) are applied to extract features. Cyganek and M. Wo´ zniak [9] use ensemble
classifiers based on higher-order singular value decomposition to classify vehicle logo. More recently, Zhao
and Wang [10] introduce a modified version of HU invariant moment to represent car logo images.
Indeed, many machine learning problems in computer vision and several related domains need to deal
with very high dimensional data. Many of these features may not be relevant for the final prediction task and
degrade the classification performance. Multiple studies have shown that the classification performance can be
improved by eliminating these features. These issues can be solved by the method of the dimensionality
reduction. For this purpose, the dimensionality reduction can be achieved either by feature extraction or feature
selection to a low dimensional space. Feature extraction refers to the methods that create a set of new features
based on the linear or non-linear combinations of the original features. Further analysis is problematic since
we cannot get the physical meanings of these features in the transformed space. Examples of feature extraction
methods include principal component analysis (PCA) [11], locality preserving projections (LPP) [12].
In contrast, the feature selection methods aim at finding adequate subsets of features by keeping some
original features and therefore maintains the physical meanings of the features. The use of both methods has
the advantage of improving performance of classification and increasing computational efficiency. Recently, feature
selection has gained increasing interest in the field of machine learning [13-16], data analysis [17-19], and
successfully applied in computer vision such as information retrieval [20-22] or visual object tracking [23-25].
In this work, we focus on the application of feature selection methods to vehicle logo images classification
by sparsity score. This paper is organized and structured as follows. Section 2 introduces the feature extracting
methods based on three local image descriptors. Section 2 and 3 present proposed approach and experimental
results. Finally, the conclusion is discussed in section 4.
2. THE FEATURE EXTRACTION AND SELECTION
2.1. Histograms of oriented gradient descriptor
Histograms of oriented gradient (HOG) descriptor is applied for different problems in machine vision
[26-32]. HOG feature is extracted by counting the occurrences of gradient orientation base on the gradient angle
and the gradient magnitude of local patches of an image. The gradient angle and magnitude at each pixel are
computed in an 8 × 8 pixels patch. Next, 64 gradient feature vectors are divided into 9 angular bins 0-180°
(20°
each). The gradient magnitude 𝑇 and angle 𝐾 at each position (𝑘, ℎ) from an image 𝐽 are computed as follows:
∆ 𝑘= |𝐽(𝑘 − 1, ℎ) − 𝐽(𝑘 + 1, ℎ)| (1)
∆ℎ= |𝐽(𝑘, ℎ − 1) − 𝐽(𝑘, ℎ + 1)| (2)
𝑇(𝑘,ℎ) = √∆𝑖
2
+ ∆𝑗
2
(3)
𝐾(𝑘,ℎ) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
∆ 𝑖
∆ 𝑗
) (4)
2.2. Feature selection
Based on the availability of supervised information (i.e. labels), feature selection techniques can be
grouped into two large categories: supervised and unsupervised context [33]. Additionally, different strategies
of feature selection are proposed based on evaluation process such as filter, wrapper, and hybrid methods [34].
Hybrid approaches incorporate both filter and wrapper into a single structure, to give an effective solution for
dimensionality reduction [35].
Liu et al. extend the unsupervised sparsity score to supervised context by utilizing the class label
information [36, 37]. Let 𝑓𝑟𝑖
𝑐
denotes the 𝑟 𝑡ℎ
feature of 𝑖 𝑡ℎ
instance in class 𝑐, 𝑠̂𝑖𝑗
𝑐
is the element of sparse
similarity matrix 𝑆 𝑐
which is constructed within the class 𝑐, 𝒆 𝑐
is a N- dimensional vector with 𝒆 𝑐
=1, if 𝐼𝑖
belongs to the class 𝑐 and 0 otherwise. The two proposed supervised sparsity score of the 𝑟 𝑡ℎ
feature, denoted
SparseScore 𝑟, which should be minimized, are defined as follows:
TELKOMNIKA Telecommun Comput El Control 
Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan)
3021
SparseScore1 𝑟 = ∑ ∑ (𝑓𝑟𝑖
𝑝
− ∑ 𝑠̂𝑖𝑗
𝑝
𝑓𝑟𝑗
𝑝𝑁 𝑝
𝑗=1
)
𝑁 𝑝
𝑖=1
𝑃
𝑝=1 (5)
SparseScore2 𝑟 =
∑ ∑ (𝑓𝑟𝑖
𝑐
−∑ 𝑠̂ 𝑖𝑗
𝑐
−𝑓𝑟𝑗
𝑐𝑁 𝑐
𝑗=1
)
𝑁 𝑐
𝑖=1
𝐶
𝑐=1
∑ ∑ (𝑓𝑟𝑖
𝑐
−µ 𝑟𝑐)
2𝑁 𝑐
𝑖=1
𝐶
𝑐=1
(6)
After calculating the score for each feature, they are sorted in the ascending order of SparseScore 𝑟 to select
the relevant ones. In the classification experiments, Liu et al. have demonstrated that this score outperforms
other methods in most cases, especially for multi-class problems [36].
3. EXPERIMENTAL RESULTS
3.1. Experimental setup
Despite the vehicle logo recognition problem has been studied for many years, a few publicly available
is available for the computer vision community. There are a few datasets is applied for logo detection such as
vehicle logo dataset with 30 classes, namely VLD-30 [38]. Table 1 analyses the existing vehicle logo datasets.
The first column indicates the dataset name and its reference. The second column show the availability of the pre-
defined training and testing set. This information is important for compare the classification results because other
researchers can use this decomposition to train and test their models instead of using cross-validation methods.
The next columns represent the number of logos, total images, and its resolution. The last column shows the
availability of the corresponding dataset.
The drawback of these datasets is the lack of pre-defined decomposition for training and testing set and
mages are resized to the same resolution. To this end, we collected and organized a large-scale and comprehensive
image database called VLR-40. This dataset contains images that were taken by different users, in unconstrained
condition. The data was gathered by crawling from web pages and cropped semi-automatically. We keep the original
resolution from cropped logo. It can be downloaded publicly at: https://data.mendeley.com/datasets/dr233ns3g6/3
which contains total 4,000 color images of vehicle logo (see several example images from this dataset in 1).
The sizes of each image are totally different. There is a total of 40 classes of logo in this original dataset. The data is
split in half to be used as training and testing sets for classification task. Vehicle logo images are cropped from photo
of car images semi-automatically. They also contain background and foreground and make this dataset is more
challenging than the others. Figure 1 illustrates the two-vehicle logos are cropped from an original image.
Table 1. Summary of the available logo databases in literature
Dataset Name Pre-definedTrain/Test Number of logos Total images Resolution Publicly
JiangSu [4] No 16 400 140 × 100 No
Beijing University [6] Yes 8 4,000 1000 × 600 No
VAP-RoadFig [3] No 30 200,000 varied No
ITS-VLR [8] Yes 35 14,000 50 × 50 No
CVLD [39] Yes 13 14,950 10 × 10
150 × 150
No
Pretraining Strategy [2] No 10 11,500 70 × 70 Yes
Xiamen University
vehicle logo [40]
Yes 10 11,500 70 × 70 Yes
HFUT-VL [41] No 80 32,000 64 × 64
64 × 96
Yes
Xi’an Jiaotong Liverpool
University VL [42]
No 15 19,780 64 × 64 No
Vehicle logo recognition (VLR-40) [43] Yes 40 4,000 varied Yes
Figure 1. Example of vehicle logo images extracted from real-life scenario.
The original image ison the left and two logos are cropped from this image
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025
3022
Figure 2 illustrates the cropped images from original image crawled from the web. We can observe that
the two cropped images of the Ferrari logo are different visually by the resolution, rotation, and color. Under
the current technology condition, these problems make this dataset is more challenging than others. Table 2
presents example images of 40 different logo from VLR-40 dataset.
Figure 2. Several categories of VLR-40 dataset
3.2. Results
There are many color spaces are proposed in the literature for different applications. The HOG descriptor
is applied to extract features from vehicle logo image of each color component. The final feature is obtained by
fusing all features from three components. Three color spaces (RGB, HSV, YCbCr) are considered to encode
image since these spaces are widely used for pattern recognition application. The training set is used to compute
sparse score by (5) and (6). The value of these scores are then applied to rank features of training and testing set.
Here, we use the cut-off ratio is 1% number of features to determine the optimum dimension. Table 2 presents
the classification results on the VLR-40 dataset. The first column indicates the color space used to encode vehicle
logo images. The second column shows the accuracy achieved of each space and its dimension when no selection
method is applied. The number of features is 11,532×3 = 34,596 features. We see that the accuracy varies on
different color space. The second and third column present the classification results by using sparse score 1
and sparse score 2, respectively. The sparse score 1 clearly outperforms other methods by giving the best
accuracy (75.25%) by using 77% (26,638 features) number of features. The sparse score 2 give the accuracy
close to the results when no selection method is applied. However, it largely reduces number of features
comparing with sparse score 1. For example, sparse score 2 only uses 20% number of features on HSV space
while giving better performance. By observing this table, we see that feature selection method gives
the accuracy as performing when no selection method, but it allows to reduce the dimension space.
Table 2. Classification results on the VLR-40 dataset with two feature selection methods
Color Space
Without selection SparseScore1 SparseScore2
Accuracy Dimension Accuracy Dimension Accuracy Dimension
RGB 72.95 34,596 75.25 77% 72.95 70%
HSV 66.30 34,596 67.50 83% 66.90 20%
YCbCr 71.20 34,596 74.40 72% 71.30 86%
Additionally, Figure 3 compares the performance of two sparse score 1 and 2 on three different color spaces.
The combination of HSV color space and sparse core 1 give the worst performance compared with other
methods. The RGB space and sparse score 2 give a good performance at early stage since it only need fewer
than 10% number of features to reach an accuracy more than 70%. In contrast, the YCbCr and HSV spaces
combined with sparse score 1 achieve a very low accuracy at the beginning when number of selected features
is fewer than 55%. So, experimental results show that it should be interesting to find a suitable color space to
encode vehicle logo images and an appropriate feature selection method to remove irrelevant features.
TELKOMNIKA Telecommun Comput El Control 
Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan)
3023
Figure 3. Classification performance of SparseScore1 and SparseScore2 on VLR-40 dataset by different
color spaces
4. CONCLUSION
This paper presents a vehicle logo recognition based on HOG descriptor and feature selection via two
sparse score. We also release a new benchmark vehicle logo image (VLR-40) dataset for research community.
The experimental results show that the sparse score 1 gives the best accuracy on the RGB color space and
largely reduce number of features. This study is now extended to compare the performance and find a suitable
color space for encoding vehicle logo images.
ACKNOWLEDGEMENTS
This work was supported by Suan Sunandha Rajabhat University, Thailand.
REFERENCES
[1] D. F. Llorca, R. Arroyo, and M. A. Sotelo, “Vehicle logo recognition in traffic images using HOG features and SVM,”
In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2229-2234, 2013.
[2] Yue Huang, Ruiwen Wu, Ye Sun, Wei Wang, and Xinghao Ding, “Vehicle Logo Recognition System Based on
Convolutional Neural Networks with a Pretraining Strategy,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 4, pp. 1951-1960, 2015.
[3] Li Huan, Wang Li, and Qin Yujian, “Vehicle Logo Retrieval Based on Hough Transform and Deep Learning,”
International Conference on Computer Vision Workshops (ICCVW), pp. 967-973, 2017.
[4] Chun Pan, Mingxia Sun, Zhiguo Yan, Jie Shao, Xiaoming Xu, and Di Wu, “Vehicle logo recognition based on deep
learning architecture in video surveillance for intelligent traffic system,” IET International Conference on Smart and
Sustainable City 2013 (ICSSC 2013), pp. 132-135, 2013.
[5] Apostolos P. Psyllos, Christos-Nikolaos E. Anagnostopoulos, and Eleftherios Kayafas, “Vehicle Logo Recognition
Using a SIFT-Based Enhanced Matching Scheme,” IEEE Transactions on Intelligent Transportation Systems, vol. 11,
no. 2, pp. 322-328, 2010.
[6] Z. Huang, M. Fu, K. Ni, H. Sun, and S. Sun, “Recognition of Vehicle Logo Based on Faster-RCNN,” Songlin Sun,
editor, Signal and Information Processing, Networking and Computers, vol. 494, pp. 75-83, 2019.
[7] S. Sotheeswaran, A. Ramanan, “A Coarse-to-Fine Strategy for Vehicle Logo Recognition from Frontal-View Car
Images,” Pattern Recognition and Image Analysis, vol. 28, no. 1, pp. 142-154, 2018.
[8] Z. Nie, Y. Yu, and Q. Jin, “A Vehicle Logo Recognition Approach Based on Foreground-Background Pixel-Pair
Feature,” Transactions on Edutainment XIII, pp. 204-214, 2017.
[9] B. Cyganek and M. Wo´ zniak, “Vehicle Logo Recognition with an Ensemble of Classifiers,” Bootstrapping and Rule-
Based Model for Recognizing Vietnamese Named Entity,” pp.117-126, 2014.
[10] J. Zhao and X. Wang, “Vehicle-logo recognition based on modified HU invariant moments and SVM,” Multimedia
Tools and Applications, vol. 78, no. 1, pp. 75-97, 2019.
[11] K. Fukunaga, “Introduction to statistical pattern recognition. Computer science and scientific computing,” Academic
Press, Boston, 2nd ed edition, 1990.
[12] X. He and P. Niyogi, “Locality preserving projections,” Advances in neural information processing systems, pp. 153-160, 2004.
[13] S. K. Shevade and S. S. Keerthi, “A simple and efficient algorithm for gene selection using sparse logistic regression,”
Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003.
[14] T. Li, C. Zhang, and M. Ogihara, “A comparative study of feature selection and multiclass classification methods for
tissue classification based on gene expression,” Bioinformatics, vol. 20, no. 15, pp. 2429-2437, 2004.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025
3024
[15] M. Yang, F. Wang, and P. Yang, “A novel feature selection algorithm based on hypothesis margin,” Journal of
Computers, vol. 3, no. 12, pp. 27-34, 2008.
[16] W. Megchelenbrik, “Relief-Based feature selection in bioinformatics: detecting functional specificity residues from
multiple sequence alignments,” Radboud University, Nijmegen, 2010.
[17] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data analysis, vol. 1, no. 3, pp. 131-156, 1997.
[18] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature selection for high-dimensional data analysis,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1610-1626, 2010.
[19] D. Dernoncourt, B. Hanczar, and J. D. Zucker, “Analysis of feature selection stability on high dimension and small
sample data,” Computational Statistics & Data Analysis, vol. 71, pp. 681-693, 2014.
[20] G. Roffo, C. Segalin, A. Vinciarelli, V. Murino, and M. Cristani, “Reading between the turns: statistical modeling for
identity recognition and verification in chats,” Proceedings of the 10th IEEE International Conference on Advanced
Video and Signal Based Surveillance, pp. 99-104, 2013.
[21] G. Roffo, C. Giorgetta, R. Ferrario, W. Riviera, and M. Cristani, “Statistical analysis of personality and identity in
chats using a keylogging platform,” Proceedings of the 16th International Conference on Multimodal Interaction,
pp. 224-231, 2014.
[22] G. Roffo, M. Cristani, L. Bazzani, H. Q. Minh, and V. Murino, “Trusting skype: Learning the Way People Chat for
Fast User Recognition and Verification,” Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 748-754, 2013.
[23] J. Yuan and F. B. Bastani, “Robust object tracking via online informative feature selection,” Proceedings of the IEEE
International Conference on Image Processing, pp. 471-475, 2014.
[24] K. Zhang, L. Zhang, and M. H. Yang, “Real-Time Object Tracking Via Online Discriminative Feature Selection,”
IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 4664-4677, 2013.
[25] O. Deniz, G. Bueno, J. Salido, and F. De la Torre, “Face recognition using histograms of oriented gradients,” Pattern
Recognition Letters, vol. 32, no. 12, pp. 1598-1603, 2011.
[26] D. P. V. Hoai, T. Surinwarangkoon, V. T. Hoang, H. T. Duong, and K. Meethongjan, “A comparative study of rice
variety classification based on deep learning and hand-crafted features,” ECTI Transactions on Computer and
Information Technology (ECTI-CIT), vol. 14, no. 1, pp. 1-10, 2020.
[27] H. T. M. Nhat and V. T. Hoang, “Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation
Analysis for face recognition,” 26th International Conference on Telecommunications (ICT), pp. 371-375, 2019.
[28] T. N. Van and V. T. Hoang, “Kinship Verification based on Local Binary Pattern features coding in different color
space,” 26th International Conference on Telecommunications (ICT), pp. 376-380, 2019.
[29] K. Meethongjan, M. Dzulkifli, P. K. Ree, and M. Y. Nam, “Fusion affine moment invariants and wavelet packet
features selection for face verification,” Journal of Theoretical and Applied Information Technology, vol. 64, no. 3,
pp. 606-615, 2014.
[30] T. Surinwarangkoon, S. Nitsuwat, and J. Elvin, “A traffic sign detection and recognition system,” International
Journal of Circuits, Systems and Signal Processing, vol. 7, no. 1, pp. 58-65, 2013.
[31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection, “2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),” vol. 1, pp. 886-893, 2005.
[32] K. Benabdeslem and M. Hindawi, “Constrained Laplacian score for semi-supervised feature selection,” Machine
Learning and Knowledge Discovery in Databases, pp. 204-218, 2011.
[33] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The Journal of Machine Learning
Research, vol. 3, no. 1157-1182, 2003.
[34] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A new perspective,” Neurocomputing,
vol. 300, pp. 70-9, 2018.
[35] M. Liu and D. Zhang, “Sparsity score: a novel graph-preserving feature selection method,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 28, no. 04, 2014.
[36] C. Zu, L. Zhu, and D. Zhang, “Iterative sparsity score for feature selection and its extension for multimodal data,”
Neurocomputing, vol. 259, pp. 146, 53, 2017.
[37] S. Yang, J. Zhang, C. Bo, M. Wang, and L. Chen, “Fast vehicle logo detection in complex scenes,” Optics & Laser
Technology, vol. 110, pp. 196-201, 2018.
[38] R. Liu, Q. Han, W. Min, L. Zhou, and J. Xu, “Vehicle Logo Recognition Based on Enhanced Matching for Small
Objects, Constrained Region and SSFPD Network,” Sensors, vol. 19, no. 20, pp. 1-18, 2019.
[39] F. Tafazzoli, H. Frigui, and K. Nishiyama, “A Large and Diverse Dataset for Improved Vehicle Make and Model
Recognition,” 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 874-881, 2017.
[40] Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, “Vehicle logo recognition based on overlapping enhanced patterns of
oriented edge magnitudes,” Computers & Electrical Engineering, vol. 71, pp. 273-283, 2018.
[41] Y. Xia, J. Feng, and B. Zhang, “Vehicle Logo Recognition and attributes prediction by multi-task learning with CNN,”
2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD), pp. 668-672, 2016.
[42] Xia Y, Feng J, Zhang B. Vehicle logo recognition and attributes prediction by multi-task learning with CNN.
Proceedings of 12th IEEE international conference on natural computation, fuzzy systems and knowledge discovery
(ICNC-FSKD). 2016. p. 668–72.
[43] V. T. Hoang, “HGM-4: A new multi-cameras dataset for hand gesture recognition,” vol. 30, 2020.
TELKOMNIKA Telecommun Comput El Control 
Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan)
3025
BIOGRAPHIES OF AUTHORS
Kittikhun Meethongjan is a full lecturer in the Computer Science Program, Head of Apply
Science Department, Faculty of Science and Technology, Suan Sunandha Rajabhat
University (SSRU), Thailand. He received his B.Sc. Degree in Computer Science from
SSRU in 1990, a master’s degree in computer science from King Mongkut's University of
Technology Thonburi (KMUTT) in 2000 and a PhD degree in Computer Graphic from
the University of Technology Malaysia in 2013. His research interest is Computer Graphic,
Image Processing, Artificial Intelligent, Biometrics, Pattern Recognition, Soft Computing
techniques and application. Currently, he is an advising of Master and PhD student in
Forensic Science of SSRU.
Thongchai Surinwarangkoon was born in Suratthani, Thailand in 1972. He obtained B.Sc.
degree in mathematics from Chiang Mai University, Thailand in 1995. He received M.Sc.
degree in management of information technology from Walailak University, Thailand in
2005 and Ph.D. in information technology from King Mongkut's University of Technology
North Bangkok, Thailand in 2014. He is now a Lecturer in Department of Business
Computer, Suan Sunandha Rajabhat University, Bangkok, Thailand. His research interests
include digital image processing, machine learning, artificial intelligence, business
intelligence, and mobile application development for business.
Vinh Truong Hoang received his master’s degree from the University of Montpellier in
2009 and his PhD degree in computer science from the University of the Littoral Opal Coast,
France. He is currently an assistant professor and Head of Image Processing and Computer
Graphics Department at the Ho Chi Minh City Open University, Vietnam. His research
interests include image analysis and feature selection.

More Related Content

What's hot

Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...
Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...
Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...IJERA Editor
 
Performance evaluation of different automatic seed point generation technique...
Performance evaluation of different automatic seed point generation technique...Performance evaluation of different automatic seed point generation technique...
Performance evaluation of different automatic seed point generation technique...IAEME Publication
 
Face recognition using selected topographical features
Face recognition using selected topographical features Face recognition using selected topographical features
Face recognition using selected topographical features IJECEIAES
 
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...JANAK TRIVEDI
 
A design of license plate recognition system using convolutional neural network
A design of license plate recognition system using convolutional neural networkA design of license plate recognition system using convolutional neural network
A design of license plate recognition system using convolutional neural networkIJECEIAES
 
Automatic face and VLP’S recognition for smart parking system
Automatic face and VLP’S recognition for smart parking systemAutomatic face and VLP’S recognition for smart parking system
Automatic face and VLP’S recognition for smart parking systemTELKOMNIKA JOURNAL
 
Vehicle Noise Pattern Recognition by Self-Organizing Maps
Vehicle Noise Pattern Recognition by Self-Organizing MapsVehicle Noise Pattern Recognition by Self-Organizing Maps
Vehicle Noise Pattern Recognition by Self-Organizing MapsCSCJournals
 
IRJET- Photo Optical Character Recognition Model
IRJET- Photo Optical Character Recognition ModelIRJET- Photo Optical Character Recognition Model
IRJET- Photo Optical Character Recognition ModelIRJET Journal
 
The Framework of Image Recognition based on Modified Freeman Chain Code
The Framework of Image Recognition based on Modified Freeman Chain CodeThe Framework of Image Recognition based on Modified Freeman Chain Code
The Framework of Image Recognition based on Modified Freeman Chain CodeCSCJournals
 
The review on automatic license plate recognition (alpr)
The review on automatic license plate recognition (alpr)The review on automatic license plate recognition (alpr)
The review on automatic license plate recognition (alpr)eSAT Journals
 
The review on automatic license plate recognition
The review on automatic license plate recognitionThe review on automatic license plate recognition
The review on automatic license plate recognitioneSAT Publishing House
 
A Novel Multiple License Plate Extraction Technique for Complex Background in...
A Novel Multiple License Plate Extraction Technique for Complex Background in...A Novel Multiple License Plate Extraction Technique for Complex Background in...
A Novel Multiple License Plate Extraction Technique for Complex Background in...CSCJournals
 
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...Automatic Recognition of Isolated And Interacting Manufacturing Features In M...
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...IJERA Editor
 
Role Model of Graph Coloring Application in Labeled 2D Line Drawing Object
Role Model of Graph Coloring Application in Labeled 2D Line Drawing ObjectRole Model of Graph Coloring Application in Labeled 2D Line Drawing Object
Role Model of Graph Coloring Application in Labeled 2D Line Drawing ObjectWaqas Tariq
 

What's hot (20)

Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...
Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...
Design Approach for a Novel Traffic Sign Recognition System by Using LDA and ...
 
Performance evaluation of different automatic seed point generation technique...
Performance evaluation of different automatic seed point generation technique...Performance evaluation of different automatic seed point generation technique...
Performance evaluation of different automatic seed point generation technique...
 
Ay36304310
Ay36304310Ay36304310
Ay36304310
 
Face recognition using selected topographical features
Face recognition using selected topographical features Face recognition using selected topographical features
Face recognition using selected topographical features
 
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...
OpenCVand Matlab based Car Parking System Module for Smart City using Circle ...
 
C045061425
C045061425C045061425
C045061425
 
A design of license plate recognition system using convolutional neural network
A design of license plate recognition system using convolutional neural networkA design of license plate recognition system using convolutional neural network
A design of license plate recognition system using convolutional neural network
 
Automatic face and VLP’S recognition for smart parking system
Automatic face and VLP’S recognition for smart parking systemAutomatic face and VLP’S recognition for smart parking system
Automatic face and VLP’S recognition for smart parking system
 
Vehicle Noise Pattern Recognition by Self-Organizing Maps
Vehicle Noise Pattern Recognition by Self-Organizing MapsVehicle Noise Pattern Recognition by Self-Organizing Maps
Vehicle Noise Pattern Recognition by Self-Organizing Maps
 
50120140504013 2
50120140504013 250120140504013 2
50120140504013 2
 
I044083842
I044083842I044083842
I044083842
 
IRJET- Photo Optical Character Recognition Model
IRJET- Photo Optical Character Recognition ModelIRJET- Photo Optical Character Recognition Model
IRJET- Photo Optical Character Recognition Model
 
ieee_my_proj
ieee_my_projieee_my_proj
ieee_my_proj
 
The Framework of Image Recognition based on Modified Freeman Chain Code
The Framework of Image Recognition based on Modified Freeman Chain CodeThe Framework of Image Recognition based on Modified Freeman Chain Code
The Framework of Image Recognition based on Modified Freeman Chain Code
 
The review on automatic license plate recognition (alpr)
The review on automatic license plate recognition (alpr)The review on automatic license plate recognition (alpr)
The review on automatic license plate recognition (alpr)
 
The review on automatic license plate recognition
The review on automatic license plate recognitionThe review on automatic license plate recognition
The review on automatic license plate recognition
 
BCA Syllabus
BCA Syllabus BCA Syllabus
BCA Syllabus
 
A Novel Multiple License Plate Extraction Technique for Complex Background in...
A Novel Multiple License Plate Extraction Technique for Complex Background in...A Novel Multiple License Plate Extraction Technique for Complex Background in...
A Novel Multiple License Plate Extraction Technique for Complex Background in...
 
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...Automatic Recognition of Isolated And Interacting Manufacturing Features In M...
Automatic Recognition of Isolated And Interacting Manufacturing Features In M...
 
Role Model of Graph Coloring Application in Labeled 2D Line Drawing Object
Role Model of Graph Coloring Application in Labeled 2D Line Drawing ObjectRole Model of Graph Coloring Application in Labeled 2D Line Drawing Object
Role Model of Graph Coloring Application in Labeled 2D Line Drawing Object
 

Similar to Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score

A Transfer Learning Approach to Traffic Sign Recognition
A Transfer Learning Approach to Traffic Sign RecognitionA Transfer Learning Approach to Traffic Sign Recognition
A Transfer Learning Approach to Traffic Sign RecognitionIRJET Journal
 
Vehicle detection and tracking techniques a concise review
Vehicle detection and tracking techniques  a concise reviewVehicle detection and tracking techniques  a concise review
Vehicle detection and tracking techniques a concise reviewsipij
 
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATION
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATIONFRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATION
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATIONsipij
 
Car Traffic Sign Annunciator
Car Traffic Sign AnnunciatorCar Traffic Sign Annunciator
Car Traffic Sign Annunciatorrahulmonikasharma
 
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...IRJET Journal
 
Paper id 252014106
Paper id 252014106Paper id 252014106
Paper id 252014106IJRAT
 
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...cseij
 
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...
IRJET- Traffic Sign Detection, Recognition and Notification System using ...IRJET Journal
 
Number Plate Recognition of Still Images in Vehicular Parking System
Number Plate Recognition of Still Images in Vehicular Parking SystemNumber Plate Recognition of Still Images in Vehicular Parking System
Number Plate Recognition of Still Images in Vehicular Parking SystemIRJET Journal
 
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET Journal
 
License plate recognition for campus auto-gate system
License plate recognition for campus auto-gate systemLicense plate recognition for campus auto-gate system
License plate recognition for campus auto-gate systemnooriasukmaningtyas
 
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...IJECEIAES
 
Vertical-Edge-Based Car-License-Plate Detection Method
Vertical-Edge-Based Car-License-Plate Detection MethodVertical-Edge-Based Car-License-Plate Detection Method
Vertical-Edge-Based Car-License-Plate Detection MethodIOSRJEEE
 
Official logo recognition based on multilayer convolutional neural network model
Official logo recognition based on multilayer convolutional neural network modelOfficial logo recognition based on multilayer convolutional neural network model
Official logo recognition based on multilayer convolutional neural network modelTELKOMNIKA JOURNAL
 
A Survey on Road Sign Detection and Classification
A Survey on Road Sign Detection and ClassificationA Survey on Road Sign Detection and Classification
A Survey on Road Sign Detection and ClassificationIRJET Journal
 
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...IOSR Journals
 
Projection Profile Based Number Plate Localization and Recognition
Projection Profile Based Number Plate Localization and Recognition Projection Profile Based Number Plate Localization and Recognition
Projection Profile Based Number Plate Localization and Recognition csandit
 
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITION
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITIONPROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITION
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITIONcscpconf
 
IRJET - Traffic Rules Violation Detection System
IRJET - Traffic Rules Violation Detection SystemIRJET - Traffic Rules Violation Detection System
IRJET - Traffic Rules Violation Detection SystemIRJET Journal
 

Similar to Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score (20)

A Transfer Learning Approach to Traffic Sign Recognition
A Transfer Learning Approach to Traffic Sign RecognitionA Transfer Learning Approach to Traffic Sign Recognition
A Transfer Learning Approach to Traffic Sign Recognition
 
Vehicle detection and tracking techniques a concise review
Vehicle detection and tracking techniques  a concise reviewVehicle detection and tracking techniques  a concise review
Vehicle detection and tracking techniques a concise review
 
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATION
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATIONFRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATION
FRONT AND REAR VEHICLE DETECTION USING HYPOTHESIS GENERATION AND VERIFICATION
 
Car Traffic Sign Annunciator
Car Traffic Sign AnnunciatorCar Traffic Sign Annunciator
Car Traffic Sign Annunciator
 
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
 
Paper id 252014106
Paper id 252014106Paper id 252014106
Paper id 252014106
 
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...
TRAFFIC-SIGN RECOGNITION FOR AN INTELLIGENT VEHICLE/DRIVER ASSISTANT SYSTEM U...
 
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
 
Number Plate Recognition of Still Images in Vehicular Parking System
Number Plate Recognition of Still Images in Vehicular Parking SystemNumber Plate Recognition of Still Images in Vehicular Parking System
Number Plate Recognition of Still Images in Vehicular Parking System
 
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine LearningIRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
IRJET- Road Recognition from Remote Sensing Imagery using Machine Learning
 
License plate recognition for campus auto-gate system
License plate recognition for campus auto-gate systemLicense plate recognition for campus auto-gate system
License plate recognition for campus auto-gate system
 
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...
Real-Time Video Processing using Contour Numbers and Angles for Non-urban Roa...
 
Vertical-Edge-Based Car-License-Plate Detection Method
Vertical-Edge-Based Car-License-Plate Detection MethodVertical-Edge-Based Car-License-Plate Detection Method
Vertical-Edge-Based Car-License-Plate Detection Method
 
Official logo recognition based on multilayer convolutional neural network model
Official logo recognition based on multilayer convolutional neural network modelOfficial logo recognition based on multilayer convolutional neural network model
Official logo recognition based on multilayer convolutional neural network model
 
A Survey on Road Sign Detection and Classification
A Survey on Road Sign Detection and ClassificationA Survey on Road Sign Detection and Classification
A Survey on Road Sign Detection and Classification
 
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...
Analyze Gear Failures and Identify Defects in Gear System for Vehicles Using ...
 
Projection Profile Based Number Plate Localization and Recognition
Projection Profile Based Number Plate Localization and Recognition Projection Profile Based Number Plate Localization and Recognition
Projection Profile Based Number Plate Localization and Recognition
 
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITION
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITIONPROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITION
PROJECTION PROFILE BASED NUMBER PLATE LOCALIZATION AND RECOGNITION
 
20120130402031
2012013040203120120130402031
20120130402031
 
IRJET - Traffic Rules Violation Detection System
IRJET - Traffic Rules Violation Detection SystemIRJET - Traffic Rules Violation Detection System
IRJET - Traffic Rules Violation Detection System
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.MdManikurRahman
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxMustafa Ahmed
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxRashidFaridChishti
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docxrahulmanepalli02
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..MaherOthman7
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2T.D. Shashikala
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfAshrafRagab14
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxMANASINANDKISHORDEOR
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1T.D. Shashikala
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligencemahaffeycheryld
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdfKamal Acharya
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualBalamuruganV28
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...drjose256
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfJNTUA
 

Recently uploaded (20)

"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdf
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptx
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Online crime reporting system project.pdf
Online crime reporting system project.pdfOnline crime reporting system project.pdf
Online crime reporting system project.pdf
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 

Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 6, December 2020, pp. 3019~3025 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i6.16133  3019 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score Kittikhun Meethongjan1 , Thongchai Surinwarangkoon2 , Vinh Truong Hoang3 1 Faculty of Science and Technology, Suan Sunandha Rajabhat University, Thailand 2 Faculty of Management Science, Suan Sunandha Rajabhat University, Thailand 3 Faculty of Computer Science, Ho Chi Minh City Open University, Vietnam Article Info ABSTRACT Article history: Received Mar 24, 2020 Revised May 24, 2020 Accepted Jun 25, 2020 Most of vehicle have the similar structures and designs. It is extremely complicated and difficult to identify and classify vehicle brands based on their structure and shape. As we require a quick and reliable response, so vehicle logos are an alternative method of determining the type of a vehicle. In this paper, we propose a method for vehicle logo recognition based on feature selection method in a hybrid way. Vehicle logo images are first characterized by Histograms of Oriented Gradient descriptors and the final features vector are then applied feature selection method to reduce the irrelevant information. Moreover, we release a new benchmark dataset for vehicle logo recognition and retrieval task namely, VLR-40. The experimental results are evaluated on this database which show the efficiency of the proposed approach. Keywords: Feature selection HOG descriptor Image classification Sparsity score Vehicle logo recognition This is an open access article under the CC BY-SA license. Corresponding Author: Vinh Truong Hoang, Faculty of Computer Science, Ho Chi Minh City Open University, 97 Vo Van Tan Street, Ward 6, District 3, HCM City, Vietnam. Email: vinh.th@ou.edu.vn 1. INTRODUCTION How to identify a brand and distinguish with the others visually? Each brand has its own logo that represent a trademark, contain a certain meaning symbolizing that brand and its manufacturer. To create an impressive logo, specific characteristics need to pay attention to many details including: layout, colors, lines, angles, and all information must be arranged in coherent and harmony way. Traditional vehicle recognition systems identify vehicle based on manual human observations via license plate or model of vehicles. Thus, automatic vehicle identification is a key problem in intelligent transportation system. Each vehicle has a unique license plate, but it is difficult to track and identify since these images are in very low quality in in smart surveillance systems. Various works have been proposed for vehicle logo recognition in the past. We briefly review several works in this field. For example, Llorca et al. [1] apply histograms of oriented gradients and support vector machines (SVM) classifier for vehicle manufacturer recognition. A region of interest is applied before extracting histograms of oriented gradient (HOG) features from logo images. Huang et al. [2] propose a system for car logo segmentation and recognition based on an efficient pre-trained convolutional neural network (CNN) model. Huan et al. [3] present a new algorithm based on Hough transform and Deep Learning is for vehicle logo retrieval task which combine shape detection and deep belief networks. Pan et al. [4] use scale invariant feature transform (SIFT) descriptor and CNN as the feature extraction method from vehicle logo
  • 2.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025 3020 images. An enhanced logo-recognition system is presented by Psyllos et al. [5] on the Medialab license plate recognition (LPR) dataset. Huang et al. [6] apply Faster-RCNN model with two different CNNs (VGG-16 and ResNet-50) for vehicle logo recognition. Sotheeswaran and Ramanan [7] present a study focuses on local features that describe structural characteristics of the logo of a car using a coarse-to-fine strategy. Nie et al. [8] present a new VLR method based on foreground-background pixel-pair feature. Different hand-crafted descriptors (HOG, LBP and SIFT) are applied to extract features. Cyganek and M. Wo´ zniak [9] use ensemble classifiers based on higher-order singular value decomposition to classify vehicle logo. More recently, Zhao and Wang [10] introduce a modified version of HU invariant moment to represent car logo images. Indeed, many machine learning problems in computer vision and several related domains need to deal with very high dimensional data. Many of these features may not be relevant for the final prediction task and degrade the classification performance. Multiple studies have shown that the classification performance can be improved by eliminating these features. These issues can be solved by the method of the dimensionality reduction. For this purpose, the dimensionality reduction can be achieved either by feature extraction or feature selection to a low dimensional space. Feature extraction refers to the methods that create a set of new features based on the linear or non-linear combinations of the original features. Further analysis is problematic since we cannot get the physical meanings of these features in the transformed space. Examples of feature extraction methods include principal component analysis (PCA) [11], locality preserving projections (LPP) [12]. In contrast, the feature selection methods aim at finding adequate subsets of features by keeping some original features and therefore maintains the physical meanings of the features. The use of both methods has the advantage of improving performance of classification and increasing computational efficiency. Recently, feature selection has gained increasing interest in the field of machine learning [13-16], data analysis [17-19], and successfully applied in computer vision such as information retrieval [20-22] or visual object tracking [23-25]. In this work, we focus on the application of feature selection methods to vehicle logo images classification by sparsity score. This paper is organized and structured as follows. Section 2 introduces the feature extracting methods based on three local image descriptors. Section 2 and 3 present proposed approach and experimental results. Finally, the conclusion is discussed in section 4. 2. THE FEATURE EXTRACTION AND SELECTION 2.1. Histograms of oriented gradient descriptor Histograms of oriented gradient (HOG) descriptor is applied for different problems in machine vision [26-32]. HOG feature is extracted by counting the occurrences of gradient orientation base on the gradient angle and the gradient magnitude of local patches of an image. The gradient angle and magnitude at each pixel are computed in an 8 × 8 pixels patch. Next, 64 gradient feature vectors are divided into 9 angular bins 0-180° (20° each). The gradient magnitude 𝑇 and angle 𝐾 at each position (𝑘, ℎ) from an image 𝐽 are computed as follows: ∆ 𝑘= |𝐽(𝑘 − 1, ℎ) − 𝐽(𝑘 + 1, ℎ)| (1) ∆ℎ= |𝐽(𝑘, ℎ − 1) − 𝐽(𝑘, ℎ + 1)| (2) 𝑇(𝑘,ℎ) = √∆𝑖 2 + ∆𝑗 2 (3) 𝐾(𝑘,ℎ) = 𝑎𝑟𝑐𝑡𝑎𝑛 ( ∆ 𝑖 ∆ 𝑗 ) (4) 2.2. Feature selection Based on the availability of supervised information (i.e. labels), feature selection techniques can be grouped into two large categories: supervised and unsupervised context [33]. Additionally, different strategies of feature selection are proposed based on evaluation process such as filter, wrapper, and hybrid methods [34]. Hybrid approaches incorporate both filter and wrapper into a single structure, to give an effective solution for dimensionality reduction [35]. Liu et al. extend the unsupervised sparsity score to supervised context by utilizing the class label information [36, 37]. Let 𝑓𝑟𝑖 𝑐 denotes the 𝑟 𝑡ℎ feature of 𝑖 𝑡ℎ instance in class 𝑐, 𝑠̂𝑖𝑗 𝑐 is the element of sparse similarity matrix 𝑆 𝑐 which is constructed within the class 𝑐, 𝒆 𝑐 is a N- dimensional vector with 𝒆 𝑐 =1, if 𝐼𝑖 belongs to the class 𝑐 and 0 otherwise. The two proposed supervised sparsity score of the 𝑟 𝑡ℎ feature, denoted SparseScore 𝑟, which should be minimized, are defined as follows:
  • 3. TELKOMNIKA Telecommun Comput El Control  Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan) 3021 SparseScore1 𝑟 = ∑ ∑ (𝑓𝑟𝑖 𝑝 − ∑ 𝑠̂𝑖𝑗 𝑝 𝑓𝑟𝑗 𝑝𝑁 𝑝 𝑗=1 ) 𝑁 𝑝 𝑖=1 𝑃 𝑝=1 (5) SparseScore2 𝑟 = ∑ ∑ (𝑓𝑟𝑖 𝑐 −∑ 𝑠̂ 𝑖𝑗 𝑐 −𝑓𝑟𝑗 𝑐𝑁 𝑐 𝑗=1 ) 𝑁 𝑐 𝑖=1 𝐶 𝑐=1 ∑ ∑ (𝑓𝑟𝑖 𝑐 −µ 𝑟𝑐) 2𝑁 𝑐 𝑖=1 𝐶 𝑐=1 (6) After calculating the score for each feature, they are sorted in the ascending order of SparseScore 𝑟 to select the relevant ones. In the classification experiments, Liu et al. have demonstrated that this score outperforms other methods in most cases, especially for multi-class problems [36]. 3. EXPERIMENTAL RESULTS 3.1. Experimental setup Despite the vehicle logo recognition problem has been studied for many years, a few publicly available is available for the computer vision community. There are a few datasets is applied for logo detection such as vehicle logo dataset with 30 classes, namely VLD-30 [38]. Table 1 analyses the existing vehicle logo datasets. The first column indicates the dataset name and its reference. The second column show the availability of the pre- defined training and testing set. This information is important for compare the classification results because other researchers can use this decomposition to train and test their models instead of using cross-validation methods. The next columns represent the number of logos, total images, and its resolution. The last column shows the availability of the corresponding dataset. The drawback of these datasets is the lack of pre-defined decomposition for training and testing set and mages are resized to the same resolution. To this end, we collected and organized a large-scale and comprehensive image database called VLR-40. This dataset contains images that were taken by different users, in unconstrained condition. The data was gathered by crawling from web pages and cropped semi-automatically. We keep the original resolution from cropped logo. It can be downloaded publicly at: https://data.mendeley.com/datasets/dr233ns3g6/3 which contains total 4,000 color images of vehicle logo (see several example images from this dataset in 1). The sizes of each image are totally different. There is a total of 40 classes of logo in this original dataset. The data is split in half to be used as training and testing sets for classification task. Vehicle logo images are cropped from photo of car images semi-automatically. They also contain background and foreground and make this dataset is more challenging than the others. Figure 1 illustrates the two-vehicle logos are cropped from an original image. Table 1. Summary of the available logo databases in literature Dataset Name Pre-definedTrain/Test Number of logos Total images Resolution Publicly JiangSu [4] No 16 400 140 × 100 No Beijing University [6] Yes 8 4,000 1000 × 600 No VAP-RoadFig [3] No 30 200,000 varied No ITS-VLR [8] Yes 35 14,000 50 × 50 No CVLD [39] Yes 13 14,950 10 × 10 150 × 150 No Pretraining Strategy [2] No 10 11,500 70 × 70 Yes Xiamen University vehicle logo [40] Yes 10 11,500 70 × 70 Yes HFUT-VL [41] No 80 32,000 64 × 64 64 × 96 Yes Xi’an Jiaotong Liverpool University VL [42] No 15 19,780 64 × 64 No Vehicle logo recognition (VLR-40) [43] Yes 40 4,000 varied Yes Figure 1. Example of vehicle logo images extracted from real-life scenario. The original image ison the left and two logos are cropped from this image
  • 4.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025 3022 Figure 2 illustrates the cropped images from original image crawled from the web. We can observe that the two cropped images of the Ferrari logo are different visually by the resolution, rotation, and color. Under the current technology condition, these problems make this dataset is more challenging than others. Table 2 presents example images of 40 different logo from VLR-40 dataset. Figure 2. Several categories of VLR-40 dataset 3.2. Results There are many color spaces are proposed in the literature for different applications. The HOG descriptor is applied to extract features from vehicle logo image of each color component. The final feature is obtained by fusing all features from three components. Three color spaces (RGB, HSV, YCbCr) are considered to encode image since these spaces are widely used for pattern recognition application. The training set is used to compute sparse score by (5) and (6). The value of these scores are then applied to rank features of training and testing set. Here, we use the cut-off ratio is 1% number of features to determine the optimum dimension. Table 2 presents the classification results on the VLR-40 dataset. The first column indicates the color space used to encode vehicle logo images. The second column shows the accuracy achieved of each space and its dimension when no selection method is applied. The number of features is 11,532×3 = 34,596 features. We see that the accuracy varies on different color space. The second and third column present the classification results by using sparse score 1 and sparse score 2, respectively. The sparse score 1 clearly outperforms other methods by giving the best accuracy (75.25%) by using 77% (26,638 features) number of features. The sparse score 2 give the accuracy close to the results when no selection method is applied. However, it largely reduces number of features comparing with sparse score 1. For example, sparse score 2 only uses 20% number of features on HSV space while giving better performance. By observing this table, we see that feature selection method gives the accuracy as performing when no selection method, but it allows to reduce the dimension space. Table 2. Classification results on the VLR-40 dataset with two feature selection methods Color Space Without selection SparseScore1 SparseScore2 Accuracy Dimension Accuracy Dimension Accuracy Dimension RGB 72.95 34,596 75.25 77% 72.95 70% HSV 66.30 34,596 67.50 83% 66.90 20% YCbCr 71.20 34,596 74.40 72% 71.30 86% Additionally, Figure 3 compares the performance of two sparse score 1 and 2 on three different color spaces. The combination of HSV color space and sparse core 1 give the worst performance compared with other methods. The RGB space and sparse score 2 give a good performance at early stage since it only need fewer than 10% number of features to reach an accuracy more than 70%. In contrast, the YCbCr and HSV spaces combined with sparse score 1 achieve a very low accuracy at the beginning when number of selected features is fewer than 55%. So, experimental results show that it should be interesting to find a suitable color space to encode vehicle logo images and an appropriate feature selection method to remove irrelevant features.
  • 5. TELKOMNIKA Telecommun Comput El Control  Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan) 3023 Figure 3. Classification performance of SparseScore1 and SparseScore2 on VLR-40 dataset by different color spaces 4. CONCLUSION This paper presents a vehicle logo recognition based on HOG descriptor and feature selection via two sparse score. We also release a new benchmark vehicle logo image (VLR-40) dataset for research community. The experimental results show that the sparse score 1 gives the best accuracy on the RGB color space and largely reduce number of features. This study is now extended to compare the performance and find a suitable color space for encoding vehicle logo images. ACKNOWLEDGEMENTS This work was supported by Suan Sunandha Rajabhat University, Thailand. REFERENCES [1] D. F. Llorca, R. Arroyo, and M. A. Sotelo, “Vehicle logo recognition in traffic images using HOG features and SVM,” In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2229-2234, 2013. [2] Yue Huang, Ruiwen Wu, Ye Sun, Wei Wang, and Xinghao Ding, “Vehicle Logo Recognition System Based on Convolutional Neural Networks with a Pretraining Strategy,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1951-1960, 2015. [3] Li Huan, Wang Li, and Qin Yujian, “Vehicle Logo Retrieval Based on Hough Transform and Deep Learning,” International Conference on Computer Vision Workshops (ICCVW), pp. 967-973, 2017. [4] Chun Pan, Mingxia Sun, Zhiguo Yan, Jie Shao, Xiaoming Xu, and Di Wu, “Vehicle logo recognition based on deep learning architecture in video surveillance for intelligent traffic system,” IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013), pp. 132-135, 2013. [5] Apostolos P. Psyllos, Christos-Nikolaos E. Anagnostopoulos, and Eleftherios Kayafas, “Vehicle Logo Recognition Using a SIFT-Based Enhanced Matching Scheme,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 322-328, 2010. [6] Z. Huang, M. Fu, K. Ni, H. Sun, and S. Sun, “Recognition of Vehicle Logo Based on Faster-RCNN,” Songlin Sun, editor, Signal and Information Processing, Networking and Computers, vol. 494, pp. 75-83, 2019. [7] S. Sotheeswaran, A. Ramanan, “A Coarse-to-Fine Strategy for Vehicle Logo Recognition from Frontal-View Car Images,” Pattern Recognition and Image Analysis, vol. 28, no. 1, pp. 142-154, 2018. [8] Z. Nie, Y. Yu, and Q. Jin, “A Vehicle Logo Recognition Approach Based on Foreground-Background Pixel-Pair Feature,” Transactions on Edutainment XIII, pp. 204-214, 2017. [9] B. Cyganek and M. Wo´ zniak, “Vehicle Logo Recognition with an Ensemble of Classifiers,” Bootstrapping and Rule- Based Model for Recognizing Vietnamese Named Entity,” pp.117-126, 2014. [10] J. Zhao and X. Wang, “Vehicle-logo recognition based on modified HU invariant moments and SVM,” Multimedia Tools and Applications, vol. 78, no. 1, pp. 75-97, 2019. [11] K. Fukunaga, “Introduction to statistical pattern recognition. Computer science and scientific computing,” Academic Press, Boston, 2nd ed edition, 1990. [12] X. He and P. Niyogi, “Locality preserving projections,” Advances in neural information processing systems, pp. 153-160, 2004. [13] S. K. Shevade and S. S. Keerthi, “A simple and efficient algorithm for gene selection using sparse logistic regression,” Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003. [14] T. Li, C. Zhang, and M. Ogihara, “A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression,” Bioinformatics, vol. 20, no. 15, pp. 2429-2437, 2004.
  • 6.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3019 - 3025 3024 [15] M. Yang, F. Wang, and P. Yang, “A novel feature selection algorithm based on hypothesis margin,” Journal of Computers, vol. 3, no. 12, pp. 27-34, 2008. [16] W. Megchelenbrik, “Relief-Based feature selection in bioinformatics: detecting functional specificity residues from multiple sequence alignments,” Radboud University, Nijmegen, 2010. [17] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data analysis, vol. 1, no. 3, pp. 131-156, 1997. [18] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature selection for high-dimensional data analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1610-1626, 2010. [19] D. Dernoncourt, B. Hanczar, and J. D. Zucker, “Analysis of feature selection stability on high dimension and small sample data,” Computational Statistics & Data Analysis, vol. 71, pp. 681-693, 2014. [20] G. Roffo, C. Segalin, A. Vinciarelli, V. Murino, and M. Cristani, “Reading between the turns: statistical modeling for identity recognition and verification in chats,” Proceedings of the 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 99-104, 2013. [21] G. Roffo, C. Giorgetta, R. Ferrario, W. Riviera, and M. Cristani, “Statistical analysis of personality and identity in chats using a keylogging platform,” Proceedings of the 16th International Conference on Multimodal Interaction, pp. 224-231, 2014. [22] G. Roffo, M. Cristani, L. Bazzani, H. Q. Minh, and V. Murino, “Trusting skype: Learning the Way People Chat for Fast User Recognition and Verification,” Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 748-754, 2013. [23] J. Yuan and F. B. Bastani, “Robust object tracking via online informative feature selection,” Proceedings of the IEEE International Conference on Image Processing, pp. 471-475, 2014. [24] K. Zhang, L. Zhang, and M. H. Yang, “Real-Time Object Tracking Via Online Discriminative Feature Selection,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 4664-4677, 2013. [25] O. Deniz, G. Bueno, J. Salido, and F. De la Torre, “Face recognition using histograms of oriented gradients,” Pattern Recognition Letters, vol. 32, no. 12, pp. 1598-1603, 2011. [26] D. P. V. Hoai, T. Surinwarangkoon, V. T. Hoang, H. T. Duong, and K. Meethongjan, “A comparative study of rice variety classification based on deep learning and hand-crafted features,” ECTI Transactions on Computer and Information Technology (ECTI-CIT), vol. 14, no. 1, pp. 1-10, 2020. [27] H. T. M. Nhat and V. T. Hoang, “Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face recognition,” 26th International Conference on Telecommunications (ICT), pp. 371-375, 2019. [28] T. N. Van and V. T. Hoang, “Kinship Verification based on Local Binary Pattern features coding in different color space,” 26th International Conference on Telecommunications (ICT), pp. 376-380, 2019. [29] K. Meethongjan, M. Dzulkifli, P. K. Ree, and M. Y. Nam, “Fusion affine moment invariants and wavelet packet features selection for face verification,” Journal of Theoretical and Applied Information Technology, vol. 64, no. 3, pp. 606-615, 2014. [30] T. Surinwarangkoon, S. Nitsuwat, and J. Elvin, “A traffic sign detection and recognition system,” International Journal of Circuits, Systems and Signal Processing, vol. 7, no. 1, pp. 58-65, 2013. [31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection, “2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),” vol. 1, pp. 886-893, 2005. [32] K. Benabdeslem and M. Hindawi, “Constrained Laplacian score for semi-supervised feature selection,” Machine Learning and Knowledge Discovery in Databases, pp. 204-218, 2011. [33] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The Journal of Machine Learning Research, vol. 3, no. 1157-1182, 2003. [34] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A new perspective,” Neurocomputing, vol. 300, pp. 70-9, 2018. [35] M. Liu and D. Zhang, “Sparsity score: a novel graph-preserving feature selection method,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 28, no. 04, 2014. [36] C. Zu, L. Zhu, and D. Zhang, “Iterative sparsity score for feature selection and its extension for multimodal data,” Neurocomputing, vol. 259, pp. 146, 53, 2017. [37] S. Yang, J. Zhang, C. Bo, M. Wang, and L. Chen, “Fast vehicle logo detection in complex scenes,” Optics & Laser Technology, vol. 110, pp. 196-201, 2018. [38] R. Liu, Q. Han, W. Min, L. Zhou, and J. Xu, “Vehicle Logo Recognition Based on Enhanced Matching for Small Objects, Constrained Region and SSFPD Network,” Sensors, vol. 19, no. 20, pp. 1-18, 2019. [39] F. Tafazzoli, H. Frigui, and K. Nishiyama, “A Large and Diverse Dataset for Improved Vehicle Make and Model Recognition,” 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 874-881, 2017. [40] Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, “Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes,” Computers & Electrical Engineering, vol. 71, pp. 273-283, 2018. [41] Y. Xia, J. Feng, and B. Zhang, “Vehicle Logo Recognition and attributes prediction by multi-task learning with CNN,” 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC- FSKD), pp. 668-672, 2016. [42] Xia Y, Feng J, Zhang B. Vehicle logo recognition and attributes prediction by multi-task learning with CNN. Proceedings of 12th IEEE international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). 2016. p. 668–72. [43] V. T. Hoang, “HGM-4: A new multi-cameras dataset for hand gesture recognition,” vol. 30, 2020.
  • 7. TELKOMNIKA Telecommun Comput El Control  Vehicle logo recognition using histograms of oriented gradient descriptor and… (Kittikhun Meethongjan) 3025 BIOGRAPHIES OF AUTHORS Kittikhun Meethongjan is a full lecturer in the Computer Science Program, Head of Apply Science Department, Faculty of Science and Technology, Suan Sunandha Rajabhat University (SSRU), Thailand. He received his B.Sc. Degree in Computer Science from SSRU in 1990, a master’s degree in computer science from King Mongkut's University of Technology Thonburi (KMUTT) in 2000 and a PhD degree in Computer Graphic from the University of Technology Malaysia in 2013. His research interest is Computer Graphic, Image Processing, Artificial Intelligent, Biometrics, Pattern Recognition, Soft Computing techniques and application. Currently, he is an advising of Master and PhD student in Forensic Science of SSRU. Thongchai Surinwarangkoon was born in Suratthani, Thailand in 1972. He obtained B.Sc. degree in mathematics from Chiang Mai University, Thailand in 1995. He received M.Sc. degree in management of information technology from Walailak University, Thailand in 2005 and Ph.D. in information technology from King Mongkut's University of Technology North Bangkok, Thailand in 2014. He is now a Lecturer in Department of Business Computer, Suan Sunandha Rajabhat University, Bangkok, Thailand. His research interests include digital image processing, machine learning, artificial intelligence, business intelligence, and mobile application development for business. Vinh Truong Hoang received his master’s degree from the University of Montpellier in 2009 and his PhD degree in computer science from the University of the Littoral Opal Coast, France. He is currently an assistant professor and Head of Image Processing and Computer Graphics Department at the Ho Chi Minh City Open University, Vietnam. His research interests include image analysis and feature selection.