SlideShare a Scribd company logo
Unit 2- ANALYSIS OF CONTINUOUS TIME SIGNALS
Part-A
1. The Trigonometric Fourier series of an evenfunction of time does not have the
a) Dc term
b) Cosine terms
c) Sine terms
d) Odd harmonic terms
c) Sine terms
2. The Trigonometric Fourier series of an odd function of time have only the
a) Sine terms
b) Cosine terms
c) Odd harmonic terms
d) Dc term
a)Sine terms
3. The Trigonometric Fourier series of a half wave symmetric signal [𝐱(𝐭) = −𝐱(𝐭 ±
𝐓
𝟐
)]
have only the
a) Dc term
b) Cosine terms
c) Odd harmonic terms
d) Sine terms
c)Odd harmonic terms
4. If f(t) = f(-t) and f(t) satisfy the Dirchlet’s conditions ,then f(t) can be expanded in a
Fourier series containing
a) Only Sine terms
b) Only Cosine terms
c) Constant and Cosine terms
d) Both Sine and Cosine terms
c)Constant and Cosine terms
5. Which among the following statement is is not a Dirichlet condition?
a) The signal (𝑡) must be single valued function.
b) The function x(t) should have finite number of maxima and minima in the period T.
c) The function x(t) should have finite number of discontinuities in the period T.
d) The function should not be absolutely integrable.
d)The function should not be absolutely integrable.
6. The trigonometric form of Fourier series of a periodic signal, 𝑥(𝑡) with period 𝑇 is defined as
a) x( 𝑡) = 𝑎0 + ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞
𝑛=1
b) x( 𝑡) = ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞
𝑛=1
c) x( 𝑡) = 𝑎0 + ∑ (𝑎 𝑛 cos 𝑛𝜔𝑡∞
𝑛=1 )
d) x( 𝑡) = 𝑎0 + ∑ ( 𝑏 𝑛 sin 𝑛𝜔𝑡)∞
𝑛=1
a)x( 𝑡) = 𝑎0 + ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞
𝑛=1
7. The fourier series expansion of a real periodic signal with fundamental period f0 is given by
gp(t) = ∑ Cn 𝑒 𝑗2𝜋𝑓0 𝑡∞
𝑛=−∞
.It is given that C3=3+j5.Then C-3 is
a) 5+j3
b) -3-j5
c) -5+j3
d) 3-j5
d)3-j5
8.The Fouriertransformof continuoustime signal,x(t) isdefinedas,
a) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒𝑗𝜔𝑡 𝑑𝑡
−∞
∞
b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒𝑗𝜔𝑡 𝑑𝑡
∞
−∞
c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
d) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
d) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
9.The inverse FourierTransformof 𝑋(𝑗𝜔) isdefinedas
a) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
−∞
∞
b) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
c) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
d) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(-j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
c)(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
10. The AnalysisEquationisgivenby
a) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
d) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
11. Selectthe Synthesisequation:
a) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞
−∞
d) 𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
d)𝑥(t)=𝐹-1
[X(j𝜔)]=
1
2π
∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞
−∞
12. The Fouriertransformof impulse signal δ[(𝑡)]isgivenas
a) 1
b) 0
c) ∞
d) -1
a)1
13. FindFouriertransformof stepsignal oru(𝒕)
a)
1
ω
b) 1
c) ∞
d) π ∂(ω) +
1
jω
d) π ∂(ω) +
1
jω
14. The Initial of Laplace Transformisgivenas
a) 𝑥(0) = lim
𝑠→∞
𝑋(𝑆)
b) 𝑥(0) =lim
𝑠→0
𝑆𝑋(𝑆)
c) 𝑥(0) = lim
𝑠→∞
𝑆𝑋(𝑆)
d) 𝑥(0) =lim
𝑠→0
𝑆
𝑋(𝑆)
𝑆
c) 𝑥(0) = lim
𝑠→∞
𝑆𝑋(𝑆)
15. Final Value theoremof Laplace Transformis
a) 𝑥(∞) =lim
𝑠→0
𝑆𝑋(𝑆)
b) 𝑥(∞) =lim
𝑠→∞
𝑆𝑋(𝑆)
c) 𝑥(∞) =lim
𝑠→∞
𝑋(𝑆)
d) 𝑥(∞) =lim
𝑠→0
𝑋(𝑆)
a)𝑥(∞) =lim
𝑠→0
𝑆𝑋(𝑆)
16. If x(t) isa rightsidedsequencethenROC is
a) Re{s} > σo
b) Re{s} < σo
c) entire s-plane
d) Re{s} > 0
a) Re{s} > σo
17. Parseval’srelationforcontinuoustimeFouriertransformisgivenby
a) E=∫ x( 𝑡) 𝑑𝑡
∞
−∞ =
1
2π
∫ X(𝑗𝜔)𝑑𝜔
∞
−∞
b) E=∫ x( 𝑡) 𝑑𝑡
∞
−∞ =
1
2π
∫ |X(𝑗𝜔)|2 𝑑𝜔
∞
−∞
c) E=∫ |x( 𝑡)|2 𝑑𝑡
∞
−∞ =
1
2π
∫ X(𝑗𝜔)𝑑𝜔
∞
−∞
d) E=∫ |x( 𝑡)|2 𝑑𝑡
∞
−∞ =
1
2π
∫ |X(𝑗𝜔)|2 𝑑𝜔
∞
−∞
d) E=∫ |x( 𝑡)|2 𝑑𝑡
∞
−∞ =
1
2π
∫ |X(𝑗𝜔)|2 𝑑𝜔
∞
−∞
18. Time Scalingpropertyof Fouriertransformisgivenby
a) 𝐹[ 𝑥(a𝑡)]=X(
𝑗𝜔
𝑎
)
b) 𝐹[ 𝑥(a𝑡)]=
1
|𝑎|
X(
𝑗𝜔
𝑎
)
c) 𝐹[ 𝑥(a𝑡)]=
1
|𝑎|
X(𝑗𝜔)
d) 𝐹[ 𝑥(a𝑡)]=
1
|𝑎|
X(𝑎)
b) 𝐹[ 𝑥(a𝑡)]=
1
|𝑎|
X(
𝑗𝜔
𝑎
)
19. Convolutionpropertyof Fouriertransform isgivenby
a) 𝐹[𝑥(𝑡)∗y(t)]=Y(j𝜔)
b) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔)
c) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔)Y(j𝜔)
d) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔)*Y(j𝜔)
c)F [(𝑡)∗y(t)]=X(j𝜔)Y(j𝜔)
20. Differentiationpropertyof Fouriertransformisgivenby
a) 𝐹[
𝑑𝑥(𝑡)
𝑑𝑡
]= j𝜔 X(j𝜔)
b) 𝐹[
𝑑𝑥(𝑡)
𝑑𝑡
]= 𝜔3 X(j𝜔)
c) 𝐹[
𝑑𝑥(𝑡)
𝑑𝑡
]= -j𝜔 X(j𝜔)
d) 𝐹[
𝑑𝑥(𝑡)
𝑑𝑡
]= X(
1
j𝜔
)
a)F[
𝒅𝒙(𝒕)
𝒅𝒕
]= j𝜔 X(j𝜔)
21. Time shiftingpropertyof Fouriertransformisgivenby
a) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒𝑗𝜔𝑡0
X(j𝜔)
b) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑡0
X(j𝜔)
c) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑗𝜔 X(
𝑗𝜔
𝑎
)
d) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑗𝜔𝑡0
X(j𝜔)
d)F[x(𝑡-𝑡0)]= 𝑒−𝑗𝜔𝑡0
X(j𝜔)
22. If x(t) isa leftsidedsequence thenROCis
a) Re{s} > σo
b) Re{s} < σo
c) entire s-plane
d) Re{s} > 0
b) Re{s} < σo
23. FindLaplace transformof x(𝒕) = 𝑒 𝑎𝑡 𝑢(𝒕)
a)
1
𝑠−𝑎
b)
1
𝑠+𝑎
c)
𝑆
𝑠−𝑎
d)
𝑆
𝑠+𝑎
a)
1
𝑠−𝑎
24. FindLaplace transform and ROCof x(𝒕) =- 𝑒−𝑎𝑡 𝒖(-𝒕)
a)
1
𝑠−𝑎
, σ>-a
b)
1
𝑠+𝑎
, σ>-a
c)
1
𝑠+𝑎
, σ<-a
d)
𝑆
𝑠+𝑎
, σ<-a
c)
1
𝑠+𝑎
, σ<-a
25. FindLaplace transform of x(t)=Cos𝜔0 𝑡
a)
𝜔
𝑠2−𝜔2
b)
𝜔
𝑠2+𝜔2
c)
𝑠
𝑠2−𝜔2
d)
𝑠
𝑠2+𝜔2
d)
𝑠
𝑠2 +𝜔2
26.FindLaplace transform of x(t)=Sin𝜔0 𝑡
a)
𝜔
𝑠2−𝜔2
b)
𝜔
𝑠2+𝜔2
c)
𝑠
𝑠2−𝜔2
d)
𝑠
𝑠2+𝜔2
b)
𝜔
𝑠2+𝜔2
27.Frequencyshiftingpropertyof Laplace transform isgivenby,
a) L[ 𝑒−𝑎𝑡x(t)]= X(s+a)
b) L[ 𝑒−𝑎𝑡x(t)]= X(s-a)
c) L[ 𝑒−𝑎𝑡x(t)]= X(as)
d) L[ 𝑒−𝑎𝑡x(t)]= X(
𝑠
a
)
a) L[ 𝑒−𝑎𝑡x(t)]= X(s+a)
28.FindLaplace transform of x(t)= 𝑒−𝑎𝑡Sin𝜔0 𝑡u(t)
a)
𝜔
(𝑠+𝑎)2−𝜔2
b)
𝜔
(𝑠+𝑎)2+𝜔2
c)
𝑠
(𝑠−𝑎)2+𝜔2
d)
𝑠
(𝑠+𝑎)2−𝜔2
b)
𝜔
(𝑠+𝑎)2+𝜔2
FrequencyshiftingpropertyL[ 𝑒−𝑎𝑡x(t)]= X(s+a)
29.FindLaplace transform of x(t)= 𝑒−𝑎𝑡Cos𝜔0 𝑡u(t)
a)
𝜔+𝑎
(𝑠+𝑎)2−𝜔2
b)
𝜔
(𝑠+𝑎)2+𝜔2
c)
𝑠
(𝑠−𝑎)2+𝜔2
d)
𝑠+𝑎
(𝑠+𝑎)2+𝜔2
𝑑)
𝑠+𝑎
(𝑠+𝑎)2+𝜔2
FrequencyshiftingpropertyL[ 𝑒−𝑎𝑡x(t)]= X(s+a)
30. FindLaplace transform of x(t)=u(t-2)
a)
𝑒−2𝑠
𝑠
b)
𝑒−𝑠
𝑠
c)
𝑒−𝑠
2𝑠
d)
𝑒−2𝑠
2𝑠
a)
𝑒−2𝑠
𝑠
(Time shiftingProperty) L[𝑥(𝑡-𝑡0)]= 𝑒−𝑠𝑡0
X(s)
31. FindLaplace transform of x(t)=𝜕(t-t0)
a)
𝑒−𝑠𝑡0
𝑠
b) 𝑒−𝑠𝑡0
c)
𝑒−𝑠𝑡0
2𝑠
d) 𝑒−𝑡0
b) 𝑒−𝑠𝑡0 (Time shiftingProperty)L[𝑥(𝑡-𝑡0)]= 𝑒−𝑠𝑡0
X(s)
32.Fouriertransformof DC signal of amplitude 1isgivenby
a) j𝜋𝜔
b)
𝑗
𝜋𝜔
c) 2𝜋𝜕(𝜔)
d)
1
2𝜋
c) 2𝜋𝜕(𝜔)
33.FindLaplace transform of x(t)=tu(t)
a)
1
𝑠2
b)
1
𝜔2
c)
𝑠
𝜔2
d)
𝑠
𝜔
a)
1
𝑠2
34.FindLaplace transform of x(t)= 𝑡𝑒−𝑎𝑡 u(t)
a)
1
(𝑠+𝜔)2
b)
𝑠
(𝑠−𝑎)2
c)
𝑠
(𝑠+𝑎)2
d)
1
(𝑠+𝑎)2
d)
1
(𝑠+𝑎)2
35. The Transferfunctionof an ideal integratorisgivenby,
a) s
b)
𝑠
𝜔
c)
1
𝑠
d)
𝜔
𝑠
c)
1
𝑠
36. The Transferfunctionof an ideal differentiatorisgivenby,
a)
1
𝑠
b) s
c)
𝑠
𝜔
d)
𝜔
𝑠
b)s
37. ROC of the impulse functionis
a) Re{s} > σo
b) Re{s} < σo
c) entire s-plane
d) Re{s} > 0
c) entire s-plane
38. The Fouriertransformof Sgn (t)
a) j𝜋𝜔
b)
𝑗
𝜋𝜔
c)
2
𝑗𝜔
d)
2𝜔
𝑗
𝑐)
2
𝑗𝜔
39.Findthe inverse fouriertransformof 𝜕(𝜔)
a) j𝜋𝜔
b)
𝑗
𝜋𝜔
c)
2
𝑗𝜔
d)
1
2𝜋
(d)
1
2𝜋
40.Findthe inverse Fouriertransformof 𝜕(𝜔 − 𝜔0)
a) j𝜋𝜔
b)
𝑗
𝜋𝜔
c)
𝑒 𝑗𝜔𝑡0
2𝜋
d)
𝑒−𝑠𝑡0
2𝑠
c)
𝑒 𝑗𝜔𝑡0
2𝜋
41. One of the conditionstobe satisfiedforthe existence of Fouriertransformis
a) ∫ |𝑥( 𝑡)|𝑑𝑡
∞
−∞ < ∞
b) ∫ |𝑥( 𝑡)|𝑑𝑡
∞
−∞ = ∞
c) ∫ |𝑥( 𝑡)|2 𝑑𝑡
∞
−∞ < ∞
d) ∫ |𝑥( 𝑡)|𝑑𝑡
−∞
∞ < ∞
a) ∫ |𝑥( 𝑡)|𝑑𝑡
∞
−∞ < ∞
42.The Transferfunctionof an ideal delayof Tseconds isgivenby,
a) 𝑒 𝑠𝑇
b)
𝑠
𝜔
c)
1
𝑠
d) 𝑒−𝑠𝑇
d) 𝑒−𝑠𝑇
43.FourierTransformand Laplace Transformare identical at
a) s= j𝜋𝜔
b) s=j𝜔
c) s=- j𝜔
d) s=
𝑖
j𝜔
b) s=j𝜔
44. Time Differentiationpropertyof Laplace Transform isgivenby
a) L[
𝑑𝑥(𝑡)
𝑑𝑡
]= j𝜔 X(j𝜔)
b) L[
𝑑𝑥(𝑡)
𝑑𝑡
]= 𝜔3 X(s)
c) L [
𝑑𝑥(𝑡)
𝑑𝑡
]= sX(s)
d) L [
𝑑𝑥(𝑡)
𝑑𝑡
]=
X(s)
𝑠
c)L [
𝑑𝑥(𝑡)
𝑑𝑡
]= sX(s)
45.The Laplace Transformof [
𝑑
𝑑𝑡2
2
𝑥(𝑡)] is givenby
a) s2
X(s)
b) s3
X(s)
c)
X(s)
s2
d) sX(s)
a) s2
X(s)
46.Linearitypropertyof FourierTransformisgivenby
a) F[ax(t) +by(t)] = aX(j𝜔) + bY(j𝜔)
b) F[ax(t) +by(t)]=aX(j𝜔) - bY(j𝜔)
c) F[ax(t) +by(t)]=aX(j𝜔)
d) F[ax(t) +by(t)]=bY(j𝜔)
a) F[ax(t) +by(t)] = aX(j𝜔) + bY(j𝜔)
47. Conjugationpropertyof FourierTransform statesthat
a) F[x(t)] =X*(-j𝜔)
b) F[x(t)] =X*(j𝜔)
c) F[x*(t)] =X*(-j𝜔)
d) F[x*(t)] =X (-j𝜔)
c) F[x*(t)] =X*(-j𝜔)
48. Time reversal propertyof Fouriertransformisgivenby
a) F[x(t)] =X(-j𝜔)
b) F[x(-t)] =X*(-j𝜔)
c) F[x*(t)] =X (-j𝜔)
d) F[x(-t)] =X(-j𝜔)
d) F[x(-t)] =X(-j𝜔)
49.Frequencyshiftingpropertyof Fourier transformisgivenby,
a) F[ ejω0tx(t)] = X[j(ω+ω0)]
b) F[ ejω0tx(t)] = X[j(ω-ω0)]
c) F[ ejω0tx(t)] = ejω0tX(j(ω-ω0))
d) F[ ejω0tx(t)] = ejω0tX(jω)
b) F[ ejω0tx(t)] = X[j(ω-ω0)]
50. Multiplication propertyof Fouriertransformisgivenby,
a) 𝐹[𝑥(𝑡)y(t)]=
1
2π
∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜔
∞
−∞
b) 𝐹[𝑥(𝑡)y(t)]=
1
2π
∫ X(𝑗𝜃)𝑌(𝑗( 𝜃))𝑑𝜃
∞
−∞
c) 𝐹[𝑥(𝑡)y(t)]=
1
2π
∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜃
∞
−∞
d) 𝐹[𝑥(𝑡)y(t)]=
1
2π
∫ X(𝑗𝜔)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜔
∞
−∞
c)F [x(𝑡)y(t)]=
1
2π
∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜃
∞
−∞
Part B
1. Determine initial value and final value of the followingsignal X(𝑆)=
𝟏
𝒔(𝒔+𝟐)
a) Initial value :0, Final value:0
b) Initial value :1, Final value:
1
2
c) Initial value :0, Final value:
1
2
d) Initial value :2, Final value:3
1.c)Initial value :0,Final value:
1
2
(0) = lim
𝑠→∞
𝑆𝑋(𝑆)
𝑥(∞) =lim
𝑠→0
𝑆𝑋(𝑆)
2.Findthe Laplace transformof 𝜕( 𝑡) + 𝑢(𝑡)
a) 1+
1
𝑠
b) 1-
1
𝑠
c) 0
d)
1
𝑠
2.a) 1+
1
𝑠
3.Findthe FourierTransform of x(t) = 𝑒−𝑎|𝑡|
a)
2𝑎
𝑎2−𝜔2
b)
𝑎
𝑎2+𝜔2
c)
𝑎
𝑠2+𝑎2
d)
2𝑎
𝑎2+𝜔2
3.d)
2𝑎
𝑎2+𝜔2
4.Findthe FourierTransform of x(t) = 𝑒2𝑡 𝑢(𝑡)
a)
2𝑎
𝑎2−𝜔2
b)
2𝑎
2+𝑗𝜔
c)
1
2+𝑗𝜔
d) Fouriertransformdoesn’texist
4.d) Fouriertransformdoesn’texist The Signal doesn’tconvergebecause of 𝑒2𝑡
5.Findthe FourierTransform of x(t) = 𝑒−|𝑡|
a)
2
1−𝜔2
b)
2
1+𝜔2
c)
𝑎
𝑠2+𝑎2
d)
2𝑎
𝑎2+𝜔2
5.b)
2
1+𝜔2
6.Findthe Fouriertransform of x(t-2)
a) 𝑒𝑗𝜔2 X(j𝜔)
b) 𝑒−2 X(j𝜔)
c) 𝑒−𝑗𝜔 X(
𝑗𝜔
𝑎
)
d) 𝑒−𝑗𝜔2 X(j𝜔)
6.d) 𝑒−𝑗𝜔2 X(j𝜔)
7.FindFouriertransform of x(𝒕) = 𝑒 𝑎𝑡 𝒖(-𝒕)
a)
1
𝑎−𝑗𝜔
b)
1
𝑎+𝑗𝜔
c)
1
𝑗𝜔−𝑎
d)
1
𝑠+𝑎
7.a)
1
𝑎−𝑗𝜔
8.FindLaplace transformof x(t)=𝑒−5𝑡u(t-1)
a)
𝑒−5𝑠
𝑠
b)
𝑒−𝑠
5
c)
𝑒−(𝑠+5)
𝑠+5
d)
𝑒−(𝑠+5)
𝑠−5
8.c)
𝑒−(𝑠+5)
𝑠+5
9. FindLaplace transform of unitramp function
a)
1
𝑠2
b)
1
𝜔2
c)
𝑠
𝜔2
d)
𝑠
𝜔
9.a)
1
𝑠2
10. FindLaplace transform of u(t)-u(t-2)
a) 1 −
𝑒−2𝑠
𝑠
b)
1
𝑠
−
𝑒2𝑠
𝑠
c)
1
𝑠
+
𝑒−2𝑠
𝑠
d)
1
𝑠
−
𝑒−2𝑠
𝑠
10.d)
1
𝑠
−
𝑒−2𝑠
𝑠
11.Findthe laplace inverseof X(s)=
1
𝑠+2
a) 𝒙(𝒕) = 𝑒−2𝑡 𝒖(𝒕)
b) 𝒙(𝒕) = 𝑒2𝑡 𝒖(𝒕)
c) 𝒙(𝒕) = 𝑒 𝑡 𝒖(𝒕)
d) 𝒙(𝒕) = 2𝑒−2𝑡 𝒖(𝒕)
11. a) 𝒙(𝒕) = 𝑒−2𝑡 𝒖(𝒕)
12. FindFouriertransform of x(𝒕) = 𝑒−0.5𝑡 𝒖(𝒕)
a)
1
0.5−𝑗𝜔
b)
1
0.5+𝑗𝜔
c)
1
𝑗𝜔−0.5
d)
1
𝑠+0.5
12.b)
1
0.5+𝑗𝜔
13.Findthe laplace inverseof X(s)=
1
𝑠−𝑎
a) 𝑒 𝑎𝑡
b) 𝑒−𝑎𝑡
c) 𝑒 𝑡
d) 𝑒−𝑡
13.a) 𝑒 𝑎𝑡
14. Findthe laplace inverseof X(s)=
1
(𝑠−𝑎)2
a) 𝑡𝑒−𝑎𝑡
b) t𝑒 𝑡
c) 𝑡𝑒−𝑡
d) 𝑡𝑒 𝑎𝑡
14.d) 𝑡𝑒 𝑎𝑡
15.Findthe inverse Fouriertransformof 𝜕(𝜔 + 𝜔0)
a) j𝜋𝜔
b)
𝑗
𝜋𝜔
c)
𝑒−𝑗𝜔𝑡0
2𝜋
d)
𝑒−𝑠𝑡0
2𝑠
15.c)
𝑒−𝑗𝜔𝑡0
2𝜋
16. FindFouriertransform of x(t-3)
a) e−j3ωX(-jω)
b) e−j3ωX(jω)
c) ej3ωX(-jω)
d) ej3ωX(jω)
16.b) e−j3ωX(jω)
17. FindFouriertransform of x(𝒕) =x(2-t)
a) e−j2ωX(-jω)
b) e−j2ωX(jω)
c) ej2ωX(-jω)
d) ej2ωX(jω)
17.a) e−j2ωX(-jω)
   2(txF e−j2ωX(-jω)
    jXtxF 
17. FindFouriertransform of x(𝒕) =x(-2-t)
a) e−j2ωX(-jω)
b) e−j2ωX(jω)
c) ej2ωX(-jω)
d) ej2ωX(jω)
17.c) ej2ω X(-jω)
19. FindLaplace transform of x(t)=2𝑒−2𝑡 𝒖(𝒕)+4𝑒−4𝑡 𝒖(𝒕)
a)
2
𝑠+2
+
4
𝑠−4
b)
2
𝑠+2
−
4
𝑠+4
c)
2
𝑠−2
+
4
𝑠−4
d)
2
𝑠+2
+
4
𝑠+4
19.d)
2
𝑠+2
+
4
𝑠+4
20.FindLaplace transform of x(t)=𝑒−5(𝑡−5) 𝒖(𝒕-5)
a)
𝑒−5𝑠
𝑠+5
b)
𝑒−𝑠
𝑠+5
c)
𝑒−(𝑠+5)
𝑠+5
d)
𝑒−(𝑠+5)
𝑠−5
20.a)
𝑒−5𝑠
𝑠+5
21.FindLaplace transform of x(t)=- 𝑡𝑒−2𝑡 u(t)
a)
1
(𝑠+2)2
b)
𝑠
(𝑠−2)2
c)
𝑠
(𝑠+2)2
d)
−1
(𝑠+2)2
21.d)
−1
(𝑠+2)2
22.Determine the initial value of the following function 𝑋( 𝑠) =
3
𝑠2+5𝑠−1
a) 0
b) 1
c) ∞
d) -1
22.a)0
(0) = lim
𝑠→∞
𝑆𝑋(𝑆)
23.Determine the Final value of the following function 𝑋( 𝑠) =
𝑠 −1
𝑠(𝑠+1)
a) 0
b) 1
c) ∞
d) -1
23.d)-1
𝑥(∞) =lim
𝑠→0
𝑆𝑋(𝑆)
24.FindLaplace transform of x(t)= 𝑒−2𝑡Sin2𝑡u(t)
a)
2
(𝑠+2)2−4
b)
2
(𝑠+2)2+4
c)
2
(𝑠−2)2+4
d)
1
(𝑠+2)2+4
24.b)
2
(𝑠+2)2+4
25.Find the convolution of 𝑒−2𝑡 𝑎𝑛𝑑 𝑒−3𝑡
a)
1
𝑠+2
+
1
𝑠−3
b)
1
𝑠+2
−
1
𝑠−3
c) (
1
𝑠+2
)(
1
𝑠+3
)
d) (
1
𝑠+2
)(
1
𝑠−3
)
25.c) (
1
𝑠+2
) (
1
𝑠+3
)

More Related Content

What's hot

Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
Abu Bakar Soomro
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
beenishbeenish
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
A block-step version of KS regularization
A block-step version of KS regularizationA block-step version of KS regularization
A block-step version of KS regularization
Keigo Nitadori
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
Saravana Selvan
 
Math
MathMath
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
Manthan Chavda
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorial
EDESMITCRUZ1
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
Kiran K
 
Bellman ford
Bellman fordBellman ford
Bellman ford
Kiran K
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dag
Kiran K
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
KalculosOnline
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
Umme habiba
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
Raj Parekh
 
Admission in india
Admission in indiaAdmission in india
Admission in india
Edhole.com
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
Longest common subsequence
Longest common subsequenceLongest common subsequence
Longest common subsequence
Kiran K
 

What's hot (18)

Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
A block-step version of KS regularization
A block-step version of KS regularizationA block-step version of KS regularization
A block-step version of KS regularization
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Math
MathMath
Math
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
Introduccio al calculo vectorial
Introduccio  al calculo vectorialIntroduccio  al calculo vectorial
Introduccio al calculo vectorial
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
 
Bellman ford
Bellman fordBellman ford
Bellman ford
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dag
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Admission in india
Admission in indiaAdmission in india
Admission in india
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Longest common subsequence
Longest common subsequenceLongest common subsequence
Longest common subsequence
 

Similar to Unit 2 analysis of continuous time signals-mcq questions

Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
MARCELOCHAVEZ23
 
Fourier transform
Fourier transformFourier transform
Fourier transform
auttaponsripradit
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
Matlab Assignment Experts
 
signal and system Lecture 2
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2
iqbal ahmad
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
math266
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
Juan Alejandro Alvarez Agudelo
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
TsegaTeklewold1
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
Hoopeer Hoopeer
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
NimithaSoman
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
MichaelTegegn
 
mathematics question bank for engineering students
mathematics question bank for engineering studentsmathematics question bank for engineering students
mathematics question bank for engineering students
MrMRubanVelsUniversi
 
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Angel David Ortiz Resendiz
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
X10659 (ma8353)
X10659 (ma8353)X10659 (ma8353)
X10659 (ma8353)
BIBIN CHIDAMBARANATHAN
 

Similar to Unit 2 analysis of continuous time signals-mcq questions (20)

Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
signal and system Lecture 2
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
Signal & system
Signal & systemSignal & system
Signal & system
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 
mathematics question bank for engineering students
mathematics question bank for engineering studentsmathematics question bank for engineering students
mathematics question bank for engineering students
 
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
X10659 (ma8353)
X10659 (ma8353)X10659 (ma8353)
X10659 (ma8353)
 

More from Dr.SHANTHI K.G

unit4 DTFT .pptx
unit4 DTFT .pptxunit4 DTFT .pptx
unit4 DTFT .pptx
Dr.SHANTHI K.G
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
Dr.SHANTHI K.G
 
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdfFourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
Dr.SHANTHI K.G
 
Laplace Transform Problems
Laplace Transform ProblemsLaplace Transform Problems
Laplace Transform Problems
Dr.SHANTHI K.G
 
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
Orthogonal coordinate systems- Cartesian ,Cylindrical ,SphericalOrthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
Dr.SHANTHI K.G
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Dr.SHANTHI K.G
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
Dr.SHANTHI K.G
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
Dr.SHANTHI K.G
 
Scope of signals and systems
Scope of signals and systemsScope of signals and systems
Scope of signals and systems
Dr.SHANTHI K.G
 
Unit 1 -Introduction to signals and standard signals
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
Dr.SHANTHI K.G
 
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Dr.SHANTHI K.G
 
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
Dr.SHANTHI K.G
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
Dr.SHANTHI K.G
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
Dr.SHANTHI K.G
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
Dr.SHANTHI K.G
 
Unit-3:Magnetostatics
Unit-3:MagnetostaticsUnit-3:Magnetostatics
Unit-3:Magnetostatics
Dr.SHANTHI K.G
 
Electric potential, Electric Field and Potential due to dipole
Electric potential, Electric Field and Potential due to dipoleElectric potential, Electric Field and Potential due to dipole
Electric potential, Electric Field and Potential due to dipole
Dr.SHANTHI K.G
 
Gauss law and its Applications
Gauss law and its ApplicationsGauss law and its Applications
Gauss law and its Applications
Dr.SHANTHI K.G
 
Electric field intensity due to a charged ring and Electric flux density
Electric field intensity due to a charged ring and Electric flux densityElectric field intensity due to a charged ring and Electric flux density
Electric field intensity due to a charged ring and Electric flux density
Dr.SHANTHI K.G
 
Electric field intensity due to infinite line charge and infinte sheet of charge
Electric field intensity due to infinite line charge and infinte sheet of chargeElectric field intensity due to infinite line charge and infinte sheet of charge
Electric field intensity due to infinite line charge and infinte sheet of charge
Dr.SHANTHI K.G
 

More from Dr.SHANTHI K.G (20)

unit4 DTFT .pptx
unit4 DTFT .pptxunit4 DTFT .pptx
unit4 DTFT .pptx
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
 
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdfFourier and Laplace transforms in analysis of CT systems PDf.pdf
Fourier and Laplace transforms in analysis of CT systems PDf.pdf
 
Laplace Transform Problems
Laplace Transform ProblemsLaplace Transform Problems
Laplace Transform Problems
 
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
Orthogonal coordinate systems- Cartesian ,Cylindrical ,SphericalOrthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
Orthogonal coordinate systems- Cartesian ,Cylindrical ,Spherical
 
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
 
Scope of signals and systems
Scope of signals and systemsScope of signals and systems
Scope of signals and systems
 
Unit 1 -Introduction to signals and standard signals
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
 
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary...
 
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 -Notes
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit 4 - two marks
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 
Unit-3:Magnetostatics
Unit-3:MagnetostaticsUnit-3:Magnetostatics
Unit-3:Magnetostatics
 
Electric potential, Electric Field and Potential due to dipole
Electric potential, Electric Field and Potential due to dipoleElectric potential, Electric Field and Potential due to dipole
Electric potential, Electric Field and Potential due to dipole
 
Gauss law and its Applications
Gauss law and its ApplicationsGauss law and its Applications
Gauss law and its Applications
 
Electric field intensity due to a charged ring and Electric flux density
Electric field intensity due to a charged ring and Electric flux densityElectric field intensity due to a charged ring and Electric flux density
Electric field intensity due to a charged ring and Electric flux density
 
Electric field intensity due to infinite line charge and infinte sheet of charge
Electric field intensity due to infinite line charge and infinte sheet of chargeElectric field intensity due to infinite line charge and infinte sheet of charge
Electric field intensity due to infinite line charge and infinte sheet of charge
 

Recently uploaded

Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
NelTorrente
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 

Recently uploaded (20)

Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 

Unit 2 analysis of continuous time signals-mcq questions

  • 1. Unit 2- ANALYSIS OF CONTINUOUS TIME SIGNALS Part-A 1. The Trigonometric Fourier series of an evenfunction of time does not have the a) Dc term b) Cosine terms c) Sine terms d) Odd harmonic terms c) Sine terms 2. The Trigonometric Fourier series of an odd function of time have only the a) Sine terms b) Cosine terms c) Odd harmonic terms d) Dc term a)Sine terms
  • 2. 3. The Trigonometric Fourier series of a half wave symmetric signal [𝐱(𝐭) = −𝐱(𝐭 ± 𝐓 𝟐 )] have only the a) Dc term b) Cosine terms c) Odd harmonic terms d) Sine terms c)Odd harmonic terms 4. If f(t) = f(-t) and f(t) satisfy the Dirchlet’s conditions ,then f(t) can be expanded in a Fourier series containing a) Only Sine terms b) Only Cosine terms c) Constant and Cosine terms d) Both Sine and Cosine terms c)Constant and Cosine terms 5. Which among the following statement is is not a Dirichlet condition? a) The signal (𝑡) must be single valued function. b) The function x(t) should have finite number of maxima and minima in the period T. c) The function x(t) should have finite number of discontinuities in the period T. d) The function should not be absolutely integrable. d)The function should not be absolutely integrable. 6. The trigonometric form of Fourier series of a periodic signal, 𝑥(𝑡) with period 𝑇 is defined as a) x( 𝑡) = 𝑎0 + ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞ 𝑛=1 b) x( 𝑡) = ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞ 𝑛=1 c) x( 𝑡) = 𝑎0 + ∑ (𝑎 𝑛 cos 𝑛𝜔𝑡∞ 𝑛=1 ) d) x( 𝑡) = 𝑎0 + ∑ ( 𝑏 𝑛 sin 𝑛𝜔𝑡)∞ 𝑛=1 a)x( 𝑡) = 𝑎0 + ∑ ( 𝑎 𝑛 cos 𝑛𝜔𝑡 + 𝑏 𝑛 sin 𝑛𝜔𝑡)∞ 𝑛=1 7. The fourier series expansion of a real periodic signal with fundamental period f0 is given by gp(t) = ∑ Cn 𝑒 𝑗2𝜋𝑓0 𝑡∞ 𝑛=−∞ .It is given that C3=3+j5.Then C-3 is a) 5+j3 b) -3-j5 c) -5+j3 d) 3-j5 d)3-j5
  • 3. 8.The Fouriertransformof continuoustime signal,x(t) isdefinedas, a) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒𝑗𝜔𝑡 𝑑𝑡 −∞ ∞ b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ d) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ d) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ 9.The inverse FourierTransformof 𝑋(𝑗𝜔) isdefinedas a) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 −∞ ∞
  • 4. b) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ c) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ d) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(-j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ c)(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ 10. The AnalysisEquationisgivenby a) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ d) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ 11. Selectthe Synthesisequation: a) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ b) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(−𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ c) X(j𝜔)=𝐹[ 𝑥(𝑡)]=∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡 ∞ −∞ d) 𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ d)𝑥(t)=𝐹-1 [X(j𝜔)]= 1 2π ∫ X(j𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 ∞ −∞ 12. The Fouriertransformof impulse signal δ[(𝑡)]isgivenas a) 1 b) 0 c) ∞ d) -1 a)1 13. FindFouriertransformof stepsignal oru(𝒕) a) 1 ω b) 1 c) ∞
  • 5. d) π ∂(ω) + 1 jω d) π ∂(ω) + 1 jω 14. The Initial of Laplace Transformisgivenas a) 𝑥(0) = lim 𝑠→∞ 𝑋(𝑆) b) 𝑥(0) =lim 𝑠→0 𝑆𝑋(𝑆) c) 𝑥(0) = lim 𝑠→∞ 𝑆𝑋(𝑆) d) 𝑥(0) =lim 𝑠→0 𝑆 𝑋(𝑆) 𝑆 c) 𝑥(0) = lim 𝑠→∞ 𝑆𝑋(𝑆) 15. Final Value theoremof Laplace Transformis a) 𝑥(∞) =lim 𝑠→0 𝑆𝑋(𝑆) b) 𝑥(∞) =lim 𝑠→∞ 𝑆𝑋(𝑆) c) 𝑥(∞) =lim 𝑠→∞ 𝑋(𝑆) d) 𝑥(∞) =lim 𝑠→0 𝑋(𝑆) a)𝑥(∞) =lim 𝑠→0 𝑆𝑋(𝑆) 16. If x(t) isa rightsidedsequencethenROC is
  • 6. a) Re{s} > σo b) Re{s} < σo c) entire s-plane d) Re{s} > 0 a) Re{s} > σo 17. Parseval’srelationforcontinuoustimeFouriertransformisgivenby a) E=∫ x( 𝑡) 𝑑𝑡 ∞ −∞ = 1 2π ∫ X(𝑗𝜔)𝑑𝜔 ∞ −∞ b) E=∫ x( 𝑡) 𝑑𝑡 ∞ −∞ = 1 2π ∫ |X(𝑗𝜔)|2 𝑑𝜔 ∞ −∞ c) E=∫ |x( 𝑡)|2 𝑑𝑡 ∞ −∞ = 1 2π ∫ X(𝑗𝜔)𝑑𝜔 ∞ −∞ d) E=∫ |x( 𝑡)|2 𝑑𝑡 ∞ −∞ = 1 2π ∫ |X(𝑗𝜔)|2 𝑑𝜔 ∞ −∞ d) E=∫ |x( 𝑡)|2 𝑑𝑡 ∞ −∞ = 1 2π ∫ |X(𝑗𝜔)|2 𝑑𝜔 ∞ −∞ 18. Time Scalingpropertyof Fouriertransformisgivenby a) 𝐹[ 𝑥(a𝑡)]=X( 𝑗𝜔 𝑎 ) b) 𝐹[ 𝑥(a𝑡)]= 1 |𝑎| X( 𝑗𝜔 𝑎 ) c) 𝐹[ 𝑥(a𝑡)]= 1 |𝑎| X(𝑗𝜔) d) 𝐹[ 𝑥(a𝑡)]= 1 |𝑎| X(𝑎) b) 𝐹[ 𝑥(a𝑡)]= 1 |𝑎| X( 𝑗𝜔 𝑎 ) 19. Convolutionpropertyof Fouriertransform isgivenby a) 𝐹[𝑥(𝑡)∗y(t)]=Y(j𝜔) b) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔) c) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔)Y(j𝜔) d) 𝐹[𝑥(𝑡)∗y(t)]=X(j𝜔)*Y(j𝜔) c)F [(𝑡)∗y(t)]=X(j𝜔)Y(j𝜔) 20. Differentiationpropertyof Fouriertransformisgivenby a) 𝐹[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= j𝜔 X(j𝜔) b) 𝐹[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= 𝜔3 X(j𝜔) c) 𝐹[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= -j𝜔 X(j𝜔) d) 𝐹[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= X( 1 j𝜔 )
  • 7. a)F[ 𝒅𝒙(𝒕) 𝒅𝒕 ]= j𝜔 X(j𝜔) 21. Time shiftingpropertyof Fouriertransformisgivenby a) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒𝑗𝜔𝑡0 X(j𝜔) b) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑡0 X(j𝜔) c) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑗𝜔 X( 𝑗𝜔 𝑎 ) d) 𝐹[𝑥(𝑡-𝑡0)]= 𝑒−𝑗𝜔𝑡0 X(j𝜔) d)F[x(𝑡-𝑡0)]= 𝑒−𝑗𝜔𝑡0 X(j𝜔) 22. If x(t) isa leftsidedsequence thenROCis a) Re{s} > σo b) Re{s} < σo c) entire s-plane d) Re{s} > 0 b) Re{s} < σo 23. FindLaplace transformof x(𝒕) = 𝑒 𝑎𝑡 𝑢(𝒕) a) 1 𝑠−𝑎 b) 1 𝑠+𝑎 c) 𝑆 𝑠−𝑎 d) 𝑆 𝑠+𝑎 a) 1 𝑠−𝑎 24. FindLaplace transform and ROCof x(𝒕) =- 𝑒−𝑎𝑡 𝒖(-𝒕) a) 1 𝑠−𝑎 , σ>-a b) 1 𝑠+𝑎 , σ>-a c) 1 𝑠+𝑎 , σ<-a d) 𝑆 𝑠+𝑎 , σ<-a c) 1 𝑠+𝑎 , σ<-a 25. FindLaplace transform of x(t)=Cos𝜔0 𝑡
  • 8. a) 𝜔 𝑠2−𝜔2 b) 𝜔 𝑠2+𝜔2 c) 𝑠 𝑠2−𝜔2 d) 𝑠 𝑠2+𝜔2 d) 𝑠 𝑠2 +𝜔2 26.FindLaplace transform of x(t)=Sin𝜔0 𝑡 a) 𝜔 𝑠2−𝜔2 b) 𝜔 𝑠2+𝜔2 c) 𝑠 𝑠2−𝜔2 d) 𝑠 𝑠2+𝜔2 b) 𝜔 𝑠2+𝜔2 27.Frequencyshiftingpropertyof Laplace transform isgivenby, a) L[ 𝑒−𝑎𝑡x(t)]= X(s+a) b) L[ 𝑒−𝑎𝑡x(t)]= X(s-a) c) L[ 𝑒−𝑎𝑡x(t)]= X(as) d) L[ 𝑒−𝑎𝑡x(t)]= X( 𝑠 a ) a) L[ 𝑒−𝑎𝑡x(t)]= X(s+a) 28.FindLaplace transform of x(t)= 𝑒−𝑎𝑡Sin𝜔0 𝑡u(t) a) 𝜔 (𝑠+𝑎)2−𝜔2 b) 𝜔 (𝑠+𝑎)2+𝜔2 c) 𝑠 (𝑠−𝑎)2+𝜔2 d) 𝑠 (𝑠+𝑎)2−𝜔2 b) 𝜔 (𝑠+𝑎)2+𝜔2 FrequencyshiftingpropertyL[ 𝑒−𝑎𝑡x(t)]= X(s+a) 29.FindLaplace transform of x(t)= 𝑒−𝑎𝑡Cos𝜔0 𝑡u(t) a) 𝜔+𝑎 (𝑠+𝑎)2−𝜔2
  • 9. b) 𝜔 (𝑠+𝑎)2+𝜔2 c) 𝑠 (𝑠−𝑎)2+𝜔2 d) 𝑠+𝑎 (𝑠+𝑎)2+𝜔2 𝑑) 𝑠+𝑎 (𝑠+𝑎)2+𝜔2 FrequencyshiftingpropertyL[ 𝑒−𝑎𝑡x(t)]= X(s+a) 30. FindLaplace transform of x(t)=u(t-2) a) 𝑒−2𝑠 𝑠 b) 𝑒−𝑠 𝑠 c) 𝑒−𝑠 2𝑠 d) 𝑒−2𝑠 2𝑠 a) 𝑒−2𝑠 𝑠 (Time shiftingProperty) L[𝑥(𝑡-𝑡0)]= 𝑒−𝑠𝑡0 X(s) 31. FindLaplace transform of x(t)=𝜕(t-t0) a) 𝑒−𝑠𝑡0 𝑠 b) 𝑒−𝑠𝑡0 c) 𝑒−𝑠𝑡0 2𝑠 d) 𝑒−𝑡0 b) 𝑒−𝑠𝑡0 (Time shiftingProperty)L[𝑥(𝑡-𝑡0)]= 𝑒−𝑠𝑡0 X(s) 32.Fouriertransformof DC signal of amplitude 1isgivenby a) j𝜋𝜔 b) 𝑗 𝜋𝜔 c) 2𝜋𝜕(𝜔) d) 1 2𝜋 c) 2𝜋𝜕(𝜔)
  • 10. 33.FindLaplace transform of x(t)=tu(t) a) 1 𝑠2 b) 1 𝜔2 c) 𝑠 𝜔2 d) 𝑠 𝜔 a) 1 𝑠2 34.FindLaplace transform of x(t)= 𝑡𝑒−𝑎𝑡 u(t) a) 1 (𝑠+𝜔)2 b) 𝑠 (𝑠−𝑎)2 c) 𝑠 (𝑠+𝑎)2 d) 1 (𝑠+𝑎)2 d) 1 (𝑠+𝑎)2
  • 11. 35. The Transferfunctionof an ideal integratorisgivenby, a) s b) 𝑠 𝜔 c) 1 𝑠 d) 𝜔 𝑠 c) 1 𝑠 36. The Transferfunctionof an ideal differentiatorisgivenby, a) 1 𝑠 b) s c) 𝑠 𝜔 d) 𝜔 𝑠 b)s 37. ROC of the impulse functionis a) Re{s} > σo b) Re{s} < σo c) entire s-plane d) Re{s} > 0 c) entire s-plane 38. The Fouriertransformof Sgn (t) a) j𝜋𝜔 b) 𝑗 𝜋𝜔 c) 2 𝑗𝜔 d) 2𝜔 𝑗 𝑐) 2 𝑗𝜔 39.Findthe inverse fouriertransformof 𝜕(𝜔) a) j𝜋𝜔 b) 𝑗 𝜋𝜔 c) 2 𝑗𝜔
  • 12. d) 1 2𝜋 (d) 1 2𝜋 40.Findthe inverse Fouriertransformof 𝜕(𝜔 − 𝜔0) a) j𝜋𝜔 b) 𝑗 𝜋𝜔 c) 𝑒 𝑗𝜔𝑡0 2𝜋 d) 𝑒−𝑠𝑡0 2𝑠 c) 𝑒 𝑗𝜔𝑡0 2𝜋 41. One of the conditionstobe satisfiedforthe existence of Fouriertransformis a) ∫ |𝑥( 𝑡)|𝑑𝑡 ∞ −∞ < ∞ b) ∫ |𝑥( 𝑡)|𝑑𝑡 ∞ −∞ = ∞ c) ∫ |𝑥( 𝑡)|2 𝑑𝑡 ∞ −∞ < ∞ d) ∫ |𝑥( 𝑡)|𝑑𝑡 −∞ ∞ < ∞ a) ∫ |𝑥( 𝑡)|𝑑𝑡 ∞ −∞ < ∞ 42.The Transferfunctionof an ideal delayof Tseconds isgivenby, a) 𝑒 𝑠𝑇 b) 𝑠 𝜔
  • 13. c) 1 𝑠 d) 𝑒−𝑠𝑇 d) 𝑒−𝑠𝑇 43.FourierTransformand Laplace Transformare identical at a) s= j𝜋𝜔 b) s=j𝜔 c) s=- j𝜔 d) s= 𝑖 j𝜔 b) s=j𝜔 44. Time Differentiationpropertyof Laplace Transform isgivenby a) L[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= j𝜔 X(j𝜔) b) L[ 𝑑𝑥(𝑡) 𝑑𝑡 ]= 𝜔3 X(s) c) L [ 𝑑𝑥(𝑡) 𝑑𝑡 ]= sX(s) d) L [ 𝑑𝑥(𝑡) 𝑑𝑡 ]= X(s) 𝑠 c)L [ 𝑑𝑥(𝑡) 𝑑𝑡 ]= sX(s) 45.The Laplace Transformof [ 𝑑 𝑑𝑡2 2 𝑥(𝑡)] is givenby a) s2 X(s) b) s3 X(s) c) X(s) s2 d) sX(s) a) s2 X(s) 46.Linearitypropertyof FourierTransformisgivenby a) F[ax(t) +by(t)] = aX(j𝜔) + bY(j𝜔) b) F[ax(t) +by(t)]=aX(j𝜔) - bY(j𝜔) c) F[ax(t) +by(t)]=aX(j𝜔) d) F[ax(t) +by(t)]=bY(j𝜔) a) F[ax(t) +by(t)] = aX(j𝜔) + bY(j𝜔) 47. Conjugationpropertyof FourierTransform statesthat a) F[x(t)] =X*(-j𝜔)
  • 14. b) F[x(t)] =X*(j𝜔) c) F[x*(t)] =X*(-j𝜔) d) F[x*(t)] =X (-j𝜔) c) F[x*(t)] =X*(-j𝜔) 48. Time reversal propertyof Fouriertransformisgivenby a) F[x(t)] =X(-j𝜔) b) F[x(-t)] =X*(-j𝜔) c) F[x*(t)] =X (-j𝜔) d) F[x(-t)] =X(-j𝜔) d) F[x(-t)] =X(-j𝜔) 49.Frequencyshiftingpropertyof Fourier transformisgivenby, a) F[ ejω0tx(t)] = X[j(ω+ω0)] b) F[ ejω0tx(t)] = X[j(ω-ω0)] c) F[ ejω0tx(t)] = ejω0tX(j(ω-ω0)) d) F[ ejω0tx(t)] = ejω0tX(jω) b) F[ ejω0tx(t)] = X[j(ω-ω0)] 50. Multiplication propertyof Fouriertransformisgivenby, a) 𝐹[𝑥(𝑡)y(t)]= 1 2π ∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜔 ∞ −∞ b) 𝐹[𝑥(𝑡)y(t)]= 1 2π ∫ X(𝑗𝜃)𝑌(𝑗( 𝜃))𝑑𝜃 ∞ −∞ c) 𝐹[𝑥(𝑡)y(t)]= 1 2π ∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜃 ∞ −∞ d) 𝐹[𝑥(𝑡)y(t)]= 1 2π ∫ X(𝑗𝜔)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜔 ∞ −∞ c)F [x(𝑡)y(t)]= 1 2π ∫ X(𝑗𝜃)𝑌(𝑗( 𝜔 − 𝜃))𝑑𝜃 ∞ −∞ Part B 1. Determine initial value and final value of the followingsignal X(𝑆)= 𝟏 𝒔(𝒔+𝟐) a) Initial value :0, Final value:0 b) Initial value :1, Final value: 1 2
  • 15. c) Initial value :0, Final value: 1 2 d) Initial value :2, Final value:3 1.c)Initial value :0,Final value: 1 2 (0) = lim 𝑠→∞ 𝑆𝑋(𝑆) 𝑥(∞) =lim 𝑠→0 𝑆𝑋(𝑆) 2.Findthe Laplace transformof 𝜕( 𝑡) + 𝑢(𝑡) a) 1+ 1 𝑠 b) 1- 1 𝑠 c) 0 d) 1 𝑠 2.a) 1+ 1 𝑠 3.Findthe FourierTransform of x(t) = 𝑒−𝑎|𝑡| a) 2𝑎 𝑎2−𝜔2 b) 𝑎 𝑎2+𝜔2 c) 𝑎 𝑠2+𝑎2 d) 2𝑎 𝑎2+𝜔2 3.d) 2𝑎 𝑎2+𝜔2 4.Findthe FourierTransform of x(t) = 𝑒2𝑡 𝑢(𝑡) a) 2𝑎 𝑎2−𝜔2 b) 2𝑎 2+𝑗𝜔 c) 1 2+𝑗𝜔 d) Fouriertransformdoesn’texist 4.d) Fouriertransformdoesn’texist The Signal doesn’tconvergebecause of 𝑒2𝑡 5.Findthe FourierTransform of x(t) = 𝑒−|𝑡|
  • 16. a) 2 1−𝜔2 b) 2 1+𝜔2 c) 𝑎 𝑠2+𝑎2 d) 2𝑎 𝑎2+𝜔2 5.b) 2 1+𝜔2 6.Findthe Fouriertransform of x(t-2) a) 𝑒𝑗𝜔2 X(j𝜔) b) 𝑒−2 X(j𝜔) c) 𝑒−𝑗𝜔 X( 𝑗𝜔 𝑎 ) d) 𝑒−𝑗𝜔2 X(j𝜔) 6.d) 𝑒−𝑗𝜔2 X(j𝜔) 7.FindFouriertransform of x(𝒕) = 𝑒 𝑎𝑡 𝒖(-𝒕) a) 1 𝑎−𝑗𝜔 b) 1 𝑎+𝑗𝜔 c) 1 𝑗𝜔−𝑎 d) 1 𝑠+𝑎 7.a) 1 𝑎−𝑗𝜔 8.FindLaplace transformof x(t)=𝑒−5𝑡u(t-1) a) 𝑒−5𝑠 𝑠 b) 𝑒−𝑠 5 c) 𝑒−(𝑠+5) 𝑠+5 d) 𝑒−(𝑠+5) 𝑠−5 8.c) 𝑒−(𝑠+5) 𝑠+5 9. FindLaplace transform of unitramp function
  • 17. a) 1 𝑠2 b) 1 𝜔2 c) 𝑠 𝜔2 d) 𝑠 𝜔 9.a) 1 𝑠2 10. FindLaplace transform of u(t)-u(t-2) a) 1 − 𝑒−2𝑠 𝑠 b) 1 𝑠 − 𝑒2𝑠 𝑠 c) 1 𝑠 + 𝑒−2𝑠 𝑠 d) 1 𝑠 − 𝑒−2𝑠 𝑠 10.d) 1 𝑠 − 𝑒−2𝑠 𝑠 11.Findthe laplace inverseof X(s)= 1 𝑠+2 a) 𝒙(𝒕) = 𝑒−2𝑡 𝒖(𝒕) b) 𝒙(𝒕) = 𝑒2𝑡 𝒖(𝒕) c) 𝒙(𝒕) = 𝑒 𝑡 𝒖(𝒕) d) 𝒙(𝒕) = 2𝑒−2𝑡 𝒖(𝒕) 11. a) 𝒙(𝒕) = 𝑒−2𝑡 𝒖(𝒕) 12. FindFouriertransform of x(𝒕) = 𝑒−0.5𝑡 𝒖(𝒕) a) 1 0.5−𝑗𝜔 b) 1 0.5+𝑗𝜔 c) 1 𝑗𝜔−0.5 d) 1 𝑠+0.5 12.b) 1 0.5+𝑗𝜔 13.Findthe laplace inverseof X(s)= 1 𝑠−𝑎 a) 𝑒 𝑎𝑡 b) 𝑒−𝑎𝑡 c) 𝑒 𝑡 d) 𝑒−𝑡
  • 18. 13.a) 𝑒 𝑎𝑡 14. Findthe laplace inverseof X(s)= 1 (𝑠−𝑎)2 a) 𝑡𝑒−𝑎𝑡 b) t𝑒 𝑡 c) 𝑡𝑒−𝑡 d) 𝑡𝑒 𝑎𝑡 14.d) 𝑡𝑒 𝑎𝑡 15.Findthe inverse Fouriertransformof 𝜕(𝜔 + 𝜔0) a) j𝜋𝜔 b) 𝑗 𝜋𝜔 c) 𝑒−𝑗𝜔𝑡0 2𝜋 d) 𝑒−𝑠𝑡0 2𝑠 15.c) 𝑒−𝑗𝜔𝑡0 2𝜋 16. FindFouriertransform of x(t-3) a) e−j3ωX(-jω) b) e−j3ωX(jω) c) ej3ωX(-jω) d) ej3ωX(jω) 16.b) e−j3ωX(jω) 17. FindFouriertransform of x(𝒕) =x(2-t) a) e−j2ωX(-jω) b) e−j2ωX(jω) c) ej2ωX(-jω) d) ej2ωX(jω) 17.a) e−j2ωX(-jω)    2(txF e−j2ωX(-jω)     jXtxF 
  • 19. 17. FindFouriertransform of x(𝒕) =x(-2-t) a) e−j2ωX(-jω) b) e−j2ωX(jω) c) ej2ωX(-jω) d) ej2ωX(jω) 17.c) ej2ω X(-jω) 19. FindLaplace transform of x(t)=2𝑒−2𝑡 𝒖(𝒕)+4𝑒−4𝑡 𝒖(𝒕) a) 2 𝑠+2 + 4 𝑠−4 b) 2 𝑠+2 − 4 𝑠+4 c) 2 𝑠−2 + 4 𝑠−4 d) 2 𝑠+2 + 4 𝑠+4 19.d) 2 𝑠+2 + 4 𝑠+4 20.FindLaplace transform of x(t)=𝑒−5(𝑡−5) 𝒖(𝒕-5) a) 𝑒−5𝑠 𝑠+5 b) 𝑒−𝑠 𝑠+5 c) 𝑒−(𝑠+5) 𝑠+5 d) 𝑒−(𝑠+5) 𝑠−5 20.a) 𝑒−5𝑠 𝑠+5 21.FindLaplace transform of x(t)=- 𝑡𝑒−2𝑡 u(t) a) 1 (𝑠+2)2 b) 𝑠 (𝑠−2)2 c) 𝑠 (𝑠+2)2 d) −1 (𝑠+2)2 21.d) −1 (𝑠+2)2
  • 20. 22.Determine the initial value of the following function 𝑋( 𝑠) = 3 𝑠2+5𝑠−1 a) 0 b) 1 c) ∞ d) -1 22.a)0 (0) = lim 𝑠→∞ 𝑆𝑋(𝑆) 23.Determine the Final value of the following function 𝑋( 𝑠) = 𝑠 −1 𝑠(𝑠+1) a) 0 b) 1 c) ∞ d) -1 23.d)-1 𝑥(∞) =lim 𝑠→0 𝑆𝑋(𝑆) 24.FindLaplace transform of x(t)= 𝑒−2𝑡Sin2𝑡u(t) a) 2 (𝑠+2)2−4 b) 2 (𝑠+2)2+4 c) 2 (𝑠−2)2+4 d) 1 (𝑠+2)2+4 24.b) 2 (𝑠+2)2+4 25.Find the convolution of 𝑒−2𝑡 𝑎𝑛𝑑 𝑒−3𝑡 a) 1 𝑠+2 + 1 𝑠−3 b) 1 𝑠+2 − 1 𝑠−3 c) ( 1 𝑠+2 )( 1 𝑠+3 ) d) ( 1 𝑠+2 )( 1 𝑠−3 )