SlideShare a Scribd company logo
Normal Modes Analysis
of RiverSonde Data in a
     Tidal Channel

   Calvin C. Teague, Donald E. Barrick
     CODAR Ocean Sensors, Ltd.
           Mountain View, CA

           David Honegger
        Oregon State University
            Corvallis, OR
RiverSonde Description


•   UHF (435 MHz, 70-cm wavelength) radar

•   Bragg scattering from 35-cm wavelength waves

•   Based on SeaSonde hardware

•   1 W transmit power

•   MUSIC direction finding using 3-yagi antenna array

•   5–15 m range bins, 1° angle bins

•   Typically installed on a river bank
Antennas
Center array used for Transmit & Receive
   Side arrays used for receive only
Typical Geometry


River                            Mean Flow
           Radar Field of View




                1 2 3


                Radar
Newport Experiment



•   CODAR student grant program

•   Installed in September 2010 at Newport, Oregon

•   Channel connecting Yaquina Bay to Pacific Ocean

•   Tidal flow between parallel jetties
Experiment Location
Radial Vectors
            2010-12-07-13:00 UTC
Velocity Vector Estimation

•   From a single site, find along- and cross-channel
    components from least-squares fit to radials

•   If 2 sites are available, find full vectors by combining
    radial measurements from both sites

•   From a single site, use Normal Modes Analysis of radial
    measurements to infer full vectors

    •   For arbitrary boundary, numerical solution required

    •   For rectangular boundary, closed-form solution possible

    •   Useful for dynamic flow conditions like tidal reversals
Normal Modes Analysis
• Assume water incompressible
• Express horizontal flow in terms of velocity potentials and stream func-
  tions
• Boundary conditions

  – Zero normal flow at banks
  – No impedance to tangential flow at banks
  – Periodic boundary at ends of analysis region
                                     −
                                     →
• Horizontal surface velocity vector U
                       −
                       →
                        U = ∇ × [z (−Ψ) + ∇ × (ˆΦ)]
                                  ˆ            z
  where z is the vertical unit vector, Ψ is the stream function, and Φ is
         ˆ
  the velocity potential
• Allow up to 20 modes across river, only 2 along river
• Closed-form solutions in terms of sines and cosines
Homogeneous Equations
• Stream function satisfying Dirichlet condition at bank
                  ∇2ψn + νnψn = 0,        where ψn|Γ = 0
                                               
                                
                          D , v D = −∂ψn , ∂ψn
                         un n
                                      ∂y    ∂x
  where ψn is the n-th eigenfunction of the stream function Ψ, νn is the
  corresponding n-th eigenvalue and uD and vn are the velocity compo-
                                        n
                                                 D
  nents in the x and y directions, respectively.


• Velocity function satisfying Neumann condition at bank
                                                         
                                                     ∂φn 
           ∇2φn + µnφn = 0,        where (ˆ · ∇φn) =
                                          λ                =0
                                     
                                                    Γ ∂λ Γ
                N , v N ] = ∂φn , ∂φn
              [un n
                             ∂x ∂y
  where φn is the n-th eigenfunction of the velocity potential Φ, µn is the
  corresponding n-th eigenvalue and ˆ is the direction perpendicular to
                                      λ
  the boundary.
Normal Modes Solutions
Velocity potential modes with a periodic boundary at x = ±L/2 and bank at y = ±W/2
                          
                          cos(j2πx/L) cos(mπy/W )
                          
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
                          
                          
                          
                          cos(j2πx/L) sin(mπy/W )
                          
                          
                          
                          
                              for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
               φn(x, y) =
                          sin(j2πx/L) cos(mπy/W )
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
                          
                          
                          
                          
                          sin(j2πx/L) sin(mπy/W )
                          
                          
                          
                           for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .

Corresponding stream modes
                        
                        cos(j2πx/L) cos(mπy/W )
                        
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
                        
                        
                        
                        cos(j2πx/L) sin(mπy/W )
                        
                        
                        
                        
                            for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
             ψn(x, y) =
                        sin(j2πx/L) cos(mπy/W )
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .
                        
                        
                        
                        
                        sin(j2πx/L) sin(mπy/W )
                        
                        
                        
                         for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
Velocity Mode Examples 1
      150
      150

      100
      100

      50
      50

       0
       0
            -400
            -400   -200
                   -200             0
                                    0              200
                                                    200   400
                                                           400

                          83, 0, 1, Null, Null
                           85, 1, 0, Null, Null
      350
      350

      300
      300

      250
      250

j=1   200
      200


m=0   150
      150

      100
      100

      50
      50

       0
       0
            -400
            -400   -200
                   -200             0
                                    0               200
                                                   200     400
                                                          400
                           86, 1, 1, Null, Null
      350

      300

      250

j=1   200

      150
m=1   100

       50

        0
            -400   -200             0              200    400
                          87, 2, -1, Null, Null
      350

      300

      250

      200
Velocity Mode Examples 2
      150

      100

       50

        0
             -400   -200             0              200    400
                           85, 1, 0, Null, Null
      350

      300

      250


j=0   200

      150

m=1   100

       50
                                                                  FitModes6-Mod
        0
             -400   -200             0              200    400
                           86, 1, 1, Null, Null
      350                   88, 2, 0, Null, Null
       350
      300
       300
      250
       250
      200
j=0    200
      150
       150

m=2   100
       100
       50
        50
        0
         0
             -400   -200             0              200    400
             -400   -200              0              200    400
                           87, 2, -1, Null, Null
      350                   89, 2, 1, Null, Null
       350
      300
       300
      250
       250
      200
       200
      150
2
                                                                   2             2
                                                                                 2



 Velocity Mode Examples 3
             n § Length@uPsiD, n ++, title = n =   ToString@nD; title = modeIDPLength@uPhiD +
                                                        ToString@nD; title = modeIDPLength@uPhiD
             plt = HVectorPlot@8uPsiPnT, vPsiPnT, 8x, x1, x2, 8y, y1, y2, Frame Ø True,
                                                               x2, 8y, y1, y2, Frame Ø True,
                 PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL;
                                                                 DisplayFunction Ø IdentityDL;
             Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0, 82, 2DD,
                                                               Disk@80, 0, 82, 2DD,
                PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10, 8yp1, yp2,
                                                               yp2,
                   ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F;
                                                                 $DisplayFunctionDDD;F;F;

                                    864, Null, Null, 1, 0
      350

      300

      250

j=0   200

      150
m=1   100

      50

       0
            -400            -200              0              200      400
                                                                      400
                                    865, Null, Null, 2, 0
      350

      300

      250

j=0   200

      150
m=2   100

      50

       0
            -400            -200              0              200      400
                                                                      400
Mode Coefficients
          Determination
•   Evaluate model in terms of unknown mode coefficients
    at each point where radar data are available

•   At each point, equate sum of radial components of
    model to radial radar measurement

•   Repeat over all available radar measurements

•   Solve overdetermined set of equations for mode
    coefficients (~5000 equations in ~50 unknowns) using
    least-squares

•   Allow up to 20 modes across river for along-river
    component (mmax), only 2 along river for both along- and
    cross-river components (jmax)
Streamline Examples
                  NWPT_2010_12_07_0600                                      NWPT_2010_12_07_0945
                                               2.0                                                       2.0

      300                                                       300
                                               1.5                                                       1.5
      250                                                       250
y m




                                                          y m
      200                                                       200
                                               1.0   ms                                                  1.0   ms
      150                                                       150

      100                                      0.5              100                                      0.5

       50                                                        50
            200      100     0   100     200                          200      100     0   100     200
                                               0.0                                                       0.0
                           x m                                                       x m



                  NWPT_2010_12_07_1300                                      NWPT_2010_12_07_1530
                                               2.0                                                       2.0

      300                                                       300
                                               1.5                                                       1.5
      250                                                       250
y m




                                                          y m

      200                                                       200
                                               1.0   ms                                                  1.0   ms
      150                                                       150

      100                                      0.5              100                                      0.5

       50                                                        50
            200      100     0   100     200                          200      100     0   100     200
                                               0.0                                                       0.0
                           x m                                                       x m
Mode Limits
                                           NWPT_2010_12_07_1530
                                                                        2.0

                               300
                                                                        1.5
                               250

u: jmax = 1, mmax = 5




                         y m
                               200
                                                                        1.0   ms
v: jmax = 0, mmax = 2          150

                               100                                      0.5

                                50
                                     200      100     0   100     200
                                                                        0.0
                                                    x m

                                           NWPT_2010_12_07_1530
                                                                        2.0

                               300
                                                                        1.5
                               250

u: jmax = 1, mmax = 20
                         y m




                               200
                                                                        1.0   ms
v: jmax = 0, mmax = 2          150

                               100                                      0.5

                                50
                                     200      100     0   100     200
                                                                        0.0
                                                    x m
Lagrangian Particle Trajectories


  •   Compute velocity vectors at 5-minute intervals

  •   Seed study area with 100 particles randomly placed
      every 2 minutes

  •   Integrate particle velocity in 10-second steps

  •   Display 10 locations of particles with lighter color for
      older positions

  •   Movie covers 2.5 hours around a tidal reversal
Particle Trajectory Example
                        2010 12 07 08:30:00 0000
      350



      300



      250
y m




      200



      150



      100



       50
            200   100               0              100   200
                                  x m
Summary
•   For an arbitrary boundary, Normal Modes solution must be
    found numerically

•   For the special case of a rectangular boundary, with no normal
    flow across banks and periodic continuation at open
    boundaries, a closed-form solution can be found as a series of
    products of sines and cosines

•   Least-squares fit of radial components of Normal Modes to
    radar radial velocity vectors gives coefficients

•   Lagrangian visualization of particle trajectories may be useful in
    dynamic conditions like tidal reversals

•   Future studies

    •   Compare this 2D fitting to 1D radial data with ADCP or other
        in-situ measurements, especially during flow reversals

    •   Determine how many modes are meaningful

More Related Content

What's hot

Anschp35
Anschp35Anschp35
Anschp35
FnC Music
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
SEENET-MTP
 
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...
SSA KPI
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
spin_optics_laboratory
 
Electricmotor3
Electricmotor3Electricmotor3
Electricmotor3
Senthil Kumar
 
Seridonio fachini conem_draft
Seridonio fachini conem_draftSeridonio fachini conem_draft
Seridonio fachini conem_draft
Ana Seridonio
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Nicolas Ratkovich
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
Matthew Leingang
 
Anschp29
Anschp29Anschp29
Anschp29
FnC Music
 
Theme 5
Theme 5Theme 5
Theme 5
aks29
 
Anschp39
Anschp39Anschp39
Anschp39
FnC Music
 
Anschp21
Anschp21Anschp21
Anschp21
FnC Music
 
propagacion medio disipativo
propagacion medio disipativopropagacion medio disipativo
propagacion medio disipativo
alcajo2011
 
Physics
PhysicsPhysics
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
Nikolay Karpov
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observables
guest9fa195
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
Yuji Oyamada
 
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
SSA KPI
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
Michael London
 
Camera calibration
Camera calibrationCamera calibration
Camera calibration
Yuji Oyamada
 

What's hot (20)

Anschp35
Anschp35Anschp35
Anschp35
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
 
Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...Introduction to modern methods and tools for biologically plausible modeling ...
Introduction to modern methods and tools for biologically plausible modeling ...
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Electricmotor3
Electricmotor3Electricmotor3
Electricmotor3
 
Seridonio fachini conem_draft
Seridonio fachini conem_draftSeridonio fachini conem_draft
Seridonio fachini conem_draft
 
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
Heat-and-Mass Transfer Relationship to Determine Shear Stress in Tubular Memb...
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Anschp29
Anschp29Anschp29
Anschp29
 
Theme 5
Theme 5Theme 5
Theme 5
 
Anschp39
Anschp39Anschp39
Anschp39
 
Anschp21
Anschp21Anschp21
Anschp21
 
propagacion medio disipativo
propagacion medio disipativopropagacion medio disipativo
propagacion medio disipativo
 
Physics
PhysicsPhysics
Physics
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
Poster Partial And Complete Observables
Poster Partial And Complete ObservablesPoster Partial And Complete Observables
Poster Partial And Complete Observables
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
 
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
Introduction to Modern Methods and Tools for Biologically Plausible Modelling...
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
Camera calibration
Camera calibrationCamera calibration
Camera calibration
 

Viewers also liked

Crow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptxCrow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptx
grssieee
 
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.pptRuf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
grssieee
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdf
grssieee
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.ppt
grssieee
 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptx
grssieee
 
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
grssieee
 
WEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptxWEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptx
grssieee
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
grssieee
 
IGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.pptIGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.ppt
grssieee
 

Viewers also liked (9)

Crow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptxCrow.IGARSS.talk.pptx
Crow.IGARSS.talk.pptx
 
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.pptRuf_IGARSS2011_Precip_TU4.T07.4.ppt
Ruf_IGARSS2011_Precip_TU4.T07.4.ppt
 
Tandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdfTandem-L-IGARSS-v2-final-2011.pdf
Tandem-L-IGARSS-v2-final-2011.pdf
 
ChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.pptChuePoh_IGARSS2011.ppt
ChuePoh_IGARSS2011.ppt
 
TU3.T10.1.pptx
TU3.T10.1.pptxTU3.T10.1.pptx
TU3.T10.1.pptx
 
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
1148_DAILY_ESTIMATES_OF_THE_TROPOSPHERIC_AEROSOL_OPTICAL_THICKNESS_OVER_LAND_...
 
WEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptxWEI_slides_Igarss11_July10-11.mc.final.pptx
WEI_slides_Igarss11_July10-11.mc.final.pptx
 
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdfSea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
Sea_Surface_Salinity_and_Lband_Radiometric_measurements_CAROLS_SMOS.pdf
 
IGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.pptIGARSS2011_aster_volcano_urai.ppt
IGARSS2011_aster_volcano_urai.ppt
 

Similar to TU3.T10.2.pdf

Waveguide
WaveguideWaveguide
Waveguide
Yong Heui Cho
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
melihbulut1
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
melihbulut1
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
Los Alamos National Laboratory
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
SinYK
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
Nitin Kumar
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
Anilkumar Shoibam
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
Chandan Singh
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
student
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
Forward2025
 
EMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdfEMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdf
rsrao8
 
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELSWE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
grssieee
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
molmodbasics
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
Kris Ann Ferrer
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
Abhishek Das
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
Colm Connaughton
 
Reflection Data Analysis
Reflection Data AnalysisReflection Data Analysis
Reflection Data Analysis
Ali Osman Öncel
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
clayqn88
 
Rock Physics: Definitions
Rock Physics: DefinitionsRock Physics: Definitions
Rock Physics: Definitions
Ali Osman Öncel
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
SEENET-MTP
 

Similar to TU3.T10.2.pdf (20)

Waveguide
WaveguideWaveguide
Waveguide
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
EMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdfEMF.1.22.GaussLaw-P.pdf
EMF.1.22.GaussLaw-P.pdf
 
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELSWE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
WE4.L09 - ROLL INVARIANT TARGET DETECTION BASED ON POLSAR CLUTTER MODELS
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
Reflection Data Analysis
Reflection Data AnalysisReflection Data Analysis
Reflection Data Analysis
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Rock Physics: Definitions
Rock Physics: DefinitionsRock Physics: Definitions
Rock Physics: Definitions
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 

More from grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
Test
TestTest
Test
grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
grssieee
 

More from grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

Recently uploaded

Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
fredae14
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Webinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data WarehouseWebinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data Warehouse
Federico Razzoli
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
innovationoecd
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Jeffrey Haguewood
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
Hiroshi SHIBATA
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Speck&Tech
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
SitimaJohn
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing InstancesEnergy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Alpen-Adria-Universität
 
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying AheadDigital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Wask
 

Recently uploaded (20)

Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Webinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data WarehouseWebinar: Designing a schema for a Data Warehouse
Webinar: Designing a schema for a Data Warehouse
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
Presentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of GermanyPresentation of the OECD Artificial Intelligence Review of Germany
Presentation of the OECD Artificial Intelligence Review of Germany
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing InstancesEnergy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
 
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying AheadDigital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying Ahead
 

TU3.T10.2.pdf

  • 1. Normal Modes Analysis of RiverSonde Data in a Tidal Channel Calvin C. Teague, Donald E. Barrick CODAR Ocean Sensors, Ltd. Mountain View, CA David Honegger Oregon State University Corvallis, OR
  • 2. RiverSonde Description • UHF (435 MHz, 70-cm wavelength) radar • Bragg scattering from 35-cm wavelength waves • Based on SeaSonde hardware • 1 W transmit power • MUSIC direction finding using 3-yagi antenna array • 5–15 m range bins, 1° angle bins • Typically installed on a river bank
  • 3. Antennas Center array used for Transmit & Receive Side arrays used for receive only
  • 4. Typical Geometry River Mean Flow Radar Field of View 1 2 3 Radar
  • 5. Newport Experiment • CODAR student grant program • Installed in September 2010 at Newport, Oregon • Channel connecting Yaquina Bay to Pacific Ocean • Tidal flow between parallel jetties
  • 7. Radial Vectors 2010-12-07-13:00 UTC
  • 8. Velocity Vector Estimation • From a single site, find along- and cross-channel components from least-squares fit to radials • If 2 sites are available, find full vectors by combining radial measurements from both sites • From a single site, use Normal Modes Analysis of radial measurements to infer full vectors • For arbitrary boundary, numerical solution required • For rectangular boundary, closed-form solution possible • Useful for dynamic flow conditions like tidal reversals
  • 9. Normal Modes Analysis • Assume water incompressible • Express horizontal flow in terms of velocity potentials and stream func- tions • Boundary conditions – Zero normal flow at banks – No impedance to tangential flow at banks – Periodic boundary at ends of analysis region − → • Horizontal surface velocity vector U − → U = ∇ × [z (−Ψ) + ∇ × (ˆΦ)] ˆ z where z is the vertical unit vector, Ψ is the stream function, and Φ is ˆ the velocity potential • Allow up to 20 modes across river, only 2 along river • Closed-form solutions in terms of sines and cosines
  • 10. Homogeneous Equations • Stream function satisfying Dirichlet condition at bank ∇2ψn + νnψn = 0, where ψn|Γ = 0 D , v D = −∂ψn , ∂ψn un n ∂y ∂x where ψn is the n-th eigenfunction of the stream function Ψ, νn is the corresponding n-th eigenvalue and uD and vn are the velocity compo- n D nents in the x and y directions, respectively. • Velocity function satisfying Neumann condition at bank ∂φn ∇2φn + µnφn = 0, where (ˆ · ∇φn) = λ =0 Γ ∂λ Γ N , v N ] = ∂φn , ∂φn [un n ∂x ∂y where φn is the n-th eigenfunction of the velocity potential Φ, µn is the corresponding n-th eigenvalue and ˆ is the direction perpendicular to λ the boundary.
  • 11. Normal Modes Solutions Velocity potential modes with a periodic boundary at x = ±L/2 and bank at y = ±W/2  cos(j2πx/L) cos(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .    cos(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . . φn(x, y) = sin(j2πx/L) cos(mπy/W )    for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .     sin(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . . Corresponding stream modes  cos(j2πx/L) cos(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .    cos(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . . ψn(x, y) = sin(j2πx/L) cos(mπy/W )    for j = 0, 1, 2, 3, . . . ; m = 1, 3, 5, 7, . . .     sin(j2πx/L) sin(mπy/W )     for j = 0, 1, 2, 3, . . . ; m = 0, 2, 4, 6, . . .
  • 12. Velocity Mode Examples 1 150 150 100 100 50 50 0 0 -400 -400 -200 -200 0 0 200 200 400 400 83, 0, 1, Null, Null 85, 1, 0, Null, Null 350 350 300 300 250 250 j=1 200 200 m=0 150 150 100 100 50 50 0 0 -400 -400 -200 -200 0 0 200 200 400 400 86, 1, 1, Null, Null 350 300 250 j=1 200 150 m=1 100 50 0 -400 -200 0 200 400 87, 2, -1, Null, Null 350 300 250 200
  • 13. Velocity Mode Examples 2 150 100 50 0 -400 -200 0 200 400 85, 1, 0, Null, Null 350 300 250 j=0 200 150 m=1 100 50 FitModes6-Mod 0 -400 -200 0 200 400 86, 1, 1, Null, Null 350 88, 2, 0, Null, Null 350 300 300 250 250 200 j=0 200 150 150 m=2 100 100 50 50 0 0 -400 -200 0 200 400 -400 -200 0 200 400 87, 2, -1, Null, Null 350 89, 2, 1, Null, Null 350 300 300 250 250 200 200 150
  • 14. 2 2 2 2 Velocity Mode Examples 3 n § Length@uPsiD, n ++, title = n = ToString@nD; title = modeIDPLength@uPhiD + ToString@nD; title = modeIDPLength@uPhiD plt = HVectorPlot@8uPsiPnT, vPsiPnT, 8x, x1, x2, 8y, y1, y2, Frame Ø True, x2, 8y, y1, y2, Frame Ø True, PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL; DisplayFunction Ø IdentityDL; Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0, 82, 2DD, Disk@80, 0, 82, 2DD, PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10, 8yp1, yp2, yp2, ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F; $DisplayFunctionDDD;F;F; 864, Null, Null, 1, 0 350 300 250 j=0 200 150 m=1 100 50 0 -400 -200 0 200 400 400 865, Null, Null, 2, 0 350 300 250 j=0 200 150 m=2 100 50 0 -400 -200 0 200 400 400
  • 15. Mode Coefficients Determination • Evaluate model in terms of unknown mode coefficients at each point where radar data are available • At each point, equate sum of radial components of model to radial radar measurement • Repeat over all available radar measurements • Solve overdetermined set of equations for mode coefficients (~5000 equations in ~50 unknowns) using least-squares • Allow up to 20 modes across river for along-river component (mmax), only 2 along river for both along- and cross-river components (jmax)
  • 16. Streamline Examples NWPT_2010_12_07_0600 NWPT_2010_12_07_0945 2.0 2.0 300 300 1.5 1.5 250 250 y m y m 200 200 1.0 ms 1.0 ms 150 150 100 0.5 100 0.5 50 50 200 100 0 100 200 200 100 0 100 200 0.0 0.0 x m x m NWPT_2010_12_07_1300 NWPT_2010_12_07_1530 2.0 2.0 300 300 1.5 1.5 250 250 y m y m 200 200 1.0 ms 1.0 ms 150 150 100 0.5 100 0.5 50 50 200 100 0 100 200 200 100 0 100 200 0.0 0.0 x m x m
  • 17. Mode Limits NWPT_2010_12_07_1530 2.0 300 1.5 250 u: jmax = 1, mmax = 5 y m 200 1.0 ms v: jmax = 0, mmax = 2 150 100 0.5 50 200 100 0 100 200 0.0 x m NWPT_2010_12_07_1530 2.0 300 1.5 250 u: jmax = 1, mmax = 20 y m 200 1.0 ms v: jmax = 0, mmax = 2 150 100 0.5 50 200 100 0 100 200 0.0 x m
  • 18. Lagrangian Particle Trajectories • Compute velocity vectors at 5-minute intervals • Seed study area with 100 particles randomly placed every 2 minutes • Integrate particle velocity in 10-second steps • Display 10 locations of particles with lighter color for older positions • Movie covers 2.5 hours around a tidal reversal
  • 19. Particle Trajectory Example 2010 12 07 08:30:00 0000 350 300 250 y m 200 150 100 50 200 100 0 100 200 x m
  • 20. Summary • For an arbitrary boundary, Normal Modes solution must be found numerically • For the special case of a rectangular boundary, with no normal flow across banks and periodic continuation at open boundaries, a closed-form solution can be found as a series of products of sines and cosines • Least-squares fit of radial components of Normal Modes to radar radial velocity vectors gives coefficients • Lagrangian visualization of particle trajectories may be useful in dynamic conditions like tidal reversals • Future studies • Compare this 2D fitting to 1D radial data with ADCP or other in-situ measurements, especially during flow reversals • Determine how many modes are meaningful