SlideShare a Scribd company logo
Spin and Orbital Angular
 Momentum of a Photon



 Michael London and Angela Guzman
      Quantum Optics Group FAU, Sept 25 2008
Maxwell’s Equations
Source Free Field
                    E0
                    B0
                     E   t B
                           1
                     B  2 t E
                          c
Vectors to Quantized Field Operators,
         ˆ
                     ˆ           ˆ          ˆ
         F (r , t )  E (r , t ), B(r , t ), A(r , t )   
Plane Wave Mode Expansion
 Electric Field Operator
        ˆ            1            
        E (r , t )             2 o
                                      (iak , s k , s ei ( k r t )  iak , s k*, s ei ( k r t ) )
                                                                          †

                     L3   k ,s



  Magnetic Field Operator

ˆ           1
B(r , t )             2 o
                                 (iak , s (k   k , s )ei ( k r t )  iak , s (k   k ,s )* e i ( k r t ) )
                                                                            †

            L3   k ,s

                      2    2      2
  where          k  ( n1 ,    n2 ,    n3 )                   and            (n1 , n2 , n3 )  0, 1, 2...
                       L     L       L
Polarization Vectors
Orthonormal Transverse pairs (circular
 or linear)
             k   0
              k*, s   k , s   ss
                                   k
              k , s   k , s    
                                   k
Commutation Relation for the creation
 and annihilation operators: [a , a ]  
                              ˆ ˆ         k ,s
                                                 †
                                                 k , s   k ,k 
Total Angular Momentum
Depends on a point ro and is an integral
 of the angular momentum density
ˆ           o 3                ˆ             ˆ           ˆ           ˆ
J (r , t )   d x(r  ro )  ( E (ro , t )  B(r , t )  B(r , t )  E (ro , t ))
            2V

 Separate into two parts and determine
                          ˆ
  the Linear Momentum P(ro , t )
ˆ             ˆ              o 3 ˆ                 ˆ            ˆ            ˆ
J (r , t )  J (0, t )  ro   d x( E (ro , t )  B(r , t )  B(r , t )  E (ro , t ))
                             2V
            ˆ           o 3 ˆ               ˆ           ˆ           ˆ
           P(ro , t )   d x( E (ro , t )  B(r , t )  B(r , t )  E (ro , t ))
                         2V
Defining Linear Momentum
 The difference between the classical case and the
 field theory case is that the fields are symmetric
 Hermitian operators.
             ˆ             ˆ                ˆ
             J (ro , t )  J (0, t )  ro  P(ro , t )
                     ˆ
                     P(ro , t )   knk , s
                                     ˆ
                                  k ,s

By using the mode expansion for the Electric and
  Magnetic fields the final expression for linear
  momentum shows that it depends on the photon
                     ˆ
  number operator: nk , s
Photon Number
The photon number operator:

                              ˆk , s  ak ,s ak ,s
                              n        ˆ† ˆ

The Fock space defines a Orthonormal complete set:

                   nk ,s nk ,s  ak ,s ak ,s nk ,s  nk ,s nk ,s
                   ˆ             ˆ† ˆ

 The total field is written as a product of the states of the
   individual modes:

    nk1 ,1 , nk1 ,2 , nk2 ,1 , nk2 ,2 ,...  nk1 ,1 nk2 ,2 nk2 ,1 nk2 ,2 ...  {nk ,s }
Constant of the Motion
                     ˆ
The Linear Momentum, P(ro , t ) is a
 constant of the motion since the
 photon number, nk ,s is a constant.
                  ˆ



                                    ˆ
The total Angular Momentum,         J (ro , t )
                           ˆ
 will on change in time if J (0o , t ) changes
 in time.
Time Rate of Change of Total
       Angular Momentum
Using Maxwell’s equations we get

                                ˆ                ˆ                   ˆ
                             t J (ro , t )  t J (0, t )  t (r  P(r , t ))

          ˆ                 ˆ                            ˆ            ˆ           ˆ                ˆ
       t J (ro , t )   t J (0, t )  o  d 3 xr  ( t E (r , t )  B(r , t )  E (r , t )   t B(r , t ))
                                        2V

     ˆ                 ˆ                             ˆ              ˆ            1 ˆ             ˆ
  t J (ro , t )   t J (0, t )    d 3 xr  ( o E (r , t )  E (r , t )    B(r , t )  B(r , t ))
                                 V
                                                                               o

                              ˆ with
Use equal time commutators of E
       ˆ with ˆ
   and B      B
Triple Cross Product
      ˆ     ˆ ˆ ˆ ˆ          ˆ 1 ˆ           ˆ ˆ
      E  E  EiEi  E  E  E 2  (  E ) E
                                2

  Condition from Maxwell’s equation yields:
                                 ˆ
                               E  0
  The Electric field
      ˆ       ˆ    1       ˆ              ˆ ˆ      1     ˆ             ˆ    ˆ
r  ( E  ( E )  (r ) E 2  r  (  E ) E    (rE 2 )    ( Er  E )
                   2                               2
  The Magnetic field:
      ˆ       ˆ 1         ˆ              ˆ ˆ     1     ˆ             ˆ    ˆ
r  ( B  ( B)  (r ) B 2  r  (  B) B    (rB 2 )    ( Br  B)
                  2                              2
Gauss’s Theorem over Volume
        and Surfaces

     ˆ           1              ˆ2           1 ˆ2
  t J (r , t )   dS  r ( o E (r , t )     B (r , t )) 
                 2 s                         o
 1             ˆ             ˆ            1 ˆ             ˆ
 2
     dS  ( o E (r , t )r  E (r , t )     B(r , t )r  B(r , t ))
   s
                                          o
The first term vanishes if we apply surface elements at
(-L/2,y,z) and (+L/2,y,z). The surface term of the cross
product points in opposite directions. So the second
terms remains:
    ˆ           1            ˆ             ˆ            1 ˆ             ˆ
 t J (r , t )   dS  ( o E (r , t )r  E (r , t )     B(r , t )r  B(r , t ))
                2 s                                     o
Rate of Change of Total Angular
          Momentum
Component form:

        ˆ                              1
     t J l  lmp  dS p rm ( o Em E p    Bm Bp )
                 V
                                       o
 Summing over repeated indices, the term
 with m ≠ p vanishes in pairs at the
 boundary and only m = p remains.
Positive and Negative Frequency
              Parts
Decompose the Hermitian operators:
                   ˆ
                   E (r , t )  E  (r , t )  E  ( r , t )

E  (r , t )   contains annihilation operators and
E  (r , t )   creation operators.
Normal ordering
                 ˆ ˆ      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
                 Em E p  Em E p  Em E p  Em E p  En E p
Normal Ordering for the fields
Commutation Relation and the normal
 ordering procedure
              ˆ ˆ
             [E  , E  ]  0
                    m    p

Invert the normal ordering for the last term
                 ˆ ˆ    ˆ ˆ
                 Em E p  Em E p

 Correct normal ordering after inverting
       ˆ ˆ      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
       Em E p  Em E p  Em E p  Em E p  E p Em
Normal Ordered Time Rate of
  Change of the Total Angular
          Momentum
               ˆ                     ˆ E  1 B B )
                                         ˆ     ˆ ˆ
            t J l  lmp  dS p rm ( o Em p
                        V
                                               o
                                                m p



Insert the normal ordering terms in the above equation

       ˆ                            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
    t J l   lmp  dS p rm ( o ( Em E p  Em E p  Em E p  E p Em ) 
                V

    1     ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
        ( Bm B p  Bm B p  Bm B p  B p Bm ))
   o
Expectation Value to the total
     Angular Momentum
Surface Integral over the boundary

               ˆ
               E  (r , t )  i  0

              ˆ
              B  (r , t )  i  0

Expectation Value:
                   ˆ
             2 t J l (ro , t )  1  0

        Constant of the motion.
Decomposition of Total Angular
   Momentum into spin and
        orbital parts.
In Classical EM theory we can decompose
  into two part that depend on position while
  the last term does not.

 o  d 3 x(r  ro )  ( E (r , t )  B(r , t ))   o  d 3 xEi (r , t )((r  ro ) ) Ai ( r , t ) 
   V                                                  V

 o  dS  E (r , t )(r  ro )  A(r , t )   o  d 3 xE (r , t )  A(r , t )
   S                                             V


    where A(r , t ) is the magnetic vector potential
Orbital Angular Momentum
OAM

 ˆ           o 3 ˆ                             ˆ                            ˆ             ˆ
 L (r , t )   d x( Ei (r , t )((r  ro )  ) Ai (r , t )  (( r  ro )  Ai ( r , t )) Ei ( r , t ))
             2V
     o           ˆ                     ˆ                     ˆ         ˆ
 
     2    
          S
            (dS  E (r , t )(r  ro )  A(r , t )  (r  ro ) A(r , t ) E (r , t ).dS )
Spin
• Spin

         ˆ o
         S   d 3 x( E (r , t )  A(r , t )  A(r , t )  E (r , t ))
            2V
Decomposed into Two Terms
 Total Angular Momentum is now
 decomposed into the Intrinsic Spin
 and Orbital Angular Momentum

                    ˆ ˆ ˆ
                    J  L S


The integral is written over the surface boundary and
can be written as normal order
Spin
After using the mode expansion for the
Electric and Magnetic fields which is
integrated over a volume we obtain this
form:      ˆ            1
                 S i
                   †
                           (a
                          k
                              ˆ  *

                               s , s
                                             ˆ
                                             a
                                        k , s k , s
                                                         s , s )( k , s   k , s )
                                                        2

We choice  k ,1 and  k ,2 to represent orthonormal states or
right and left circular polarization

                              ( k ,s   k*,s )  is s ,s

                                        k
where   s , s  1 and        
                                        k
Spin
  The choice of the polarization is in a
  simple form such that the spin
  becomes:
                    ˆ
                    S    (nk ,1  nk ,2 )
                             ˆ       ˆ
                         k

The spin is diagonal in the photon number state. It is
written as the difference of the right and left polarization.

The spin is a constant of the motion since the photon
number is a constant.
OAM
The orbital angular momentum is a
constant of motion.
                      ˆ ˆ ˆ
                      L  J S
              ˆ ˆ
              L  J    (nk ,1  nk ,2 )
                           ˆ       ˆ
                           k

  ˆ 1                                      ˆ          ˆ ˆ
  L   (ak , s ak , s  ak , s ak , s ) F (r , t ) L F (r , t )
              †                    †

     2 s , s
Conclusion
Spin and Orbital Angular Momentum depend on
 the photon number and are therefore constants
 of the motion.

The commutation relations shows that neither
 spin nor orbital angular momentum generate
 rotations.

To further investigate the physical significance on
  should consider the interaction of matter with
  the radiation field.

More Related Content

What's hot

Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
Jay Wacker
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
SEENET-MTP
 
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI), International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions www.ijeijournal.com
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...vcuesta
 
Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)
Shu Tanaka
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
vvk0
 
Adiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time EvolutionAdiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time Evolution
tanaka-atushi
 
Autoregression
AutoregressionAutoregression
Autoregressionjchristo06
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Rene Kotze
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
ijceronline
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZoe Zontou
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
SEENET-MTP
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological Quintessence
SEENET-MTP
 
Dimen
DimenDimen
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
foxtrot jp R
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...Alexander Decker
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
iosrjce
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
Rene Kotze
 

What's hot (20)

Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI), International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI),
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
 
Bertail
BertailBertail
Bertail
 
Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)Unconventional phase transitions in frustrated systems (March, 2014)
Unconventional phase transitions in frustrated systems (March, 2014)
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Adiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time EvolutionAdiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time Evolution
 
Autoregression
AutoregressionAutoregression
Autoregression
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological Quintessence
 
Dimen
DimenDimen
Dimen
 
Draft classical feynmangraphs higgs
Draft classical feynmangraphs higgsDraft classical feynmangraphs higgs
Draft classical feynmangraphs higgs
 
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...11.[95 103]solution of telegraph equation by modified of double sumudu transf...
11.[95 103]solution of telegraph equation by modified of double sumudu transf...
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 

Viewers also liked

Momentum sudut total
Momentum sudut totalMomentum sudut total
Momentum sudut total
Zulaeha Izoel Pamungkas
 
Angularmomentum
AngularmomentumAngularmomentum
Angularmomentum
Gabino Corona
 
(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum couplingIbenk Hallen
 
Trm 7
Trm 7Trm 7
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
Abhishek Das
 

Viewers also liked (6)

Momentum sudut total
Momentum sudut totalMomentum sudut total
Momentum sudut total
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 
Angularmomentum
AngularmomentumAngularmomentum
Angularmomentum
 
(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling(10) electron spin & angular momentum coupling
(10) electron spin & angular momentum coupling
 
Trm 7
Trm 7Trm 7
Trm 7
 
Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323Atomic and molecular spectroscopy chm323
Atomic and molecular spectroscopy chm323
 

Similar to Talk spinoam photon

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006SNS
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filtersNikolay Karpov
 
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Evangelos Ntotsios
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
Ndoro D Eng
 
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...Alexander Decker
 
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...Alexander Decker
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
Fujii Mikiya
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
SinYK
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
sahil9100
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
Rene Kotze
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
PawanKumar391848
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
NUI Galway
 
Study of the variation of power loss with frequency along a rectangular
Study of the variation of power loss with frequency along a rectangularStudy of the variation of power loss with frequency along a rectangular
Study of the variation of power loss with frequency along a rectangularIAEME Publication
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
Priyanka Anni
 

Similar to Talk spinoam photon (20)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
 
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
 
Pimc 20131206
Pimc 20131206Pimc 20131206
Pimc 20131206
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Antenna parameters
Antenna parametersAntenna parameters
Antenna parameters
 
#26 Key
#26 Key#26 Key
#26 Key
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
Study of the variation of power loss with frequency along a rectangular
Study of the variation of power loss with frequency along a rectangularStudy of the variation of power loss with frequency along a rectangular
Study of the variation of power loss with frequency along a rectangular
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 

Talk spinoam photon

  • 1. Spin and Orbital Angular Momentum of a Photon Michael London and Angela Guzman Quantum Optics Group FAU, Sept 25 2008
  • 2. Maxwell’s Equations Source Free Field  E0  B0   E   t B 1   B  2 t E c Vectors to Quantized Field Operators, ˆ ˆ ˆ ˆ F (r , t )  E (r , t ), B(r , t ), A(r , t ) 
  • 3. Plane Wave Mode Expansion Electric Field Operator ˆ 1  E (r , t )   2 o (iak , s k , s ei ( k r t )  iak , s k*, s ei ( k r t ) ) † L3 k ,s Magnetic Field Operator ˆ 1 B(r , t )   2 o (iak , s (k   k , s )ei ( k r t )  iak , s (k   k ,s )* e i ( k r t ) ) † L3 k ,s 2 2 2 where k  ( n1 , n2 , n3 ) and (n1 , n2 , n3 )  0, 1, 2... L L L
  • 4. Polarization Vectors Orthonormal Transverse pairs (circular or linear) k   0  k*, s   k , s   ss k  k , s   k , s   k Commutation Relation for the creation and annihilation operators: [a , a ]   ˆ ˆ k ,s † k , s k ,k 
  • 5. Total Angular Momentum Depends on a point ro and is an integral of the angular momentum density ˆ o 3 ˆ ˆ ˆ ˆ J (r , t )   d x(r  ro )  ( E (ro , t )  B(r , t )  B(r , t )  E (ro , t )) 2V Separate into two parts and determine ˆ the Linear Momentum P(ro , t ) ˆ ˆ o 3 ˆ ˆ ˆ ˆ J (r , t )  J (0, t )  ro   d x( E (ro , t )  B(r , t )  B(r , t )  E (ro , t )) 2V ˆ o 3 ˆ ˆ ˆ ˆ P(ro , t )   d x( E (ro , t )  B(r , t )  B(r , t )  E (ro , t )) 2V
  • 6. Defining Linear Momentum The difference between the classical case and the field theory case is that the fields are symmetric Hermitian operators. ˆ ˆ ˆ J (ro , t )  J (0, t )  ro  P(ro , t ) ˆ P(ro , t )   knk , s ˆ k ,s By using the mode expansion for the Electric and Magnetic fields the final expression for linear momentum shows that it depends on the photon ˆ number operator: nk , s
  • 7. Photon Number The photon number operator: ˆk , s  ak ,s ak ,s n ˆ† ˆ The Fock space defines a Orthonormal complete set: nk ,s nk ,s  ak ,s ak ,s nk ,s  nk ,s nk ,s ˆ ˆ† ˆ The total field is written as a product of the states of the individual modes: nk1 ,1 , nk1 ,2 , nk2 ,1 , nk2 ,2 ,...  nk1 ,1 nk2 ,2 nk2 ,1 nk2 ,2 ...  {nk ,s }
  • 8. Constant of the Motion ˆ The Linear Momentum, P(ro , t ) is a constant of the motion since the photon number, nk ,s is a constant. ˆ ˆ The total Angular Momentum, J (ro , t ) ˆ will on change in time if J (0o , t ) changes in time.
  • 9. Time Rate of Change of Total Angular Momentum Using Maxwell’s equations we get ˆ ˆ ˆ t J (ro , t )  t J (0, t )  t (r  P(r , t )) ˆ ˆ  ˆ ˆ ˆ ˆ  t J (ro , t )   t J (0, t )  o  d 3 xr  ( t E (r , t )  B(r , t )  E (r , t )   t B(r , t )) 2V ˆ ˆ ˆ ˆ 1 ˆ ˆ  t J (ro , t )   t J (0, t )    d 3 xr  ( o E (r , t )  E (r , t )  B(r , t )  B(r , t )) V o ˆ with Use equal time commutators of E ˆ with ˆ and B B
  • 10. Triple Cross Product ˆ ˆ ˆ ˆ ˆ ˆ 1 ˆ ˆ ˆ E  E  EiEi  E  E  E 2  (  E ) E 2 Condition from Maxwell’s equation yields: ˆ  E  0 The Electric field ˆ ˆ 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ r  ( E  ( E )  (r ) E 2  r  (  E ) E    (rE 2 )    ( Er  E ) 2 2 The Magnetic field: ˆ ˆ 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ r  ( B  ( B)  (r ) B 2  r  (  B) B    (rB 2 )    ( Br  B) 2 2
  • 11. Gauss’s Theorem over Volume and Surfaces ˆ 1 ˆ2 1 ˆ2  t J (r , t )   dS  r ( o E (r , t )  B (r , t ))  2 s o 1 ˆ ˆ 1 ˆ ˆ 2 dS  ( o E (r , t )r  E (r , t )  B(r , t )r  B(r , t )) s o The first term vanishes if we apply surface elements at (-L/2,y,z) and (+L/2,y,z). The surface term of the cross product points in opposite directions. So the second terms remains: ˆ 1 ˆ ˆ 1 ˆ ˆ  t J (r , t )   dS  ( o E (r , t )r  E (r , t )  B(r , t )r  B(r , t )) 2 s o
  • 12. Rate of Change of Total Angular Momentum Component form: ˆ  1 t J l lmp  dS p rm ( o Em E p  Bm Bp ) V o Summing over repeated indices, the term with m ≠ p vanishes in pairs at the boundary and only m = p remains.
  • 13. Positive and Negative Frequency Parts Decompose the Hermitian operators: ˆ E (r , t )  E  (r , t )  E  ( r , t ) E  (r , t ) contains annihilation operators and E  (r , t ) creation operators. Normal ordering ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Em E p  Em E p  Em E p  Em E p  En E p
  • 14. Normal Ordering for the fields Commutation Relation and the normal ordering procedure ˆ ˆ [E  , E  ]  0 m p Invert the normal ordering for the last term ˆ ˆ ˆ ˆ Em E p  Em E p Correct normal ordering after inverting ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Em E p  Em E p  Em E p  Em E p  E p Em
  • 15. Normal Ordered Time Rate of Change of the Total Angular Momentum ˆ  ˆ E  1 B B ) ˆ ˆ ˆ t J l lmp  dS p rm ( o Em p V o m p Insert the normal ordering terms in the above equation ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ  t J l   lmp  dS p rm ( o ( Em E p  Em E p  Em E p  E p Em )  V 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( Bm B p  Bm B p  Bm B p  B p Bm )) o
  • 16. Expectation Value to the total Angular Momentum Surface Integral over the boundary ˆ E  (r , t )  i  0 ˆ B  (r , t )  i  0 Expectation Value: ˆ  2 t J l (ro , t )  1  0 Constant of the motion.
  • 17. Decomposition of Total Angular Momentum into spin and orbital parts. In Classical EM theory we can decompose into two part that depend on position while the last term does not.  o  d 3 x(r  ro )  ( E (r , t )  B(r , t ))   o  d 3 xEi (r , t )((r  ro ) ) Ai ( r , t )  V V  o  dS  E (r , t )(r  ro )  A(r , t )   o  d 3 xE (r , t )  A(r , t ) S V where A(r , t ) is the magnetic vector potential
  • 18. Orbital Angular Momentum OAM ˆ o 3 ˆ ˆ ˆ ˆ L (r , t )   d x( Ei (r , t )((r  ro )  ) Ai (r , t )  (( r  ro )  Ai ( r , t )) Ei ( r , t )) 2V o ˆ ˆ ˆ ˆ  2  S (dS  E (r , t )(r  ro )  A(r , t )  (r  ro ) A(r , t ) E (r , t ).dS )
  • 19. Spin • Spin ˆ o S   d 3 x( E (r , t )  A(r , t )  A(r , t )  E (r , t )) 2V
  • 20. Decomposed into Two Terms Total Angular Momentum is now decomposed into the Intrinsic Spin and Orbital Angular Momentum ˆ ˆ ˆ J  L S The integral is written over the surface boundary and can be written as normal order
  • 21. Spin After using the mode expansion for the Electric and Magnetic fields which is integrated over a volume we obtain this form: ˆ 1 S i †  (a k ˆ * s , s ˆ a k , s k , s   s , s )( k , s   k , s ) 2 We choice  k ,1 and  k ,2 to represent orthonormal states or right and left circular polarization ( k ,s   k*,s )  is s ,s k where s , s  1 and   k
  • 22. Spin The choice of the polarization is in a simple form such that the spin becomes: ˆ S    (nk ,1  nk ,2 ) ˆ ˆ k The spin is diagonal in the photon number state. It is written as the difference of the right and left polarization. The spin is a constant of the motion since the photon number is a constant.
  • 23. OAM The orbital angular momentum is a constant of motion. ˆ ˆ ˆ L  J S ˆ ˆ L  J    (nk ,1  nk ,2 ) ˆ ˆ k ˆ 1 ˆ ˆ ˆ L   (ak , s ak , s  ak , s ak , s ) F (r , t ) L F (r , t ) † † 2 s , s
  • 24. Conclusion Spin and Orbital Angular Momentum depend on the photon number and are therefore constants of the motion. The commutation relations shows that neither spin nor orbital angular momentum generate rotations. To further investigate the physical significance on should consider the interaction of matter with the radiation field.