SlideShare a Scribd company logo
TensorFlow プログラミングと
分類アルゴリズムの基礎
Etsuji Nakai
Cloud Solutions Architect at Google
2016/12/27 ver1.1
2
$ who am i
▪Etsuji Nakai
Cloud Solutions Architect at Google
Twitter @enakai00
好評発売中
TensorFlow プログラミング入門
4
(参考) Jupyter Notebook について
▪ Web ブラウザー上で Python によるデータ分析を行う
ツール(オープンソースソフトウェア)
▪ TensorFlow を用いたコードの開発も可能
▪ GCP 環境では、 Cloud Datalab で利用可能
▪ 独自にセットアップする際は、こちらの手順を参照
●
GCP で Jupyter を使用する方法
●
http://enakai00.hatenablog.com/entry/2016/07/03/201117
5
TensorFlow のプログラミングモデル
▪ 事前に関係式を定義しておき、その後、「セッション」
を立ち上げて計算処理を実施します。
●
分散学習機能を使う場合は、各計算ノードのセッションが協
調して動作します。
▪ 次の 3 種類の違いを意識して、コードを書くことに注意
が必要です。
●
トレーニングデータを代入する変数 : Placeholder
●
チューニング対象のパラメーター: Variable
●
これらを組み合わせた計算式
6
例題:最小二乗法による平均気温予測
▪ 気温変化の背後にあるなめらかな曲線を推測して、「来
年の月々の平均気温」を予測します。
●
背後にある曲線を次の 4 次関数と仮定します。
●
この時、来年の予測気温は、次の行列計算で書き表すことが
できます。 今年の月々の平均気温
計算式
Placeholder Variable
7
例題:最小二乗法による平均気温予測
▪ 推測した曲線のデータに対する「あてはまらなさ具合」を
表す「誤差関数」を定義して、これを最小化するようにパ
ラメーター         をチューニングします。
●
これは、 TensorFlow のライブラリ関数を用いると、次
のように表現できます。
観測データと予測値
Placeholder
:観測データ
8
例題:最小二乗法による平均気温予測
▪ これらの関係を TensorFlow のコードで表現すると、
次のようになります。
x = tf.placeholder(tf.float32, [None, 5])
w = tf.Variable(tf.zeros([5, 1]))
y = tf.matmul(x, w)
t = tf.placeholder(tf.float32, [None, 1])
loss = tf.reduce_sum(tf.square(y-t))
9
例題:最小二乗法による平均気温予測
▪ 最後に最適化アルゴリズムを指定します。
▪ この後は、セッションを作成して、最適化アルゴリズムの実行を
繰り返すことで、パラメーターの最適化が実施されます。
sess = tf.Session()
sess.run(tf.initialize_all_variables())
i = 0
for _ in range(100000):
i += 1
sess.run(train_step, feed_dict={x:train_x, t:train_t})
if i % 10000 == 0:
loss_val = sess.run(loss, feed_dict={x:train_x, t:train_t})
print ('Step: %d, Loss: %f' % (i, loss_val))
train_step = tf.train.AdamOptimizer().minimize(loss)
10
例題:最小二乗法による平均気温予測
http://goo.gl/Dojgp4
▪ 詳しくはデモでご紹介します!
分類アルゴリズムの基礎
12
線形2項分類器
https://goo.gl/fP0Tpn
▪ 2 種類のデータを直線で分類して、新しい
データが「✕」に属する確率を計算するモ
デルを作ります。
●
Neural Network Playground で、実際に
試してみましょう。
13
ロジスティック回帰
▪ 直線を次式で表現して、ロジスティック
関数 σ を用いて、確率に変換します。
▪ トレーニングデータにフィットするよう
に係数       を調整することを
「モデルの学習」と呼びます。
ロジスティック関数 σ
14
(参考)「フィットした」ことの判断基準
▪ 一般に「フィットしてなさ具合」を示す「誤差関数」を定義して、誤差関数を最小化す
るようにパラメーターを決定します。
●
ロジスティック回帰では、計算された確率用いて、トレーニングデータを分類した時に「全問正
解する確率」を最大化するようにパラメーターを調整します。
●
n 番目のデータ      が「✕」である確率を  として、この確率で「✕である」と予測
します。実際のデータを     ( 1:✕, 0:○ )とすると、これが正解である確率は、
●
したがって、すべてのデータに正解する確率は、
●
次で誤差関数を定義すると、「全問正解の確率最大」⇔「誤差関数が最小」となります。
15
線形2項分類器の図形的解釈
▪ 関数       のグラフを描くと、図のよう
に「斜めに配置した板」で    平面が分割
されることがわかります。
16
線形多項分類器(ハードマックス方式)
▪ 平面上のデータを直線で「 3 種類」に分類す
るには、どのようにすればよいでしょうか?
▪ 直線を表す1次関数を 3 つ用意して、どの関
数が最大になるかで、その点を分類します。
●
右図のように、「3枚の板」によって分類され
ることがわかります。
17
線形多項分類器(ソフトマックス方式)
▪ 点    が i 番目の領域である確率を次
式で定義します。
▪ これは、    の大小関係を確率に変換し
たもので、次の条件を満たすことがすぐにわ
かります。
ニューラルネットワークによる
画像分類
19
ソフトマックス関数による画像分類
▪ たとえば、 28x28 ピクセルのグレイスケール画像
は、各ピクセルの値を一列にならべると、 784 次元
空間の点とみなすことができます。
▪ 大量の画像データを 784 次元空間にばらまくと、類
似画像は互いに近くに集まると考えられないでしょ
うか?
●
ソフトマックス関数で 784 次元空間を分割すること
で、画像を分類できるかも知れません・・・。
20
TensorFlow でやってみた 正解例  不正解例
http://goo.gl/rGqjYh
▪ 詳しくはデモでご紹介します。
21
畳み込みニューラルネットワークによる性能向上
▪ 画像データをそのままソフトマックス関数に入力する
のではなく、各種の画像フィルターを通して、特徴を
抽出してからソフトマックス関数に入力します。
▪ 詳しくはこちらを参照!
22
TensorFlow でやってみた
http://goo.gl/UHsVmI
http://goo.gl/VE2ISf
▪ 詳しくはデモでご紹介します。
23
(おまけ)モデルの学習と適用のプロセス
既存モデル
改定版モデル A
追加データ
改定版モデル B
完成版モデル
アプリケーション
利用
学習処理
本番環境
テスト
テスト
既存モデル更新
学習処理
再学習処理
success
fail
既存モデル既存モデル
モデルの
バージョン管理
モデルの調整
データの準備・投入
モデルの
デプロイ
▪ これってソフトウェアの開発モデル (CI/CD) と
似ている気がしませんか?
▪ このプロセスを標準化/自動化する仕組み作り
が本格活用の基礎となります。
Thank you!

More Related Content

What's hot

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 
BERT分類ワークショップ.pptx
BERT分類ワークショップ.pptxBERT分類ワークショップ.pptx
BERT分類ワークショップ.pptx
Kouta Nakayama
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
Masahiro Suzuki
 
論文紹介-Multi-Objective Deep Reinforcement Learning
論文紹介-Multi-Objective Deep Reinforcement Learning論文紹介-Multi-Objective Deep Reinforcement Learning
論文紹介-Multi-Objective Deep Reinforcement Learning
Shunta Nomura
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験
克海 納谷
 
ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習
Shota Ishikawa
 
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII
 
コンピュータシステムの理論と実装1
コンピュータシステムの理論と実装1コンピュータシステムの理論と実装1
コンピュータシステムの理論と実装1
H T
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs
Deep Learning JP
 
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
Yusuke Iwasawa
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
Kenyu Uehara
 
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
Kenshi Abe
 
[DL輪読会]Neuroscience-Inspired Artificial Intelligence
[DL輪読会]Neuroscience-Inspired Artificial Intelligence[DL輪読会]Neuroscience-Inspired Artificial Intelligence
[DL輪読会]Neuroscience-Inspired Artificial Intelligence
Deep Learning JP
 
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
Hori Tasuku
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
Kaggleのテクニック
Yasunori Ozaki
 
One Class SVMを用いた異常値検知
One Class SVMを用いた異常値検知One Class SVMを用いた異常値検知
One Class SVMを用いた異常値検知
Yuto Mori
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
sleepy_yoshi
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 

What's hot (20)

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
 
BERT分類ワークショップ.pptx
BERT分類ワークショップ.pptxBERT分類ワークショップ.pptx
BERT分類ワークショップ.pptx
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
 
論文紹介-Multi-Objective Deep Reinforcement Learning
論文紹介-Multi-Objective Deep Reinforcement Learning論文紹介-Multi-Objective Deep Reinforcement Learning
論文紹介-Multi-Objective Deep Reinforcement Learning
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験
 
ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習
 
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
 
コンピュータシステムの理論と実装1
コンピュータシステムの理論と実装1コンピュータシステムの理論と実装1
コンピュータシステムの理論と実装1
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs
 
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
JSAI2017:敵対的訓練を利用したドメイン不変な表現の学習
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
多人数不完全情報ゲームにおけるAI ~ポーカーと麻雀を例として~
 
[DL輪読会]Neuroscience-Inspired Artificial Intelligence
[DL輪読会]Neuroscience-Inspired Artificial Intelligence[DL輪読会]Neuroscience-Inspired Artificial Intelligence
[DL輪読会]Neuroscience-Inspired Artificial Intelligence
 
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
カスタムSIで使ってみよう ~ OpenAI Gym を使った強化学習
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
Kaggleのテクニック
 
One Class SVMを用いた異常値検知
One Class SVMを用いた異常値検知One Class SVMを用いた異常値検知
One Class SVMを用いた異常値検知
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 

Similar to TensorFlowプログラミングと分類アルゴリズムの基礎

Googleのインフラ技術から考える理想のDevOps
Googleのインフラ技術から考える理想のDevOpsGoogleのインフラ技術から考える理想のDevOps
Googleのインフラ技術から考える理想のDevOps
Etsuji Nakai
 
TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!
Kei Hirata
 
【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較
Ryota Suzuki
 
大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術
RyuichiKanoh
 
Windowsにpythonをインストールしてみよう
WindowsにpythonをインストールしてみようWindowsにpythonをインストールしてみよう
WindowsにpythonをインストールしてみようKenji NAKAGAKI
 
Intalio japan special cloud workshop
Intalio japan special cloud workshopIntalio japan special cloud workshop
Intalio japan special cloud workshopDaisuke Sugai
 
20120927 findjob4 dev_ops
20120927 findjob4 dev_ops20120927 findjob4 dev_ops
20120927 findjob4 dev_ops
ume3_
 
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
Deep Learning JP
 
ChainerでDeep Learningを試す為に必要なこと
ChainerでDeep Learningを試す為に必要なことChainerでDeep Learningを試す為に必要なこと
ChainerでDeep Learningを試す為に必要なこと
Jiro Nishitoba
 
TensorFlowで音声認識
TensorFlowで音声認識TensorFlowで音声認識
TensorFlowで音声認識
祐太 上岡
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
ManaMurakami1
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
Kenta Oono
 
MTプラグイン入門以前
MTプラグイン入門以前MTプラグイン入門以前
MTプラグイン入門以前
Hiroshi Yamato
 
ChainerでDeep Learningを試すために必要なこと
ChainerでDeep Learningを試すために必要なことChainerでDeep Learningを試すために必要なこと
ChainerでDeep Learningを試すために必要なこと
Retrieva inc.
 
プランナーがPR駆動してみた話
プランナーがPR駆動してみた話プランナーがPR駆動してみた話
プランナーがPR駆動してみた話
Rino Omura
 
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う ~ 概念モデリング教本を元に ~
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う  ~ 概念モデリング教本を元に ~ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う  ~ 概念モデリング教本を元に ~
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う ~ 概念モデリング教本を元に ~
Knowledge & Experience
 
Cloudn PaaSチームのChatOps実践
Cloudn PaaSチームのChatOps実践Cloudn PaaSチームのChatOps実践
Cloudn PaaSチームのChatOps実践
Kazuto Kusama
 
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjp
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjpSphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjp
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjpTakeshi Komiya
 
TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築
Hirokatsu Kataoka
 
Pytorch
PytorchPytorch
Pytorch
卓馬 三浦
 

Similar to TensorFlowプログラミングと分類アルゴリズムの基礎 (20)

Googleのインフラ技術から考える理想のDevOps
Googleのインフラ技術から考える理想のDevOpsGoogleのインフラ技術から考える理想のDevOps
Googleのインフラ技術から考える理想のDevOps
 
TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!
 
【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較【2017年】ディープラーニングのフレームワーク比較
【2017年】ディープラーニングのフレームワーク比較
 
大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術大規模並列実験を支えるクラウドサービスと基盤技術
大規模並列実験を支えるクラウドサービスと基盤技術
 
Windowsにpythonをインストールしてみよう
WindowsにpythonをインストールしてみようWindowsにpythonをインストールしてみよう
Windowsにpythonをインストールしてみよう
 
Intalio japan special cloud workshop
Intalio japan special cloud workshopIntalio japan special cloud workshop
Intalio japan special cloud workshop
 
20120927 findjob4 dev_ops
20120927 findjob4 dev_ops20120927 findjob4 dev_ops
20120927 findjob4 dev_ops
 
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
[DL Hacks]色々と進化しているTensorFlow - 紹介編 -
 
ChainerでDeep Learningを試す為に必要なこと
ChainerでDeep Learningを試す為に必要なことChainerでDeep Learningを試す為に必要なこと
ChainerでDeep Learningを試す為に必要なこと
 
TensorFlowで音声認識
TensorFlowで音声認識TensorFlowで音声認識
TensorFlowで音声認識
 
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
「NVIDIA プロファイラを用いたPyTorch学習最適化手法のご紹介(修正版)」
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
 
MTプラグイン入門以前
MTプラグイン入門以前MTプラグイン入門以前
MTプラグイン入門以前
 
ChainerでDeep Learningを試すために必要なこと
ChainerでDeep Learningを試すために必要なことChainerでDeep Learningを試すために必要なこと
ChainerでDeep Learningを試すために必要なこと
 
プランナーがPR駆動してみた話
プランナーがPR駆動してみた話プランナーがPR駆動してみた話
プランナーがPR駆動してみた話
 
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う ~ 概念モデリング教本を元に ~
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う  ~ 概念モデリング教本を元に ~ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う  ~ 概念モデリング教本を元に ~
ChatGPT(LLMによる生成系AI)の追加学習を No Code で行う ~ 概念モデリング教本を元に ~
 
Cloudn PaaSチームのChatOps実践
Cloudn PaaSチームのChatOps実践Cloudn PaaSチームのChatOps実践
Cloudn PaaSチームのChatOps実践
 
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjp
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjpSphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjp
Sphinx ではじめるドキュメント生活 2012 #pyconjp #sphinxconjp
 
TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築TensorFlowによるCNNアーキテクチャ構築
TensorFlowによるCNNアーキテクチャ構築
 
Pytorch
PytorchPytorch
Pytorch
 

More from Etsuji Nakai

PRML11.2-11.3
PRML11.2-11.3PRML11.2-11.3
PRML11.2-11.3
Etsuji Nakai
 
「ITエンジニアリングの本質」を考える
「ITエンジニアリングの本質」を考える「ITエンジニアリングの本質」を考える
「ITエンジニアリングの本質」を考える
Etsuji Nakai
 
Googleのインフラ技術に見る基盤標準化とDevOpsの真実
Googleのインフラ技術に見る基盤標準化とDevOpsの真実Googleのインフラ技術に見る基盤標準化とDevOpsの真実
Googleのインフラ技術に見る基盤標準化とDevOpsの真実
Etsuji Nakai
 
Introducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlowIntroducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlow
Etsuji Nakai
 
Googleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービスGoogleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービス
Etsuji Nakai
 
Spannerに関する技術メモ
Spannerに関する技術メモSpannerに関する技術メモ
Spannerに関する技術メモ
Etsuji Nakai
 
A Brief History of My English Learning
A Brief History of My English LearningA Brief History of My English Learning
A Brief History of My English Learning
Etsuji Nakai
 
TensorFlowによるニューラルネットワーク入門
TensorFlowによるニューラルネットワーク入門TensorFlowによるニューラルネットワーク入門
TensorFlowによるニューラルネットワーク入門
Etsuji Nakai
 
Using Kubernetes on Google Container Engine
Using Kubernetes on Google Container EngineUsing Kubernetes on Google Container Engine
Using Kubernetes on Google Container Engine
Etsuji Nakai
 
Lecture note on PRML 8.2
Lecture note on PRML 8.2Lecture note on PRML 8.2
Lecture note on PRML 8.2
Etsuji Nakai
 
Machine Learning Basics for Web Application Developers
Machine Learning Basics for Web Application DevelopersMachine Learning Basics for Web Application Developers
Machine Learning Basics for Web Application Developers
Etsuji Nakai
 
Your first TensorFlow programming with Jupyter
Your first TensorFlow programming with JupyterYour first TensorFlow programming with Jupyter
Your first TensorFlow programming with Jupyter
Etsuji Nakai
 
Deep Q-Network for beginners
Deep Q-Network for beginnersDeep Q-Network for beginners
Deep Q-Network for beginners
Etsuji Nakai
 
Life with jupyter
Life with jupyterLife with jupyter
Life with jupyter
Etsuji Nakai
 
TensorFlowで学ぶDQN
TensorFlowで学ぶDQNTensorFlowで学ぶDQN
TensorFlowで学ぶDQN
Etsuji Nakai
 
DevOpsにおける組織に固有の事情を どのように整理するべきか
DevOpsにおける組織に固有の事情を どのように整理するべきかDevOpsにおける組織に固有の事情を どのように整理するべきか
DevOpsにおける組織に固有の事情を どのように整理するべきか
Etsuji Nakai
 
PRML7.2
PRML7.2PRML7.2
PRML7.2
Etsuji Nakai
 
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
Etsuji Nakai
 
Exploring the Philosophy behind Docker/Kubernetes/OpenShift
Exploring the Philosophy behind Docker/Kubernetes/OpenShiftExploring the Philosophy behind Docker/Kubernetes/OpenShift
Exploring the Philosophy behind Docker/Kubernetes/OpenShift
Etsuji Nakai
 
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
Etsuji Nakai
 

More from Etsuji Nakai (20)

PRML11.2-11.3
PRML11.2-11.3PRML11.2-11.3
PRML11.2-11.3
 
「ITエンジニアリングの本質」を考える
「ITエンジニアリングの本質」を考える「ITエンジニアリングの本質」を考える
「ITエンジニアリングの本質」を考える
 
Googleのインフラ技術に見る基盤標準化とDevOpsの真実
Googleのインフラ技術に見る基盤標準化とDevOpsの真実Googleのインフラ技術に見る基盤標準化とDevOpsの真実
Googleのインフラ技術に見る基盤標準化とDevOpsの真実
 
Introducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlowIntroducton to Convolutional Nerural Network with TensorFlow
Introducton to Convolutional Nerural Network with TensorFlow
 
Googleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービスGoogleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービス
 
Spannerに関する技術メモ
Spannerに関する技術メモSpannerに関する技術メモ
Spannerに関する技術メモ
 
A Brief History of My English Learning
A Brief History of My English LearningA Brief History of My English Learning
A Brief History of My English Learning
 
TensorFlowによるニューラルネットワーク入門
TensorFlowによるニューラルネットワーク入門TensorFlowによるニューラルネットワーク入門
TensorFlowによるニューラルネットワーク入門
 
Using Kubernetes on Google Container Engine
Using Kubernetes on Google Container EngineUsing Kubernetes on Google Container Engine
Using Kubernetes on Google Container Engine
 
Lecture note on PRML 8.2
Lecture note on PRML 8.2Lecture note on PRML 8.2
Lecture note on PRML 8.2
 
Machine Learning Basics for Web Application Developers
Machine Learning Basics for Web Application DevelopersMachine Learning Basics for Web Application Developers
Machine Learning Basics for Web Application Developers
 
Your first TensorFlow programming with Jupyter
Your first TensorFlow programming with JupyterYour first TensorFlow programming with Jupyter
Your first TensorFlow programming with Jupyter
 
Deep Q-Network for beginners
Deep Q-Network for beginnersDeep Q-Network for beginners
Deep Q-Network for beginners
 
Life with jupyter
Life with jupyterLife with jupyter
Life with jupyter
 
TensorFlowで学ぶDQN
TensorFlowで学ぶDQNTensorFlowで学ぶDQN
TensorFlowで学ぶDQN
 
DevOpsにおける組織に固有の事情を どのように整理するべきか
DevOpsにおける組織に固有の事情を どのように整理するべきかDevOpsにおける組織に固有の事情を どのように整理するべきか
DevOpsにおける組織に固有の事情を どのように整理するべきか
 
PRML7.2
PRML7.2PRML7.2
PRML7.2
 
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
インタークラウドを実現する技術 〜 デファクトスタンダードからの視点 〜
 
Exploring the Philosophy behind Docker/Kubernetes/OpenShift
Exploring the Philosophy behind Docker/Kubernetes/OpenShiftExploring the Philosophy behind Docker/Kubernetes/OpenShift
Exploring the Philosophy behind Docker/Kubernetes/OpenShift
 
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
「TensorFlow Tutorialの数学的背景」 クイックツアー(パート1)
 

Recently uploaded

無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
ARISE analytics
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
Osaka University
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 

Recently uploaded (9)

無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 

TensorFlowプログラミングと分類アルゴリズムの基礎