SlideShare a Scribd company logo
I
A
SEMINAR
ON
“SURGECURRENTPROTECTIONUSINGSUPERCONDUCTOR”
Submittedinpartialfulfillmentforbachelorof
technologyDegreeat
RajasthanTechnicalUniversity,Kota
BACHELOROFTECHNOLOGY
IN
ELECTRICALENGINEERING
SUPERVISEDBY: SUBMITTEDBY:
Prof.ASADZAI SARFARAZKHAN
RollNo.-13EVEEE051
Enrl.No.-13E1VEEEM3XP051
DEPARTMENTOFELECTRICALENGINEERING
VYASINSTITUTEOFENGINEERINGANDTECHNOLOGY,JODHPUR
RAJASTHANTECHNICALUNIVERSITY,KOTA
II
2017
CERTIFICATE
ThisistocertifythatthestudentMr.SarfarazKhanoffinalyear,have
successfullycompletedtheseminarpresentationon“SURGECURRENT
PROTECTIONUSINGSUPERCONDUCTOR”towardsthepartialfulfillment
ofthedegreeofBachelors ofTechnology(B.TECH)intheElectrical
EngineeringoftheRajasthanTechnicalUniversityduringacademicyear
2017undermysupervision.
Theworkpresentedinthisseminarhasnotbeensubmittedelsewherefor
awardofanyotherdiplomaordegree.
Prof.AsadZai
Supervisor
Professor
Deptt.ofElectricalEngineering
VIET,Jodhpur.
CounterSignedby:
Prof.ManishBhati
Head
Deptt.ofElectricalEngg.
VIET,Jodhpur.
III
ACKNOWLEDGEMENT
FirstIwanttothankmy
“ALLAH”
who neverleavesmealonein bad circumstances,help me
alwayswiththeirwellblessings.
Thereareanumberofpeoplewhodeserverecognitionfortheir
unwavering supportand guidance throughoutthis seminar
presentation.Iwouldliketotakethisopportunitytothankthem.
Firstandforemost,Iwanttothankmywell-wisheradvisorandas
aguide,Mr.AsadZaiSirforhissupport,constructivecriticism,
andnew technicalupdates.Thispresentationcouldhavenot
beencompletedwithouthisenthusiasmanddirection.
IagainwanttothankMr.AsadSirforgivingmethistypeof
technicaltheorytopicbywhichIcanunderstandmycorebranch
efficiently.
IwillbealwaysthankfultoOurHODMr.ManishBhatiSirfor
expandingmyunderstandingofglobalinequalitiesthroughout
historyandherconstantmentorship.
Iwanttothankmyfriendswhohaveencouragedmeoverthe
studyofthispresentation.
Finally,Iwanttothankmyfamily.Myparents,especially,have
beenasourceofstrengthandsupportforme.Theycontinually
pushmetothinkcriticallyandneversettleforanythinglessthan
mybest.Theykeptmefocused,ontrackandfedinthefinal
stretchofmycollegestudy.
Fortheircontinualsupport,Iamforevergrateful.
IV
ABSTRACT
ModernPowerSystemsaregrowingfastwithmoregenerators,
transformersandlargenetworkinthesystems.Theinstallation,
runningandmaintenancecostsofthepowersystem equipment
aremore.Wheneverafaultoccurs,thereisaneed forthe
protection ofthese systems.PowerSystem Protection is a
branch ofelectricalpowerengineering thatdeals with the
protectionofelectricalpowersystemsfrom faultsthroughthe
isolationoffaultedpartsfrom therestoftheelectricalnetwork.
Superconductorsareoneofthelastgreatfrontiersofscientific
discovery.Here,in thispaperwediscusstheuseofSuper
ConductorsasprotectivedevicesforSurgeCurrentProtection.
Superconductors conductelectricity offering zero resistance
below certaintemperatures.Westudydifferenttypesofsuper
conductorfaultcurrentlimitersandtheirworking.
V
LISTOFFIGURES
Fig.-(1.2)-Graphb/winrushcurrentand
time.........................................10
Fig.-(2.6)-Faultcontrolwithafault-current
limiter................................13
Fig.-(2.7.1)-Fault-currentlimiterinthemain
position...........................14
Fig.-(2.7.2)-Fault-currentlimiterinthefeeder
position.........................15
Fig.-(2.7.3)-Fault-currentlimiterinthebus-tie
position.........................15
Fig.-(2.8.1)-Fault-currentlimiterwithHTStrigger
coil.........................19
Fig.-(2.8.2)-Inductivefault-current
limiter.............................................20
Fig-(2.9.1)-SchematicdiagramoftheCRIEPIinductive
FCL..............22
Fig.-(2.9.2)-ConfigurationofcoilsintheTEPCO/Toshiba
FCL............23
Fig.-(2.9.3)-Exteriorviewofthe6.6kV2,000A-classcurrent
limiter..24
VI
Fig.-(2.9.4)-CurrentlimitingcharacteristicsofToshiba
FCL.................24
Fig.-(3.1)-Lightening
surge....................................................................26
Fig.-(4.1)-Powerratingoftheinductivelimitermodels
built/tested
atHydro
Quebec.....................................................................33
CONTENTS
INNERTITLE………………………………………………………………...I
CERTIFICATE……………………………………………………………….II
ACKNOWLEDGEMENT…………………………………………………...III
ABSTRACT…………………………………………………………………..IV
LISTOF
FIGURES...........................................................................................V
CONTENTS………………………………………………………………VI-VII
Chapter1:Introduction………………………………………………………8
1.1:Introduction…………………………………………………….8
1.2:SurgeCurrent…………………………………………………..9
VII
Chapter2:Superconductor…………………………………………………..11
2.1:Superconductor………………………………………………...11
2.2:MeissnerEffect…………………………………………………11
2.3:FaultCurrentLimiter…………………………………………12
2.4:FaultCurrentProblem………………………………………...12
2.5:FaultControlProblem…………………………………………13
2.6:SuperconductiveFcl……………………………………………13
2.7:FaultCurrentLimiterApplications…………………………..14
2.8:SuperconductiveFaultCurrentLimiterConcepts…………..16
2.8.1:SeriesResistiveLimiter………………………........................16
2.8.2:InductiveLimiter………………………………......................19
2.9:FclProgram……………………………………………………..20
Chapter3:LighteningProtection…………………………………………….25
3.1:ComponentsOfLighteningProtectionSystem……………….25
3.1.1:RodsOrAirTerminals……………………………………….25
3.1.2:ConductorCables……………………………………………..25
3.1.3:GroundRods……………………………………......................25
3.2:LighteningProtectionSystem…………………………………..26
3.2.1:HowALighteningProtectionSystemWorks……………….27
3.2.2:LighteningProtectionFacts…………………………………..28
3.2.3:LighteningDissipationMyths………………………………...28
3.3:FuturePlans……………………………………...........................30
3.4:FaultCurrentLimiter……………………………………...........30
3.5:FclPrograms……………………………………………………..31
Chapter4:AdvantagesDisadvantagesAndLimitationsOf
Superconductor.33
4.1:Advantages……………………………………...............................33
4.2:Limitations……………………………………...............................35
4.3:Disadvantages……………………………………..........................35
Chapter5:Applications…………………………………………………………38
VIII
5.1:BasicApplications……………………………………...................38
5.1.1:LowTemperatureSuperconductivity…………………………38
5.1.2:ParticleAcceleratorsAndMagneticFusion
Devices…………39
5.1.3:HighTemperatureSuperconductivity………………………..39
5.1.4:HtsBasedSystems……………………………………...............40
Chapter6:FutureAspects………………………………………………………41
6.1:SuperconductivityTransmissionLines………………………….41
6.2:PowerApplications,HighTc……………………………………..41
6.3:FaultCurrentLimiter…………………………………….............42
6.4:SuperconductingMotors……………………………………........42
6.5:SuperconductingMaglevTrains…………………………………42
CONCLUSION:
....................................................................................................46
REFERENCES:
....................................................................................................47
CHAPTER-1
Introduction
1.1Introduction
Beforeknowinghowthesuperconductorsactsassurgecurrentprotectors
9
letus
concentrateonwhatissurgecurrent?Whatitdoestothepowersystem?And
whatare
superconductors?MeissnerEffectanddifferenttypesofsuperconductor
faultcurrent limiters.
Electricpowerdistributionsystemsincludecircuitbreakerstodisconnect
powerincaseofafault,buttomaximizereliability,theywishtodisconnect
thesmallestpossibleportionofthenetwork.Thismeansthateventhe
smallestcircuitbreakers,aswellasallwiringtothem,mustbeableto
disconnectlargefaultcurrents.
A problem arises ifthe electricitysupplyis upgraded,byadding new
generationcapacityorbyaddingcross-connections.Becausetheseincrease
theamountofpowerthatcanbesupplied,allofthebranchcircuitsmust
havetheirbusbarsandcircuitbreakersupgradedtohandlethenewhigher
faultcurrentlimit.
Thisposesaparticularproblem whendistributedgeneration,suchaswind
farmsandrooftopsolarpower,isaddedtoanexistingelectricgrid.Itis
desirabletobeabletoaddadditionalpowersourceswithoutlargesystem-
wideupgrades.
Asimplesolutionistoaddelectricalimpedancetothecircuit.Thislimitsthe
rateatwhichcurrentcanincrease,whichlimitsthelevelthefaultcurrentcan
risetobeforethebreakerisopened.However,thisalsolimitstheabilityofthe
circuittosatisfyrapidlychangingdemand,sotheadditionorremovaloflarge
loadscausesunstablepower.
Afaultcurrentlimiterisanonlinearelementwhichhasalowimpedanceat
normalcurrentlevels,butpresentsahigherimpedanceatfaultcurrentlevels.
10
Further,thischangeisextremelyrapid,beforeacircuitbreakercantripafew
millisecond later.(High-powercircuitbreakers are synchronized to the
alternatingcurrentzerocrossingtominimizearcing.)
Whilethepowerisunstableduringthefault,itisnotcompletelydisconnected.
After the faulting branch is disconnected,the fault current limiter
automaticallyreturnstonormaloperation.
1.2SurgeCurrent
Themaximum instantaneousinputcurrentdrawnbyanelectricaldevice
whenfirstitisturnedonisdefinedassurgecurrent.Itisalsoknownas
InrushcurrentorInputSurgeCurrentorSwitch-onSurge.Alternatingcurrent
electricmotorsandtransformersmaydrawseveraltimestheirnormalfull-
loadcurrentwhenfirstenergized,forafew cyclesoftheinputwaveform.
Powerconvertersalsooftenhaveinrushcurrentsmuchhigherthantheir
steadystatecurrents,duetothechargingcurrentoftheinputcapacitance.
Theselectionofovercurrentprotectiondevicessuchasfusesandcircuit
breakersismademorecomplicatedwhenhighinrushcurrentsmustbe
tolerated.Theovercurrentprotectionmustreactquicklytooverloadorshort
circuitbutmustnotinterruptthecircuitwhenthe(usuallyharmless)inrush
currentflows.
11
Fig.-(1.2)-Graphb/winrushcurrentandtime
Theonlylimitsofthesurgecurrentarethelineimpedance,inputrectifierdrop
andthecapacitorequivalentseriesresistance.Highinrushcurrentcanaffectthe
electricalsystemsbytrippingfusesandcircuitbreakersunnecessarily.Ifinrush
protectionisnotinplace,relaysandcircuitbreakersmustberatedthatarerated
higherthananypossibleinrushcurrent.InrushCurrentcanalsocausepitted
contactsonswitchesandrelaysduetoarcingofthecontacts.InrushCurrent
canbeashighas100timesthenormalsteadystatecurrentandlastsforless
thanhalfanormal60hertzcycle.Thissurgecurrentcancausecomponent
damageand/orfailurewithintheequipmentitself,blownfuses,trippedcircuit
breakersandmayseverelylimitthenumberofdevicesconnectedtoacommon
powersource.
12
CHAPTER-2
SUPERCONDUCTOR
2.1Superconductor
Anelement,inter-metallicalloyorcompoundthatwillconductelectricity
without
resistance below a certain temperature.The Dutch Physicist Heike
KamerlinghOnnesofLeidenUniversitywasthefirstpersontoobserve
superconductivityinmercury.
Superconductivityisaphenomenonofexactlyzeroelectricalresistance
certainmaterialswhencooledbelowacharacteristiccriticaltemperature.It
isaquantummechanicalphenomenon.
TypesofSuperconductors:
LowTemperatureSuperconductor
HightemperatureSuperconductors
LTSarethesubstancesthatloseallresistivitycloseto4K,atemperature
attainableonlybyliquid helium.HTS arethesubstancesthatloseall
resistancebelowtemperaturemaintamablebyliquidnitrogen.
 ExamplesofLTS:LeadandMercury
 ExamplesofHTS:YBCO,BSCCO,LSCO,etc.
2.2MeissnerEffect
The Meissner effectis the expulsion ofthe magnetic field from a
superconductor
duringitstransitiontothesuperconductingstate.TheGermanphysicists
13
Walther
MeissnerandRobertOchsenfelddiscoveredthephenomenonin1933by
measuringthemagneticfielddistributionoutsidesuperconductingtinand
leadsamples.Themagneticfluxisconservedbythesuperconductor,when
theinteriorfielddecreasedtheexternalfieldisincreased.
2.3FaultCurrentLimiter
AFaultCurrentLimiterisadevicewhichlimitstheprospectivefaultcurrent
whenafaultoccurs.Generallyfaultcurrentlimitersaresuperconductorfault
currentlimiters.SuperconductingFaultCurrentLimitersaredescribedas
beinginoneofthetwomajorcategories:
Resistive
Inductive
FirstapplicationsforFCLsarelikelytobeusedtohelpcontrolmedium-
voltage
electricity distribution systems,followed by electric-drive ships:naval
vessels,
submarinesandcruiseships.LargerFCLsmayeventuallybeemployedin
highvoltagetransmissionsystems.
Fault-currentlimiters using high temperature superconductors offera
solution to controlling fault-current levels on utility distribution and
transmissionnetworks.Thesefault-currentlimiters,unlikereactorsorhigh-
impedancetransformers,willlimitfaultcurrentswithoutaddingimpedance
tothecircuitduringnormaloperation.Developmentofsuperconductingfault
-currentlimiters is being pursued by severalutilities and electrical
manufacturersaroundtheworld,andcommercialequipmentisexpectedto
beavailablebytheturnofthecentury.[1]
14
2.4Fault-CurrentProblem
Electricpowersystem designersoftenfacefault-currentproblemswhen
expanding
existingbuses.Largertransformersresultinhigherfault-dutylevels,forcing
the
replacementofexistingbusworkandswitchgearnotratedforthenewfault
duty.
Alternatively,theexistingbuscanbebrokenandservedbytwoormore
smaller
transformers.Anotheralternativeisuseofasingle,large,high-impedance
transformer,resultingindegradedvoltageregulationforallthecustomerson
thebus.Theclassictradeoffbetweenfaultcontrol,buscapacity,andsystem
stiffnesshaspersistedfordecades.
2.5FaultControlProblem
Insomeareas,suchastheUnitedStates,additionalgenerationfrom co
generators
andindependentpowerproducers(IPPs)raisesthefaultdutythroughouta
system
olderbutstilloperationalequipmentgraduallybecomesunderratedthrough
system growth;someequipment,such astransformersin underground
vaultsorcables,canbeveryexpensivetoreplacecustomersrequestparallel
servicesthatenhancethereliabilityoftheirsupplybutraisethefaultduty.
2.6SuperconductiveFCL
Superconductorsofferawaytobreakthroughsystem designconstraintsby
presenting
15
impedanceto theelectricalsystem thatvariesdepending on operating
conditions.
Superconductingfault-currentlimitersnormallyoperatewithlowimpedance
andare
"invisible"componentsintheelectricalsystem.Intheeventofafault,the
limiterinsertsimpedanceintothecircuitandlimitsthefaultcurrent.With
currentlimiters,theutilitycanprovidealow-impedance,stiffsystem witha
lowfault-currentlevel.
Fig.-(2.6)-Faultcontrolwithafault-currentlimiter
Alarge,low-impedancetransformerisusedtofeedabus.Normally,theFCL
doesnotaffectthecircuit.Intheeventofafault,thelimiterdevelopsan
impedanceof0.2perunit(Z=20%),andthefaultcurrentISCisreducedto
7,400 A.Withoutthelimiter,thefaultcurrentwould be37,000 A.The
developmentofhigh temperature superconductors (HTS)enables the
developmentofeconomicalfault-currentlimiters.Superconductingfault-
currentlimiterswerefirststudiedovertwentyyearsago.Theearliestdesigns
used low temperature superconductors (LTS),materials thatlose all
resistanceattemperaturesafewdegreesaboveabsolutezero.LTSmaterials
aregenerallycooledwithliquidhelium,asubstancebothexpensiveand
16
difficult to handle. The discovery in 1986 of high temperature
superconductors,whichoperateathighertemperaturesandcanbecooledby
relativelyinexpensiveliquidnitrogen,renewedinterestinsuperconducting
fault-currentlimiters.[2]
2.7Fault-CurrentLimiterApplications
Fault-currentlimiters can be applied in a numberofdistribution or
transmissionareas.
The fault-currentlimiterFCL protects an individualcircuiton the bus.
Underratedequipmentcanbeselectivelyprotectedasneededinthismanner.
Fig.-(2.7.1)-Fault-currentlimiterinthemainposition
17
Fig.(2.7.2)-Fault-currentlimiterinthefeederposition
Thetwobusesaretied,yetafaultedbusreceivesthefullfaultcurrentofonly
onetransformer.Thetwobusesaretied,yetafaultedbusreceivesthefull
faultcurrentofonlyonetransformer.
Fig.-(2.7.3)-Fault-currentlimiterinthebus-tieposition.
Themostdirectapplicationofafault-currentlimiterisinthemainpositionon
abusBenefitsofanFCLinthisapplicationincludethefollowing:
 Alargertransformercanbeusedtomeetincreaseddemandonabuswithout
breakerupgrades
 A large,low impedance transformercan be used to maintain voltage
18
regulationatthenewpowerlevel
 I
2
tdamagetothetransformerislimited
 Reduced fault-currentflows in the high-voltage circuitthatfeeds the
transformer,whichminimizesthevoltagedipontheupstream high-voltage
busduringafaultonthemedium-voltagebus
AnFCLcanalsobeusedtoprotectindividualloadsonthebus(Fig.4.7).The
selectiveapplicationofsmallandlessexpensivelimiterscanbeusedto
protectold
oroverstressedequipmentthatisdifficulttoreplace,suchasunderground
cablesor
transformersinvaults.AnFCLcanbeusedinthebus-tieposition(Fig.4.8).
Suchalimiterwouldrequireonly
Asmallloadcurrentratingbutwoulddeliverthefollowingbenefits:
 separatebusescanbetiedtogetherwithoutalargeincreaseinthefaultduty
on
eitherbus.
 duringafault,alargevoltagedropacrossthelimitermaintainsvoltagelevel
on
theunfaultedbus.
 theparalleledtransformersresultinlowsystemimpedanceandgoodvoltage
regulation;tap-changingtransformerscanbeavoided.
 excesscapacityofeachbusisavailabletobothbuses,thusmakingbetter
useof thetransformerrating.
2.8SuperconductiveFault-CurrentLimiterConcepts
2.8.1TheSeriesResistiveLimiter
19
Thesimplestsuperconductinglimiterconcept,theseriesresistivelimiter,
exploitsthe
nonlinearresistanceofsuperconductorsinadirectway.Asuperconductoris
insertedinthecircuit.Forafull-loadcurrentofIFL,thesuperconductorwould
bedesignedtohaveacriticalcurrentof2IFLor3IFL.Duringafault,thefault
currentpushesthesuperconductorintoaresistivestateandresistanceR
appearsinthecircuit.
Superconductingfaultcurrentlimitersexploittheextremelyrapidlossof
superconductivity (called "quenching)above a criticalcombination of
temperature,currentdensity,andmagneticfield.Innormaloperation,current
flows through the superconductor without resistance and negligible
impedance.
Ifafaultdevelops,thesuperconductorquenches,itsresistancerisessharply,
andcurrentisdivertedtoaparallelcircuitwiththedesiredhigherimpedance.
(Thestructureisnotusableasacircuitbreaker,becausethenormally-
conducting superconductive materialdoes not have a high enough
resistance.Itisonlyhighenoughtocausesufficientheatingtomeltthe
material.)
Superconductingfaultcurrentlimitersaredescribedasbeinginoneoftwo
majorcategories:resistiveorinductive.
InaresistiveFCL,thecurrentpassesdirectlythroughthesuperconductor.
Whenitquenches,thesharpriseinresistancereducesthefaultcurrentfrom
whatitwouldotherwisebe(theprospectivefaultcurrent).AresistiveFCLcan
beeitherDCorAC.IfitisAC,thentherewillbeasteadypowerdissipation
from AClosses(superconductinghysteresislosses)whichmustberemoved
20
bythecryogenicsystem.AnACFCLisusuallymadefrom wirewoundnon-
inductively;otherwisetheinductanceofthedevicewouldcreateanextra
constantpowerlossonthesystem.
InductiveFCLscomeinmanyvariants,butthebasicconceptisatransformer
witharesistiveFCLasthesecondary.Inun-faultedoperation,thereisno
resistanceinthesecondaryandsotheinductanceofthedeviceislow.Afault
currentquenchesthesuperconductor,thesecondarybecomesresistiveand
theinductanceofthewholedevicerises.Theadvantageofthisdesignisthat
thereisnoheatingressthroughcurrentleadsintothesuperconductor,and
sothecryogenicpowerloadmaybelower.However,thelargeamountofiron
required meansthatinductiveFCLsaremuch biggerand heavierthan
resistiveFCLs.
Thequenchprocessisatwo-stepprocess.First,asmallregionquenches
directlyinresponsetoahighcurrentdensity.Thissectionrapidlyheatsby
Joule heating,and the increase in temperature quenches adjacent
regions.
[promotional language]
GridON Ltd has developed the firstcommercial
inductiveFCLfordistribution&transmissionnetworks.Usingauniqueand
proprietary concept of magnetic-flux alteration - requiring no
superconducting or cryogenic components - the self-triggered FCL
instantaneouslyincreasesitsimpedancetenfold upon faultcondition.It
limitsthefaultcurrentforitsentiredurationandrecoverstoitsnormal
conditionimmediatelythereafter.ThisinductiveFCLisscalabletoextrahigh
voltageratings.
Thesuperconductorinitsresistivestatecanalsobeusedasatriggercoil,
pushingthe
bulkofthefaultcurrentthrougharesistororinductor.Theadvantageofthis
21
configuration,showninFig.4.9,isthatitthelimitstheenergythatmustbe
absorbedbythesuperconductor.Thefault-currentlimiterFCLnormallyisa
shortacrossthecopperinductiveorresistiveelementZ.Duringafault,the
resistancedevelopedinthelimitershuntsthecurrentthroughZ,which
absorbsmostofthefaultenergy.
Fig.-(2.8.1)-Fault-currentlimiterwithHTStriggercoil
Thetriggercoilapproachisappropriatefortransmissionlineapplications,
wheretensofmegawatt-secondswouldbeabsorbedinaseriesresistive
limiter.Thetriggercoil
configurationalsoallowsanimpedanceofanyphaseangle,from purely
resistiveto
almostpurelyinductive,tobeinsertedintheline.
2.8.2TheInductiveLimiter
Anotherconceptusesaresistivelimiteronatransformersecondary,withthe
primaryinseriesinthecircuit.Thisconcept,illustratedinFig.4.10,yieldsa
limitersuitableforhigh-currentcircuits(IL>1000A).Onephaseofthelimiter
22
isshown.AcopperwindingWCuisinsertedinthecircuitandiscoupledtoan
HTSwindingWHTS.Duringnormaloperation,zeroimpedanceisreflectedto
theprimary.ResistancedevelopedintheHTS windingduringafaultis
reflectedtotheprimaryandlimitsthefault.
Fig.-(2.8.2)-Inductivefault-currentlimiter
Theinductivelimitercanbemodeledasatransformer.Theimpedanceofthis
limiterinthesteadystateisnearlyzero,sincethezeroimpedanceofthe
secondary(HTS)windingisreflectedtotheprimary.Intheeventofafault,
thelargecurrentinthecircuitinducesalargecurrentinthesecondaryand
thewindinglosessuperconductivity.Theresistanceinthesecondaryis
reflectedintothecircuitandlimitsthefault.
2.9FCLProgram
ThedrivingfactorsforcurrentlimitersinJapanaresomewhatdifferentfrom
thoseintheUnitedStates,giventhatIPPsandcogeneratorsarenotas
prevalentinJapan.Rather,thedemandforpowerinJapanesemetropolitan
areas continues to grow because ofeconomic growth and increased
23
consumeruseofelectricity.Inaddition,industrialuseofcomputersandother
power-quality-sensitiveequipmenthasforcedtheutilitiestoprovidehigher
qualityandmorereliablepower.Thequitesuccessfulapproachtoimproved
powerqualityinJapanhasbeentoincreaseconnectionsbetweenvarious
powersystems and to concentrate generation capacityin larger,more
efficientunits.
Increasing interconnection does,however,increase the maximum fault
currentavailableatanypointinthesystem,andthisisrapidlyleadingtothe
need forbreakerupgradesand system reconfigurations.Adding to the
complexityofthesituationinJapanisthelimitedroom atsubstationsites,
whichcanprecludebreakerupgrades.
Theprimaryneed,asexpressedbymanagementoftheTokyoElectricPower
Company (TEPCO),is fora limiterforthe nucleus ofthe Japanese
transmissionsystem,the500kVtransmissiongrids.Inresponsetothisreal
marketpulltherehasbeenaseriesofprogramstodevelopfaultcurrent
limitersusingavarietyofmethods,withrecentfocusonsuperconducting
limiters(Nakade1994).AlthoughFCLsarenotacomponentoftheNEDO
budget,TEPCOhasreportedthatitspendsabout¥100millionperyear(~$1
million)onthisprogram,andsomeresistiveFCLworkisapparentlyincluded
intheNEDObudgetunderthetopic"ResearchofSuperconductingMaterials
andDevices”.Inthelate1980s,SeikeiUniversitymanufacturedasmall-scale
three-phasecurrentlimitingreactoranddemonstratedsuccessfuloperation.
Thisthree-phasesystem introducesalargeunbalancedreactanceinthe
system tolimitcurrentsinthecaseofasingle-phaseshortandquenchesto
introduceresistanceinthecircuitinthecaseofathree-phasefault.
24
MitsubishiElectricCompany(MELCO)hasbeenparticipatinginaMITI/NEDO
FCL
programsince1990.ThisisaresistivelimiterapproachusingHTSfilmsona
strontiumtitanatesubstratethathasdemonstratedlimitingof400Acurrents
to11.3A.TheCentralResearchInstituteoftheElectricPowerIndustry
(CRIEPI)hasdevelopedtheinductivelimitershowninFig.4.11(Ichikawaand
Okazaki1995).Thisapproach,similartothoseofABBandSiemens-Hydro
Quebec,usesacylinderofbulkBSCCO-2212orBSCCO-2223toseparatea
normalcoppercoilfrom anironcore.Innormaloperation,thefieldfrom the
coppercoildoesnotpenetratethesuperconductor;underfaultconditions,
however,thecurrentinducedinthesuperconductorissufficienttodriveit
normal,andthemagneticfieldlinkstheironyoke.Thisgreatlyincreasesthe
inductanceofthecoppercoil,thusprovidingcurrentlimiting.CRIEPIwork
hasfocusedonacmagneticshieldingperformanceofbulksuperconductors
andtheirresponsestofaultcurrents.
Inaddition,introductionofa"controlring"inthesystem toabsorbsomeof
theenergydepositedduringafaulthasreducedthecooldowntimeofthe
shieldfollowingafaultedstate.ThemostextensiveFCLprogram inJapan
hasbeenthecollaborationbetweenTEPCOandToshiba.Thelong-term goal
ofthisprogram isthedevelopmentofa500kVlimiterwitharatedcurrentof
8,000A.Initialdevelopmenthasbeenfocusedonadistributionlevellimiter
designedfor6.6kV.
25
Fig.(2.9.1)-SchematicdiagramoftheCRIEPIinductiveFCL
AsshowninFig.4.12,theFCLisformedbyconnectingfoursuperconducting
coilsinaseries-parallelconfigurationsothetotalinductanceisminimized.
Onesetofcoilsisused foreach phaseofthedevice,and limiting is
accomplishedbyquenchingthecoils.
ThecurrentversionoftheFCLshowninFig.4.13usesaspeciallowacloss
Nb-Ti
conductor.Testsinacircuitwithanominalshortcircuitcurrentof25.8kA
havesuccessfullydemonstratedlimitingtoabout4,000amps(Fig.4.14).
26
Fig.(2.9.2)-ConfigurationofcoilsintheTEPCO/ToshibaFCL
RecentworkhasincludedtheintroductionofHTScurrentleadstoreducethe
refrigerationloadofthesystem tolevelsthatcanbehandledbya4KGifford
McMahonrefrigerator.[3]
Fig.(2.9.3)-Exteriorviewofthe6.6kV2,000A-classcurrentlimiter
27
Overthreegenerationsofthedevice,theheatleakhasbeenreducedfrom
13.8wattsto3.4watts,whichisnearingtherequiredlevel.
Fig.(2.9.4)-CurrentlimitingcharacteristicsofToshibaFCL
CHAPTER-3
LighteningProtection
3.1Componentsofalightningprotectionsystem
Lightningrodsor'airterminals'areonlyasmallpartofacompletelightning
protectionsystem.Infact,therodsmayplaytheleastimportantroleina
system installation.Alightningprotectionsystem iscomposedofthreemain
components:
3.1.1RodsorAirTerminals
Thesmall,verticalprotrusionsdesignedtoactasthe'terminal'foralightning
28
discharge.Rodscanbefoundindifferentshapes,sizesanddesigns.Most
aretoppedwithatall,pointedneedleorasmooth,polishedsphere.The
funtionalityofdifferenttypesoflightningrods,andeventheneccessityof
rodsaltogether,aresubjectsof
manyscientificdebates. 
3.1.2ConductorCables
Heavycables(right)thatcarrylightningcurrentfrom therodstotheground.
Cablesarerunalongthetopsandaroundtheedgesofroofs,thendownone
ormorecorners
 ofabuildingtothegroundrod(s).
3.1.3GroundRods
Long,thick,heavyrodsburied deep into theearth around a protected
structure.The conductorcablesareconnectedtotheserodstocompletea
safepathforalightningdischargearoundastructure.
Theconductorcablesandgroundrodsarethemostimportantcomponents
ofa lightning protection system,accomplishing the main objective of
diverting lightning currentsafely pasta structure.The 'lightning rods'
themselves,thatis,thepointyvertically-orientedterminalsalongtheedgesof
roofs,donotplaymuchofaroleinthefunctionalityofthesystem.Afull
protectionsetup,givengoodcablecoverageandgoodgrounding,wouldstill
worksufficientlywithouttheairterminals.
29
Fig.(3.1)-Lighteningsurge
3.2Lightningprotectionsystems-Whattheydoanddon'tdo
Alightningprotectionsystem'sonlypurposeistoensuresafetytoabuilding
anditsoccupantsiflightninghappenstohititdirectly,ataskaccomplished
byprovidingagood,safepathtogroundforthelightningtofollow.Contrary
tothemyths,lightningprotectionsystems:
 Don'tattractlightning
 
 Don'tandcannotdissipateorpreventlightningby'draining'astormofits
charge
 
 Mostdon'toffersurgeprotectionforsensitiveelectronics
 
 Doofferfireprotectionandstructuraldamageprotectionbypreventingahot,
explosivelightningchannelfrompassingthroughbuildingmaterials
3.2.1Howalightningprotectionsystemworks
Withoutadesignatedpathtoreachground,alightningstrikemaychooseto
insteadutilizeanyconductoravailableinsideahouseorbuilding.Thismay
30
includethephone,cable,orelectricallines,thewaterorgaspipes,or(inthe
caseofasteel-framedbuilding)thestructureitself.Lightningusuallywill
followoneormoreofthesepathstoground,sometimesjumpingthroughthe
airviaasideflashtoreachabetter-groundedconductor(watchanimation
above).Asaresult,lightningpresentsseveralhazardstoanyhouseor
building.
 Fire
Firecanstartanywheretheexposedlightningchannelcontacts,penetrates
orcomesnearflammablematerial(wood,paper,gaspipes,etc)inabuilding
-includingstructurallumberorinsulationinsidewallsandroofs.When
lightningfollowselectricalwiring,itwilloftenoverheatorevenvaporizethe
wires,creatingafire.
 Sideflashes
Sideflashescanjumpacrossrooms,possiblyinjuringanyonewhohappens
tobeintheway.Theycanalsoignitematerialssuchasagasolinecanina
garage.
 
 Damagetobuildingmaterials
Theexplosiveshockwavecreatedbyalightningdischargecanblow out
sectionsofwalls,fragmentconcreteandplaster,andshatternearbyglass.
 
 Damagetoappliances
Televisions,VCRs,microwaves,phones,washers,lampsandjustabout
31
anythingpluggedintoanaffectedcircuitmaybedamagedbeyondrepair.
Electronicdevicesandcomputersareespeciallyvulnerable.
Addingaprotectionsystem doesn'tpreventastrike,butgivesitabetter,
saferpathtoground.Theairterminals,cablesandgroundrodsworktogether
tocarrytheimmensecurrentsawayfrom thestructure,preventingfireand
mostappliancedamage.
3.2.2Lightningprotectionfacts
Rodsandprotectionsystemsdon'tattractlightning,nordotheyinfluence
wherelightningwillstrike.Rodsorprotectionsystemsdonotandcannot
preventlightning,norcanthey'discharge'thunderstorms.
Lightning protection systems(including placementofrods,cables,and
groundings)are custom-designed forindividualstructures and require
complexengineeringtofunctionproperly.Theyshouldonlybeinstalledby
qualifiedcontractors.
Lightningprotectionsystemsdonotalwayspreventdamagetoelectronicsor
computers.Youshouldstillunplugsuchdevicesduringthunderstormsto
ensuresufficientprotection.
3.2.3Lightningdissipation/eliminationmyths
Productscalled'lightningelimination'or'lightningdissipation'deviceshave
arisenasaresultoftwomyths:one,thatathunderstorm'schargecanbe
drainedorotherwiseaffectedbyobjectsontheground,andtwo,cloud-to-
groundlightningdischargesbeginfrom theground.Theseproducts,thatare
stillbeingsoldtoday,claim tobeabletopreventadirectlightningstriketo
anyobjectonwhichtheyareinstalled.Thedeviceshavewidelyvarying
32
appearances,butusuallyarecharacterizedbyametallicframewithhundreds
ofsharp-pointedbristles,needlesorthinrods.Theframedesignsrangefrom
comb-liketoumbrella-shaped.
Thedevicesaresaidtopreventorreducedirectlightningstrikestoobjects
onwhichtheyareinstalled,usingcoronadischargetoperformoneormoreof
thefollowing:1.)todrainastorm ofitschargebeforelightningcanoccur,2.)
tocreatealocalized'spacecharge'overtheprotectedareathatdiverts
lightningstrikes,or3.)tomakeinitiationofupwardleadersfrom theobject
moredifficult,therebyreducingthechancesofadirectsteppedleader-
groundleaderconnection.
Aswediscussedinourarticleaboutthunderstorm chargedissipation,the
problemwiththesedevicesisthatwhiletheydocreatecoronadischarge,the
rateofcharge'leakage'iscompletelyinsignificantincomparisontotherate
of charge generation in the 10-mile-high,15 to 25 mile-diameter
thunderstorm overhead!Noamountofman-madecoronadischargeonsuch
asmallscalehastheslightestchanceofdrainingchargefasterthana
gargantuanthunderstorm cloudisproducingit.Andalthoughsmall-scale
coronadoeshelppreventtheinitiationoflaboratory-generatedsparks(such
asfromVandeGraaffgenerators),thiscannotbeextrapolatedtoapplytofull
-sizedlightningdischarges,whichareseveralthousandtimeslargerthanthe
artificalcounterparts(seeourarticleoncomparingartificialandnatural
lightning).Coronadischargefrom small'dissipators'isinsignificanttoafull-
sizedthunderstorm andwilldonothingtoaltertheoccurenceorbehaviorof
lightninginitsgeneeralvicinity.
Cloud-to-groundlightningstrokesinitiatehighinthunderstorms,milesabove
thesurfacewheregroundobjectshavenoeffect.Evenafterinitiationofthe
33
discharge,thedownward-movingsteppedleaderis'blind'toobjectsonthe
grounduntilitisveryclosetotheground,within50to100feet.Atthat
distance,lightning willstrike within the very smallarea itis already
descendingin,regardlessofanydevicesnearbythatclaim todivertor
preventthestrike.Forexample,aphotographexistsofalightningstriketo
theMerchandiseMartbuildingindowntownChicago.MerchandiseMartis
veryclosetothe1,700foottallSearsTower,yetnoteventheSearsTower
influencedthegroundconnectionofthisclosecloud-to-groundstroke.
Inadditiontotheobviousscientificflawswiththeconceptoflightning
'dissipation'and'elimination'devices,theyhavebeenproventobeineffective
inreal-worldinstallations.Many'lightningdissipation'devicesontowersand
buildingshavebeenstruckdirectly.Despitetheevidence,theycontinuetobe
sold,installedandpromoted.
3.3FuturePlans
TEPCOwilldevelopathree-phaselimiteroverthenextthreetofouryearsand
testitinthegridwithinthiscentury.Therearefew distribution-levelFCL
applicationsseenintheTEPCO grid,however,andthecurrentplanisto
introduce solid state breakers for distribution before installing
superconductiveFCL.Thetrueapplicationforthe
superconductingFCLisattransmissionvoltagesof500kV.Theview of
TEPCOresearchersisthatthisvoltagerangewillrequiretheintroductionof
HTScoils(rather
thanLTS)toeliminatethehelium gasfrom thesystem.Introductionofa
transmissionlevelFCLonthegridisanticipatedabout2010.
3.4Fault-CurrentLimitersInEurope
34
By farthe mostcomprehensive FCL program in Europe is thatbeing
conductedby
collaboration between Electricité de France,GEC Alsthom,and Alcatel
Alsthom
Recherché.Theprogram'smaingoalistoprovideFCLsforthe225kVgridin
France.ThegrouphaschosenaresistivelimiterbasedonLTSmaterialand
hasdemonstratedeffectiveoperationat40kV (rms),withanindustrial
demonstrationontheFrench63kVgridexpectedin1998.Evaluationofthe
Frenchprogram isbeyondthescopeofthisWTECstudy,sonovisitwas
madetothisproject.Verhaegeetal.(1996)provideanoverview ofthe
technologyandprojectstatus.
3.5FCLPrograms
TwositestheWTECpanelvisitedinEuropeaddressedFCL:ABBinBaden-
Daetwil,
Switzerland,andSiemensinErlangen,Germany.ABBispursuingafault-
currentlimiterconceptverysimilartothatdescribedabovefortheCRIEPI
program.Itisreferredtoasthe"shieldedironcoreconcept."Itusesawarm
ironcoreenclosedbyasuperconductingshieldinafiberglassDewar.The
copperprimarycoiliswoundexternaltothisDewar.ABBhasconstructed
andtesteda100kWprototypeusingastackoffourBi-2212rings8cm long,
and20cm indiameter.Operationwasat480Vwithfaultcurrentsof8kA.A
newABBthree-phase1.2MW FCLisnowinoperationinapowerstationin
Löntsch,Switzerland.
SiemensisfollowingtworoutesforFCLinacollaborativeprogram with
Hydro-QuebecCanada.AttheSiemenscorporatelabsinErlangen,thefocus
hasbeenonresistivelimitersusingYBCOthinfilm meanderlinesonYSZor
onYSZandsapphire(Gromolletal.1996).Theadvantageofthisapproachis
35
thattheYBCOfilm hasahighnormalstateresistanceandisnotshuntedby
normalmetal,as would be the case in a composite powder-in-tube
conductor.Thefilm alsohasverylow heatcapacity,whichleadstorapid
switchingtothenormalstate(<1ms)andthepossibilityofrapidcooldown.
Analysisasof1996hasdeterminedthatbothpeaklet-throughcurrentand
steadystatelimitingcurrentdecreaseasJcisraised.Inaddition,thedesign
ofalimiterofusablesizedependsstronglyonJc--higherJcenablesamore
compactdesign.
Themajorfocusoftheprogram has,therefore,beenthefabricationof
uniform high-Jc films ofYBCO.Techniques investigated have included
pulsed laserdeposition (PLD),thermalco evaporation,and magnetron
sputteringonbufferedp-YSZ,unbufferedp-YSZ,andsapphire.Biaxially
textured YSZ bufferlayershavebeen fabricated on partofthep-YSZ
substratesbyionbeam assisteddeposition.Currentdensitiesupto3x106
A/cm2havebeenachieved,ashavegoodlimitingperformanceandrecovery
timeson theorderof1 second.Thenextmilestonefortheprojectis
constructionofa100KVAlimiterusingacrycooler.Furtherdetailsofthis
programaregivenintheSiemenssitevisitreport(AppendixD).
TwoadditionalGermanFCLprojectsbeganinJanuary1997.Thefirstisa
system studythatwillbefollowedbyconstructionofademonstrationFCL.
ThisprojectisajointeffortbytheGermanutilitiesRWE,VEW,andBadenwerk,
andbyEUSGmbHandFZK.Thesecondprojectinvolvingthedevelopmentof
a smallinductive limiteris underthe auspices ofthe German Israel
Foundation.TheGermanparticipantsareFZK,HoechstAG,andtheutility
Badenwerk;theIsraeliparticipantsareTelAvivandBenGurionUniversities.
TheworkatHydro-Quebechasresultedintheconstructionandtestofa
36
numberofdevicessince1992(Fig.4.15).Thelatestsystem operatedat450
Vand95ampsforanominalpowerof43KVA.Twodifferentmaterialswere
evaluatedforthesuperconductingshield:melt-castBi-2212from Hoechst,
andcompositereactiontextured(CRT)materialfrom Cambridge.Although
successfulcurrentlimiting wasdemonstrated,thelimiterthatused the
Hoechstmaterialfailedduringa480Vshortcircuittestduetoafractureof
thesuperconductor(Caveetal.1996).SubsequentanalysisbyHydro-
Quebecindicatedthatthermalstressinthebulksuperconductorgaveriseto
thefailure.Thenear-term futuredirectionofthisprogram willbeconcerned
withimprovingthehomogeneity,criticalcurrentdensity,andresistivityofthe
bulksuperconductor.
CHAPTER-4
ADVANTAGES,DISADVANTAGESAND
LIMITATIONS
4.1ADVANTAGES
37
Fig.(4.1)-Powerratingoftheinductivelimitermodelsbuilt/testedatHydro-Quebec
 Relativelynarrow superconducting wirescan beused to carryhuge
currents.
 Lessfuelrequiredtogenerateelectricitywhichwillleadtoareductionin
costs
 Superconductingcableswillbesmallerandcanfitintoexistingconduits
for expansionofthepowersupply.
 Environmentalbenefits from less pollution and more efficentpower
production
4.1.1TransformingtheElectricityGrid
38
Theelectricpowergridisamongthegreatestengineeringachievementsof
the20thcentury.Demand,however,isabouttooverwhelm it.Forexample,
thenorthAmericanblackoutof2003,whichlastedaboutfourdays,affected
over50millionpersonsandcausedabout$6billionineconomicloss.
Superconductor technology provides loss-less wires and cables and
improvesthereliabilityandefficiencyofthepowergrid.Plansareunderway
toreplaceby2030thepresentpowergridwithasuperconductingpowergrid.
Asuperconductingpowersystem occupieslessrealestateandisburiedin
theground,quitedifferentfrompresentdaygridlines.[13]
4.1.2ImprovingWide-BandTelecommunication
Wide-bandtelecommunicationstechnology,whichoperatesbestatgigahertz
frequencies,isveryusefulforimprovingtheefficiencyandreliabilityofcell
phones.Suchfrequenciesareverydifficulttoachievewithsemiconductor-
based circuitry.However,they have been easily achieved by Hypres's
superconductor-basedreceiver,usingatechnologycalledrapidsingleflux
quantum,orRSFQ,integratedcircuitreceiver.Itoperateswiththeaidofa4-
kelvincryocooler.Thistechnologyisshowingupinmanycellphonereceiver
transmittertowers.
4.1.3AidingMedicalDiagnosis
Oneofthefirstlarge-scaleapplicationsofsuperconductivityisinmedical
diagnosis. Magnetic resonance imaging, or MRI, uses powerful
superconductingmagnetstoproducelargeanduniform magneticfields
inside the patient's body.MRIscanners,which contain liquid helium
refrigerationsystem,pickuphow thesemagneticfieldsarereflectedby
organs in the body.The machine eventually produces an image.MRI
machinesaresuperiortox-raytechnologyinproducingadiagnosis.Paul
39
LeuterburandSirPeterMansfieldwereawardedthe2003Nobelprizein
physiology or medicine,"for their discoveries concerning magnetic
resonanceimaging,"underlyingthesignificanceofMRI,andbyimplication
superconductors,tomedicine.
4.2LIMITATIONS
 Thereisamaximumcurrentthatsuperconductingmaterialscancarry.
 Costisprohibitiveforimmediatereplacementofexistingtechnologies.
 DevelopingcountrieswillnotbeabletoaffordthetechnologyAboveacritical
currentdensity.
 superconductivitybreaksdownlimitingcurrent.
 Low criticaltemperaturesaredifficult,expensiveandenergyintensiveto
maintain.
 Thematerialsareusuallybrittle,notductileandhardtoshape.
 Theyarealsochemicallyunstableinsomeenvironments.
 ItcannotfunctionwithACelectricity,astheswitchinginACdestroysCooper
pairs.
 Thereisa"limit"tothecurrentpassingthroughthematerialbeforeitlosesits
superconductingproperties.
4.3DISADVANTAGES
 Superconductingmaterialssuperconductonlywhenkeptbelow agiven
temperaturecalledthetransitiontemperature.
 Forpresentlyknownpracticalsuperconductors,thetemperatureismuch
below77Kelvin,thetemperatureofliquidnitrogen.Keepingthem belowthat
40
temperatureinvolvesalotofexpensivecryogenictechnology.[13]
 Thus,superconductorsstilldonotshow upinmosteverydayelectronics.
Scientistsareworkingondesigningsuperconductorsthatcanoperateat
roomtemperature.
 Thegreatestdrawbackofsuperconductorsisthattheyonlyfunctionassuch
attemperatureslowerthanitscriticaltemperature.
 Thistemperaturevariesbutistypicallyaround70Kelvinformostcommonly
usedsuperconductors.
 Thereforeanysuperconductingapplicationisgenerallycoupledwithsome
sortofactiveorpassivecryogeniccooling.
 Otherdrawbacksincludeprice,materialhandling,maximum currentcarrying
capacityEtc.butthecryogeniclimitationmustbethebiggest.
 This is why the search for the near-mythical ‘room temperature
superconductor’ is so important for the future of superconducting
applications.
4.3.1Highertier
Atthemoment,superconductorsonlyworkatverylowtemperatures.They
havetobekeptverycoldwithliquidnitrogenorliquidhelium.Alotofworkis
goingintodevelopingsuperconductorsthatwillworkatnormaltemperatures.
Untilthishappens,theiruseswillbelimited.
4.3.2Highmeltingandboilingpoints
Metallicbondsarestrongandalotofenergyisneededtobreakthem.Thisis
whymetalshavehighmeltingpointsandboilingpoints.
4.3.3Conductingelectricity
41
Metalscontainelectronsthatarefreetomoveinthemetalstructure,carrying
chargefromplacetoplaceandallowingmetalstoconductelectricitywell.
4.4.4Metallicbonding-Highertier
Metallicbondingisthestrongattractionbetweencloselypackedpositive
metalionsanda'sea'ofdelocalisedelectrons.Theattractionbetweenthe
metalionsandthedelocalisedelectronsmustbeovercometomeltortoboil
ametal.Someoftheattractionsmustbeovercometomeltametalandallof
them mustbeovercometoboilit.Theseattractiveforcesarestrong,so
metalshavehighmeltingandboilingpoints.
Thedelocalisedelectronsareabletomovethroughthemetalstructure.
Whenapotentialdifferenceisapplied,theywillmovetogether,allowingan
electriccurrenttoflowthroughthemetal.
42
CHAPTER-5
APPLICATIONS
5.1BasicApplications
 Theproductionofsensitivemagnetometersbasedonsquids
 Fastdigitalcircuits(includingthosebasedonJosephsonjunctionsandrapid
singlefluxquantumtechnology),
 Powerfulsuperconductingelectromagnetsusedinmaglevtrains,Magnetic
ResonanceImaging(MRI)andNuclearmagneticresonance(NMR)machines,
magnetic confinementfusion reactors (e.g.Tokamaks),and the beam-
steeringandfocusingmagnetsusedinparticleaccelerators
 Low-losspowercables
 RFandmicrowavefilters(e.g.,formobilephonebasestations,aswellas
militaryultra-sensitive/selectivereceivers)
 Fastfaultcurrentlimiters
 Highsensitivityparticledetectors,includingthetransitionedgesensor,the
superconductingbolometer,thesuperconductingtunneljunctiondetector,
thekineticinductancedetector,andthesuperconductingnanowiresingle-
43
photondetector
 Railgunandcoilgunmagnets
 Electricmotorsandgenerators
5.1.1Lowtemperaturesuperconductivity
Thebiggestapplication forsuperconductivityisin producing thelarge
volume,stable,andhighmagneticfieldsrequiredforMRIandNMR.This
represents a multi-billion US$ marketforcompanies such as Oxford
Instruments and Siemens.The magnets typically use low temperature
superconductors(LTS)becausehigh-temperaturesuperconductorsarenot
yetcheapenoughtocost-effectivelydeliverthehigh,stableandlargevolume
fieldsrequired,notwithstandingtheneedtocoolLTSinstrumentstoliquid
helium temperatures.Superconductorsarealsousedinhighfieldscientific
magnets.
5.1.2Particleacceleratorsandmagneticfusiondevices
ParticleacceleratorssuchastheLargeHadronCollidercanincludemany
highfieldelectromagnetsrequiringlargequantitiesofLTS.Toconstructthe
LHCmagnetsrequiredmorethan28percentoftheworld’sniobium-titanium
wireproductionforfiveyears,withlargequantitiesofNbTialsousedinthe
magnetsfortheLHC’shugeexperimentdetectors.
[2]
Asmallnumberofmagneticfusiondevices(mostlytokamaks)haveusedSC
coils.ThecurrentconstructionofITERhasrequiredunprecedentedamounts
ofLTS(eg.500tonnes,causinga7foldincreaseinworldsannualproduction
capacity).
[3]
5.1.3High-temperaturesuperconductivity(HTS)
44
Thecommercialapplicationssofarforhightemperaturesuperconductors
(HTS)havebeenlimited.
HTScansuperconductattemperaturesabovetheboilingpointofliquid
nitrogen,which makes them cheaper to coolthan low temperature
superconductors(LTS).However,theproblem withHTStechnologyisthat
thecurrentlyknownhightemperaturesuperconductorsarebrittleceramics
whichareexpensivetomanufactureandnoteasilyformedintowiresorother
usefulshapes.
[4]
ThereforetheapplicationsforHTShavebeenwhereithas
someotherintrinsicadvantage,e.g.in
 LowthermallosscurrentleadsforLTSdevices(lowthermalconductivity),
 RFandmicrowavefilters(lowresistancetoRF),and
 Increasinglyinspecialistscientificmagnets,particularlywheresizeand
electricityconsumptionarecritical.
 WhileHTSwireismuchmoreexpensivethanLTSintheseapplications,this
canbeoffsetbytherelativecostandconvenienceofcooling.
 Theabilitytorampfieldisdesired(thehigherandwiderrangeofHTS's
operatingtemperaturemeansfasterchangesinfieldcanbemanaged);or
cryogenfreeoperationisdesired(LTSgenerallyrequiresliquidhelium thatis
becomingmorescarceandexpensive).[14]
5.1.4HTS-basedsystems
HTShasapplicationinscientificandindustrialmagnets,includingusein
NMR andMRIsystems.Commercialsystemsarenow availableineach
category.
[5]
AlsooneintrinsicattributeofHTSisthatitcanwithstandmuchhigher
magneticfieldsthanLTS,soHTSatliquidhelium temperaturesarebeing
45
exploredforveryhigh-fieldinsertsinsideLTSmagnets.Promisingfuture
industrialand commercialHTS applications include Induction heaters,
transformers,faultcurrentlimiters,powerstorage,motorsandgenerators,
fusionreactors(seeITER)andmagneticlevitationdevices.
Earlyapplicationswillbewherethebenefitofsmallersize,lowerweightor
theabilitytorapidlyswitchcurrent(faultcurrentlimiters)outweighsthe
addedcost.Longer-term asconductorpricefallsHTSsystemsshouldbe
competitiveinamuchwiderrangeofapplicationsonenergyefficiency
groundsalone.(ForarelativelytechnicalandUS-centricviewofstateofplay
ofHTS technology in powersystems and the developmentstatus of
Generation2conductor.
CHAPTER-6
FUTUREASPECTS
6.1SuperconductingTransmissionLines
Since10%to15%ofgeneratedelectricityisdissipatedinresistivelossesin
transmissionlines,theprospectofzerolosssuperconductingtransmission
lines is appealing.In prototype superconducting transmission lines at
BrookhavenNationalLaboratory,1000MW ofpowercanbetransported
withinanenclosureofdiameter40cm.Thisamountstotransportingthe
entireoutputofalargepowerplantononeenclosedtransmissionline.This
couldbeafairlylowvoltageDCtransmissioncomparedtolargetransformer
banksandmultiplehighvoltageAC transmissionlinesontowersinthe
46
conventionalsystems. The superconductor used in these prototype
applications is usually niobium-titanium,and liquid helium cooling is
required.
Current experiments with power applications of high-temperature
superconductorsfocusonusesofBSCCOintapeformsandYBCOinthinfilm
forms.Currentdensitiesabove10,000amperespersquarecentimeterare
considerednecessaryforpracticalpowerapplications,andthisthresholdhas
beenexceededinseveralconfigurations.
6.2PowerApplications,HighTc
Powerapplicationsofhightemperaturesuperconductorswouldhavethe
majoradvantageofbeingabletooperateatliquidnitrogentemperature.The
biggestbarriertotheirapplicationhasbeenthedifficultyoffabricatingthe
materialsintowiresandcoils.CurrentdevelopmentfocusesonBSCCOand
YBCOmaterials.
6.3Fault-CurrentLimiters
High fault-currents caused by lightning strikes are a troublesome and
expensivenuisanceinelectricpowergrids.Oneofthenear-term applications
forhigh temperaturesuperconductorsmaybetheconstruction offault-
currentlimiterswhichoperateat77K.Theneedistoreducethefaultcurrent
toafractionofitspeakvalueinlessthanacycle(1/60sec).
Arecentlytestedfault-currentlimitercanoperateat2.4kVandcarryacurrent
of2200amperes.ItwasconstructedfromBSCCOmaterial.
47
6.4SuperconductingMotors
Superconductingmotorsandgeneratorscouldbemadewithaweightof
aboutonetenththatofconventionaldevicesforthesameoutput.Thisisthe
appealofmaking such devicesforspecialized applications.Motorsand
generatorsarealreadyveryefficient,so thereisnotthepowersavings
associatedwithsuperconductingmagnets.Itmaybepossibletobuildvery
large capacity generators for power plants where structuralstrength
considerationsplacelimitsonconventionalgenerators.
In1995theNavalResearchLaboratorydemonstrateda167hpmotorwith
high-Tcsuperconductingcoilsmadefrom Bi-2223.Itwastestedat4.2Kand
atliquid neon temperature,28K with 112 hp produced atthe higher
temperature.
6.5SuperconductingMaglevTrains
Whileitisnotpracticaltolaydownsuperconductingrails,itispossibleto
constructasuperconductingsystem onboardatraintorepelconventional
railsbelowit.Thetrainwouldhavetobemovingtocreatetherepulsion,but
oncemovingwouldbesupportedwithverylittlefriction.Therewouldbe
resistivelossofenergyinthecurrentsintherails.Ohanianreportsan
engineeringassessmentthatsuchsuperconductingtrainswouldbemuch
saferthanconventionalrailsystemsat200km/h.
AJapanesemagneticallylevitatedtrainsetaspeedrecordof321mi/hin
1979 using superconducting magnetson board thetrain.Themagnets
inducecurrentsintherailsbelowthem,causingarepulsionwhichsuspends
thetrainabovethetrack.
48
 FutureApplicationsofSuperconductivity
With such features as zero resistivity and high current density,
superconductivity provides low-loss operation and high magnetic field,
featuresinconceivablewithnormalconductivity.Accordingly,expectations
arehighthatsuperconductivitywillimprovetheperformanceofelectrical
appliances.
Thesuperconductingstateoccurswithinlimitedtemperature,magneticfield
and current density ranges. Thanks to the discovery of oxide
superconductorsofhighcriticaltemperatures*1andtheincreasedcritical
current density*2 of superconducting wires made from them,
superconductivityisexpectedtobeusedinabroaderrangeofcommercial
fields.
Futuristicideasfortheuseofsuperconductors,materialsthatallowelectric
currenttoflow withoutresistance,aremyriad:long-distance,low-voltage
electricgridswithnotransmissionloss;fast,magneticallylevitatedtrains;
ultra-high-speed supercomputers;superefficientmotors and generators;
inexhaustiblefusionenergy–andmanyothers,someintheexperimentalor
demonstrationstages.
Butsuperconductors,especiallysuperconductingelectromagnets,havebeen
around for a long time.Indeed the first large-scale application of
superconductivity was in particle-physics accelerators,where strong
magnetic fields steerbeams ofcharged particles toward high-energy
collisionpoints.
49
Accelerators created the superconductorindustry,and superconducting
magnetshavebecomethenaturalchoiceforanyapplicationwherestrong
magneticfieldsareneeded– formagneticresonanceimaging(MRI)in
hospitals,forexample,orformagneticseparationofmineralsinindustry.
Otherscientificusesarenumerous,from nuclearmagneticresonancetoion
sourcesforcyclotrons.
Someofthestrongestandmostcomplexsuperconductingmagnetsarestill
builtforparticleacceleratorslikeCERN’sLargeHadronCollider(LHC).The
LHC uses over1,200 dipole magnets,whose two adjacentcoils of
superconducting cable create magnetic fields thatbend proton beams
traveling in opposite directions around a tunnel 27 kilometers in
circumference;theLHCalsohasalmost400quadrupolemagnets,whose
coilscreateafieldwithfourmagneticpolestofocustheprotonbeamswithin
thevacuumchamberandguidethemintotheexperiments.
TheseLHCmagnetsusecablesmadeofsuperconductingniobium titanium
(NbTi),andforfiveyearsduringitsconstructiontheLHCcontractedformore
than 28 percentofthe world’s niobium titanium wire production,with
significantquantitiesofNbTialsousedinthemagnetsfortheLHC’sgiant
experiments.
What’smore,althoughtheLHCisstillworkingtoreachtheenergyforwhichit
wasdesigned,theprogram toimproveitsfutureperformanceisalreadywell
underway.
 Designingthefuture
“Enablingtheacceleratorsofthefuturedependsondevelopingmagnetswith
muchgreaterfieldstrengthsthanarenowpossible,”saysGianLucaSabbiof
50
BerkeleyLab’sAcceleratorandFusionResearchDivision(AFRD).“Todothat,
we’llhavetousedifferentmaterials.”
Fieldstrengthislimitedbytheamountofcurrentamagnetcoilcancarry,
whichinturndependsonphysicalpropertiesofthesuperconductingmaterial
suchasitscriticaltemperatureandcriticalfield.Mostsuperconducting
magnetsbuilttodatearebasedonNbTi,whichisaductilealloy;theLHC
dipolesaredesignedtooperateatmagneticfieldsofabouteighttesla,or8
T —hundredsofthousandsoftimeshigherthanEarth’smagneticfield.
TheLHCAcceleratorResearchProgram (LARP)isacollaborationamong
DOElaboratoriesthat’sanimportantpartofU.S.participationintheLHC.
SabbiheadsboththeMagnetSystemscomponentofLARPandBerkeley
Lab’s Superconducting MagnetProgram.These programs are currently
developing acceleratormagnetsbuiltwith niobium tin (Nb3Sn),abrittle
materialrequiringspecialfabricationprocessesbutabletogenerateabout
twicethefieldofniobium titanium.Yetthegoalformagnetsofthefutureis
alreadysetmuchhigher.
“Amongthemostpromisingnewmaterialsforfuturemagnetsaresomeof
thehigh-temperaturesuperconductors,”saysSabbi.“Unfortunatelythey’re
verydifficult
51
CONCLUSION
Thepurposeofthispresentationwasthestudyofsurgecurrentprotection
usingSuperconductors.TheSuperconductorFaultCurrentLimitersoffers
efficientadvantagestopowersystemsandopensupamajorapplicationfor
superconductingmaterials.
Surge suppressors should be used as a mailer of habit with all
semiconductorbased
electronicandcomputerhardwareincludingperipheralssuchasprinters
monitors,
externaldiskdriversandothers.Butitcan’tbereliedupontoprovide
protectionagainstlightninginducedtransients.Sothesafestprocedureto
ensurethatallsusceptiblehardwareistounplugthesuppressormainpower
cordduringlightning.
52
References
[1] KEGray,DEflower–superconductingfaultcurrentlimiters
[2] IEEEtransactiononappliedsuperconductivity,march1997
[3] HMRosenberg–TheSolidState.http://www.amazon.co.uk/Solid-State
Introduction-MaterialsEngineering
[4] CPPoole,HAFarachandRJCreswick,Superconductivity(Academic
PressInc,
[5] SanDiego,California,1995(~
£40)http://www.amazon.co.uk/SuperconductivityCharles-PPoole/
[6] SuperconductivitybyW.Buckel,ReinholdKleiner
[7] Superconductivity:PhysicsandApplicationsbyKristianFossheim,Asle
Sudboe
[8] Superconductivity:fundamentalsandapplicationsbyWernerBuckel
[9] ieeexplore.ieee.org›...›Spectrum,IEE
[10]http://www.scribd.com/doc/115890153/surge-current-protection-using-
superconductors
[11]http://jntuhome.com/surge-current-protection-using-superconductors-
seminardownload-full-paper-eee-seminar-topics/
53
[12]http://kguru.info/t-surge-current-protection-using-superconductors-ppt--
55999
[13]http://en.wikipedia.org/wiki/Surge_protector
[14]http://www.edaboard.com/thread126937.html
[15]http://image.slidesharecdn.com/surgesupressor2bypratyashapatra-
140216062041-phpapp02/95/surge-supressor-21-638.jpg?cb=1392531698

More Related Content

What's hot

Chapter 5 corona
Chapter 5  coronaChapter 5  corona
Chapter 5 corona
firaoltemesgen1
 
Circuit breaker
Circuit breakerCircuit breaker
Circuit breaker
Biswajit Pratihari
 
PPT ON 220KV GSS
PPT ON 220KV GSSPPT ON 220KV GSS
PPT ON 220KV GSS
SIIT, Jaipur
 
WPT
WPTWPT
DISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAYDISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAY
Raviraj solanki
 
wireless power Transmission
wireless power Transmissionwireless power Transmission
wireless power Transmission
Srinivas Vasamsetti
 
Wireless electricity by sonu
Wireless electricity by sonuWireless electricity by sonu
Wireless electricity by sonu
Sonu Kumar
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
Rohini Haridas
 
voltage stability by compensating reactive power
voltage stability by compensating reactive powervoltage stability by compensating reactive power
voltage stability by compensating reactive power
Durgarao Gundu
 
Two Quadrant chopper
Two Quadrant chopperTwo Quadrant chopper
Two Quadrant chopper
Ashish Kashyap
 
A training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopurA training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopur
dilkhush009
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Ghazal Falahi
 
Hybrid inverter project report
Hybrid inverter project reportHybrid inverter project report
Hybrid inverter project report
Erole technologies Pvt. Ltd
 
Policies for smart grid
Policies for smart gridPolicies for smart grid
Policies for smart grid
Ashfaq khan
 
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
PranayJagtap5
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
CS V
 
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
8381801685
 
Electrical substations: 132 KV
Electrical substations: 132 KV Electrical substations: 132 KV
Electrical substations: 132 KV
Girish Gupta
 
220 kv gss
220 kv gss220 kv gss
220 kv gss
ROSHAN LAL KUMAWAT
 
Pdf witricity
Pdf witricityPdf witricity
Pdf witricity
Hina Saxena
 

What's hot (20)

Chapter 5 corona
Chapter 5  coronaChapter 5  corona
Chapter 5 corona
 
Circuit breaker
Circuit breakerCircuit breaker
Circuit breaker
 
PPT ON 220KV GSS
PPT ON 220KV GSSPPT ON 220KV GSS
PPT ON 220KV GSS
 
WPT
WPTWPT
WPT
 
DISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAYDISTANCE PROTECTION RELAY
DISTANCE PROTECTION RELAY
 
wireless power Transmission
wireless power Transmissionwireless power Transmission
wireless power Transmission
 
Wireless electricity by sonu
Wireless electricity by sonuWireless electricity by sonu
Wireless electricity by sonu
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
 
voltage stability by compensating reactive power
voltage stability by compensating reactive powervoltage stability by compensating reactive power
voltage stability by compensating reactive power
 
Two Quadrant chopper
Two Quadrant chopperTwo Quadrant chopper
Two Quadrant chopper
 
A training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopurA training report on 132 KV GSS, BHADOTI, sawai madhopur
A training report on 132 KV GSS, BHADOTI, sawai madhopur
 
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...Design, Modeling and control of modular multilevel converters (MMC) based hvd...
Design, Modeling and control of modular multilevel converters (MMC) based hvd...
 
Hybrid inverter project report
Hybrid inverter project reportHybrid inverter project report
Hybrid inverter project report
 
Policies for smart grid
Policies for smart gridPolicies for smart grid
Policies for smart grid
 
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
Design and Analysis of DC-DC Bidirectional Converter for Vehicle to Grid Appl...
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
 
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
 
Electrical substations: 132 KV
Electrical substations: 132 KV Electrical substations: 132 KV
Electrical substations: 132 KV
 
220 kv gss
220 kv gss220 kv gss
220 kv gss
 
Pdf witricity
Pdf witricityPdf witricity
Pdf witricity
 

Similar to Surge current protection Seminar Report

Kvnm copy
Kvnm   copyKvnm   copy
Kvnm copy
Moorthy kvn
 
Kvnm
KvnmKvnm
2 cd M.TECH ( PDF FILE )
2 cd M.TECH ( PDF FILE )2 cd M.TECH ( PDF FILE )
2 cd M.TECH ( PDF FILE )
rajasthan technical university kota
 
2 cd M.TECH ( M S WORD FILE )
2 cd M.TECH ( M S WORD FILE )2 cd M.TECH ( M S WORD FILE )
2 cd M.TECH ( M S WORD FILE )
rajasthan technical university kota
 
1. front page
1. front page1. front page
1. front page
Basil John
 
fundamental of space communication technologies
fundamental of space communication technologiesfundamental of space communication technologies
fundamental of space communication technologies
Amjad ALi
 
Abstract
AbstractAbstract
Abstract
aejazbasha
 
Home automation with arduino uno
Home automation with arduino unoHome automation with arduino uno
Home automation with arduino uno
Lakshminarayan Solanki
 
Synopsis format
Synopsis formatSynopsis format
Synopsis format
darshanravindrajoshi
 
Front page &amp; cert
Front page &amp; certFront page &amp; cert
Front page &amp; cert
classic tpr
 
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORTAC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
gautam221094
 
Resume
ResumeResume
1201216185_3
1201216185_31201216185_3
1201216185_3
Krishna19753
 
VISHWA INT (1).pdf
VISHWA INT (1).pdfVISHWA INT (1).pdf
VISHWA INT (1).pdf
Kushal150906
 
Kumari
KumariKumari
CV
CVCV
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERSK.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
kssemslideshare
 
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
Cassie Romero
 
shone john resume
shone john resumeshone john resume
shone john resume
shone john
 
Jntuk list of constituent and affiliated colleges with intake details - 2011-...
Jntuk list of constituent and affiliated colleges with intake details - 2011-...Jntuk list of constituent and affiliated colleges with intake details - 2011-...
Jntuk list of constituent and affiliated colleges with intake details - 2011-...
Madhu Sudhan
 

Similar to Surge current protection Seminar Report (20)

Kvnm copy
Kvnm   copyKvnm   copy
Kvnm copy
 
Kvnm
KvnmKvnm
Kvnm
 
2 cd M.TECH ( PDF FILE )
2 cd M.TECH ( PDF FILE )2 cd M.TECH ( PDF FILE )
2 cd M.TECH ( PDF FILE )
 
2 cd M.TECH ( M S WORD FILE )
2 cd M.TECH ( M S WORD FILE )2 cd M.TECH ( M S WORD FILE )
2 cd M.TECH ( M S WORD FILE )
 
1. front page
1. front page1. front page
1. front page
 
fundamental of space communication technologies
fundamental of space communication technologiesfundamental of space communication technologies
fundamental of space communication technologies
 
Abstract
AbstractAbstract
Abstract
 
Home automation with arduino uno
Home automation with arduino unoHome automation with arduino uno
Home automation with arduino uno
 
Synopsis format
Synopsis formatSynopsis format
Synopsis format
 
Front page &amp; cert
Front page &amp; certFront page &amp; cert
Front page &amp; cert
 
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORTAC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
AC PERFORMANCE OF NANO ELECTRONICS SEMINAR REPORT
 
Resume
ResumeResume
Resume
 
1201216185_3
1201216185_31201216185_3
1201216185_3
 
VISHWA INT (1).pdf
VISHWA INT (1).pdfVISHWA INT (1).pdf
VISHWA INT (1).pdf
 
Kumari
KumariKumari
Kumari
 
CV
CVCV
CV
 
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERSK.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
K.S.SCHOOL OF ENGINEERING & MANAGEMENT FACULTY ACHIEVERS
 
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
Augmented Reality SEMINAR REPORT Submitted By BIKKAVOLUANANTHABHAVANI SAI KRI...
 
shone john resume
shone john resumeshone john resume
shone john resume
 
Jntuk list of constituent and affiliated colleges with intake details - 2011-...
Jntuk list of constituent and affiliated colleges with intake details - 2011-...Jntuk list of constituent and affiliated colleges with intake details - 2011-...
Jntuk list of constituent and affiliated colleges with intake details - 2011-...
 

More from Lakshminarayan Solanki

Home automation with arduino
Home automation with arduinoHome automation with arduino
Home automation with arduino
Lakshminarayan Solanki
 
Power house report
Power house reportPower house report
Power house report
Lakshminarayan Solanki
 
Power house report
Power house reportPower house report
Power house report
Lakshminarayan Solanki
 
Plc & scada report 6
Plc & scada report 6Plc & scada report 6
Plc & scada report 6
Lakshminarayan Solanki
 
Plc & Scada report 4
Plc & Scada report 4Plc & Scada report 4
Plc & Scada report 4
Lakshminarayan Solanki
 
Plc & Scada report 3
Plc & Scada report 3Plc & Scada report 3
Plc & Scada report 3
Lakshminarayan Solanki
 
Plc & scada report 2
Plc & scada report 2Plc & scada report 2
Plc & scada report 2
Lakshminarayan Solanki
 
Plc & scada Training Report
Plc & scada Training ReportPlc & scada Training Report
Plc & scada Training Report
Lakshminarayan Solanki
 
Fuel Cell Technology
Fuel Cell TechnologyFuel Cell Technology
Fuel Cell Technology
Lakshminarayan Solanki
 
Smart Home Automation using Atmega328p
Smart Home Automation using Atmega328pSmart Home Automation using Atmega328p
Smart Home Automation using Atmega328p
Lakshminarayan Solanki
 
Solar tree
Solar treeSolar tree
Hybrid electric vehicle Seminar Presentation
Hybrid electric vehicle Seminar PresentationHybrid electric vehicle Seminar Presentation
Hybrid electric vehicle Seminar Presentation
Lakshminarayan Solanki
 
Electric hybrid vehicle Seminar Report
Electric hybrid vehicle Seminar ReportElectric hybrid vehicle Seminar Report
Electric hybrid vehicle Seminar Report
Lakshminarayan Solanki
 

More from Lakshminarayan Solanki (13)

Home automation with arduino
Home automation with arduinoHome automation with arduino
Home automation with arduino
 
Power house report
Power house reportPower house report
Power house report
 
Power house report
Power house reportPower house report
Power house report
 
Plc & scada report 6
Plc & scada report 6Plc & scada report 6
Plc & scada report 6
 
Plc & Scada report 4
Plc & Scada report 4Plc & Scada report 4
Plc & Scada report 4
 
Plc & Scada report 3
Plc & Scada report 3Plc & Scada report 3
Plc & Scada report 3
 
Plc & scada report 2
Plc & scada report 2Plc & scada report 2
Plc & scada report 2
 
Plc & scada Training Report
Plc & scada Training ReportPlc & scada Training Report
Plc & scada Training Report
 
Fuel Cell Technology
Fuel Cell TechnologyFuel Cell Technology
Fuel Cell Technology
 
Smart Home Automation using Atmega328p
Smart Home Automation using Atmega328pSmart Home Automation using Atmega328p
Smart Home Automation using Atmega328p
 
Solar tree
Solar treeSolar tree
Solar tree
 
Hybrid electric vehicle Seminar Presentation
Hybrid electric vehicle Seminar PresentationHybrid electric vehicle Seminar Presentation
Hybrid electric vehicle Seminar Presentation
 
Electric hybrid vehicle Seminar Report
Electric hybrid vehicle Seminar ReportElectric hybrid vehicle Seminar Report
Electric hybrid vehicle Seminar Report
 

Recently uploaded

Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
This is my Environmental physics presentation
This is my Environmental physics presentationThis is my Environmental physics presentation
This is my Environmental physics presentation
ZainabHashmi17
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
introduction to solar energy for engineering.pdf
introduction to solar energy for engineering.pdfintroduction to solar energy for engineering.pdf
introduction to solar energy for engineering.pdf
ravindarpurohit26
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
obonagu
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
zwunae
 

Recently uploaded (20)

Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
This is my Environmental physics presentation
This is my Environmental physics presentationThis is my Environmental physics presentation
This is my Environmental physics presentation
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
introduction to solar energy for engineering.pdf
introduction to solar energy for engineering.pdfintroduction to solar energy for engineering.pdf
introduction to solar energy for engineering.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
原版制作(unimelb毕业证书)墨尔本大学毕业证Offer一模一样
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
 

Surge current protection Seminar Report