SlideShare a Scribd company logo
ビジネスの現場の
データ分析における
理想と現実
株式会社リクルートコミュニケーションズ データサイエンティスト
尾崎 隆 (Takashi J. OZAKI, Ph. D.)

2013/11/28

1
一応、自己紹介を…

ブログ&Twitterやってます

2013/11/28

2
一応、自己紹介を…

ブログ&Twitterやってます

2013/11/28

3
一応、自己紹介を…

 現在は…

2013/11/28

4
一応、自己紹介を…

 現在は…

リクルートグループ全体のマーケティングにおける
データ分析を担当するデータサイエンティスト

2013/11/28

5
本日のお品書き

 データサイエンティストが思い描く「理想」

 ビジネスの現場における「現実」

 「理想」と「現実」の折り合いをうまくつけて、データ分析で価値
を発揮していくには?

2013/11/28

6
おことわり

今日は分析手法の話とか、
難しい話は一切いたしません

2013/11/28

7
おことわり

今日はアドホック分析業務の
現場でよくある話をします

※学生の方が多い会だと聞いてきたもので…

2013/11/28

8
本日のお品書き

 データサイエンティストが思い描く「理想」

 ビジネスの現場における「現実」

 「理想」と「現実」の折り合いをうまくつけて、データ分析で価値
を発揮していくには?

2013/11/28

9
データサイエンティストが思い描く「理想」

仕事の進め方では…
できる限り面白い仕事がしたいよね
あんまり煩雑なルーチンワークには
時間を取られたくないし
もちろんカンファレンスとかも出たいし

OSSとかにもコミットしたいな
データサイエンティスト

2013/11/28

10
データサイエンティストが思い描く「理想」

具体的な分析のやり方では…
基本通りp < 0.05じゃないと
表には出せないよね
バシッと機械学習使って厳密な
結果を出してナンボでしょ
MCMC使えば複雑なモデルを組み合わ
せて正確なパラメータ推定できるよ

データサイエンティスト

2013/11/28

やっぱりHadoop上でアルゴリズムを
分散させて一気に大容量でやりたいな

11
データサイエンティストが思い描く「理想」

データサイエンティストという立場の人々が
往々にして思い描く理想、それは…

2013/11/28

12
データサイエンティストが思い描く「理想」

「知的好奇心を満たせる仕事」

※昨年尾崎がポスドクを辞めて転職した際に、とある企業で
面談して下さった部長氏(素粒子物理Ph.D.出身)の言葉

2013/11/28

13
本日のお品書き

 データサイエンティストが思い描く「理想」

 ビジネスの現場における「現実」

 「理想」と「現実」の折り合いをうまくつけて、データ分析で価値
を発揮していくには?

2013/11/28

14
ビジネスの現場における「現実」

初めて分析業務の現場を見て…

データサイエンティスト

2013/11/28

15
ビジネスの現場における「現実」

初めて分析業務の現場を見て…

・・・・・・・・・・・・・・

データサイエンティスト

2013/11/28

16
ビジネスの現場における「現実」

彼(彼女)は何を見たのか?

2013/11/28

17
ビジネスの現場における「現実」

前処理

分析

レポート

これが一般的な流れですが…
2013/11/28

18
ビジネスの現場における「現実」

現実には…

2013/11/28

19
ビジネスの現場における「現実」

前処理

分析

レポート

これぐらいの比率だったりする

2013/11/28

20
ビジネスの現場における「現実」

つまり…

データサイエンティスト

2013/11/28

21
ビジネスの現場における「現実」

つまり…

データサイエンティスト

2013/11/28

22
ビジネスの現場における「現実」

つまり…

マエショリスト

2013/11/28

23
ビジネスの現場における「現実」

 「前処理が全工数の9割以上を占める」
 カラム定義が揃ってない複数テーブル間にデータが
分散していたり
 NAだらけだけど0を入れて補完するとまずいような
データが1TBぐらいあったり
 外注したデータなのでDBから取ってくるのではなく
全てCSVでン百GBぐらい降ってきたり

2013/11/28

24
ビジネスの現場における「現実」

現場にありがちなもう一つの仕事

データサイエンティスト

2013/11/28

25
ビジネスの現場における「現実」

現場にありがちなもう一つの仕事
うひー・・・

データサイエンティスト

データ分析基盤の保守運用
2013/11/28

26
ビジネスの現場における「現実」

 「え?crontabぐらい設定できるよね?」
 バッチ集計のスクリプトをコミットしたり
 バックエンド分析処理のコードをビルドしたり
 アラートメール出てたらリモートでログインして復旧
作業入ったり

・・・つまり「普通にエンジニア仕事もやる」という

2013/11/28

27
ビジネスの現場における「現実」

適応すべきは自分の影響が
及ぶ範囲だけではない

データサイエンティスト

2013/11/28

28
ビジネスの現場における「現実」

適応すべきは自分の影響が
及ぶ範囲だけではない
分析よろしくー
あ、はい・・・

データサイエンティスト

2013/11/28

ビジネスマネージャー

29
ビジネスの現場における「現実」

ビジネス側の人とデータ分析の話をすると…
は?機械学習?統計的検定?p値?AIC?重回
帰分析?何それ?ちょっと説明してくれる?
データ分析データ分析っていうけど、要は
Excelの関数うまく使いこなすことでしょ?

まだるっこしいこと言うなぁ。Aの平均の方が
Bの平均よりも大きいんだからAでいいじゃん
数学苦手だったからさぁ、ぶっちゃけ算数
より難しいもの見ても分からないんだよね

ビジネスマネージャー
※弊社および弊グループではビジネス側の人たちでも
データ分析諸系統に通じている人が沢山いるのでご安心を
2013/11/28

30
ビジネスの現場における「現実」

これくらい認識に差のある相手と
会話をしなければいけません

2013/11/28

31
ビジネスの現場における「現実」

なので、色々な悲喜劇が起きる

2013/11/28

32
ビジネスの現場における「現実」

決定木で一番良さそうなサイト
導線を選んでみました

決定木って何?この図全然見慣れ
なくて読みにくいよ。こんな変な
もの持ってこないで、普通にExcel
で集計したシート持ってきて

・・・・・・・・・

ビジネスマネージャー
データサイエンティスト
2013/11/28

※これはフィクションです
33
ビジネスの現場における「現実」
これさぁ、Excelで割合計算した結果
と食い違ってるじゃん。おかしいで
しょ?変に難しいことに手を出すと
危ないよ、やり直して

(単相関と偏相関の
違いなんだけど…)

重回帰分析の結果出ました。
偏回帰係数を見るとですね…

ビジネスマネージャー
データサイエンティスト
2013/11/28

※これはフィクションです
34
ビジネスの現場における「現実」
何でそんなに時間かかってるの?
データ渡したのだいぶ前だよね?
こんなの1日で終わるでしょ?

(前処理に時間か
かった上にSVM回し
終わるのに3日かか
るよ、そもそもあの
データ量だし…)

お待たせしてすみません、
機械学習にかけた結果です

ビジネスマネージャー
データサイエンティスト
2013/11/28

※これはフィクションです
35
ビジネスの現場における「現実」

あーあ、小難しいことは言わずに黙ってサクッと1日で言われ
た通りに売上が伸びる改善施策につながる分析結果持ってき
てくれるデータサイエンティストどこかにいないかなー

・・・・・・・・・・・・

ビジネスマネージャー
データサイエンティスト
2013/11/28

※これはフィクションです
36
ビジネスの現場における「現実」

不幸なすれ違いが続くと
危ないのは、恋愛と同じ

2013/11/28

37
本日のお品書き

 データサイエンティストが思い描く「理想」

 ビジネスの現場における「現実」

 「理想」と「現実」の折り合いをうまくつけて、データ分析で価値
を発揮していくには?

2013/11/28

38
折り合いをつけて、データ分析で価値を発揮していくには?

1.

2013/11/28

39
折り合いをつけて、データ分析で価値を発揮していくには?

1. そもそも話の通じるビジネス側
の人が多い他部署・他社に移る
やってられっかチクショー

データサイエンティスト
※身も蓋もないが、仕方ない場合も世の中にはある
2013/11/28

40
折り合いをつけて、データ分析で価値を発揮していくには?

2.

2013/11/28

41
折り合いをつけて、データ分析で価値を発揮していくには?

2. 日頃からビジネス側の人たちと
会話を密にする
いやぁ、この前の前処理5日も食っ
ちゃいましたよ、アハハハハ
そうか、全然知らなかったよ・・・
今度から余裕を持たせて依頼するよ
ビジネスマネージャー

データサイエンティスト
※ランチの席とかでネタっぽく実情を訴えるとか(笑)
2013/11/28

42
折り合いをつけて、データ分析で価値を発揮していくには?

3.

2013/11/28

43
折り合いをつけて、データ分析で価値を発揮していくには?

3. 科学コミュニケーションをする
つもりで対話せよ
簡単に言えば、この数字が大きい
ほどより○○だと思ってOKです
なるほどー。ってことは、そっちの別
の数字との関係性を見るには・・・
ビジネスマネージャー

データサイエンティスト
※デキるビジネス系の人ほど頭の回転が速いので、
こういう「概念」の理解も早い(経験的に)
2013/11/28

44
折り合いをつけて、データ分析で価値を発揮していくには?

4.

2013/11/28

45
折り合いをつけて、データ分析で価値を発揮していくには?

4. 相手のビジネス視点を自分の
ものにして話すべし
この分析結果から言って、来月のKPI○○
は××との相乗効果で売上高への・・・
そうそう、そこが知りたかったんだよ。
これが分かれば予算配分決められるし
ビジネスマネージャー

データサイエンティスト
※ビジネス系の人はビジネスの話をしたいのです
2013/11/28

46
折り合いをつけて、データ分析で価値を発揮していくには?

5.

2013/11/28

47
折り合いをつけて、データ分析で価値を発揮していくには?

5. 分析に少しでも詳しい人を見つ
けて味方にしてしまう
Aの方が説得力
ありますね

分析結果から言うと
Aの方が良さそうです
そうか、2人とも同意見
なら大丈夫そうだな

ビジネス側の人

ビジネスマネージャー
データサイエンティスト

2013/11/28

※持つべきものは味方。そして意外と大学が
経済学系出身とかで詳しい人は多いもの
48
折り合いをつけて、データ分析で価値を発揮していくには?

6.

2013/11/28

49
折り合いをつけて、データ分析で価値を発揮していくには?

6. 価値さえ認めてもらえるように
なれば、色々チャレンジできる
素晴らしい成果が出たし、今回
使ったネタでトップカンファレ
ンス出してみたら?
喜んで!頑張ってきます!

データサイエンティスト

こうなったらもっとR&Dにも
力を入れて行かなきゃね

ビジネスマネージャー

※NIPSとかKDDとか行かせてもらえることも
(弊社および弊グループにおける実例)
2013/11/28

50
ということで、「理想」と「現実」のせめぎ合いを見てきました

 データサイエンティストが思い描く「理想」

 ビジネスの現場における「現実」

 「理想」と「現実」の折り合いをうまくつけて、データ分析で価値
を発揮していくには?

2013/11/28

51
最後に

まだビッグデータ系のデータ分析部門は
どこも立ち上がったばかりなので、
自分好みの組織に作り上げてやりたい
ことをやろうと志す若い学生の皆さんに
とっては今がチャンスですよ!

2013/11/28

52

More Related Content

What's hot

卒論執筆・スライド作成のポイント
卒論執筆・スライド作成のポイント卒論執筆・スライド作成のポイント
卒論執筆・スライド作成のポイント
Tsubasa Hirakawa
 
合成変量とアンサンブル:回帰森と加法モデルの要点
合成変量とアンサンブル:回帰森と加法モデルの要点合成変量とアンサンブル:回帰森と加法モデルの要点
合成変量とアンサンブル:回帰森と加法モデルの要点
Ichigaku Takigawa
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
Takashi J OZAKI
 
固有表現抽出と適用例のご紹介
固有表現抽出と適用例のご紹介固有表現抽出と適用例のご紹介
固有表現抽出と適用例のご紹介
Core Concept Technologies
 
Visualizing Data Using t-SNE
Visualizing Data Using t-SNEVisualizing Data Using t-SNE
Visualizing Data Using t-SNE
Tomoki Hayashi
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
Shota Imai
 
傾向スコア解析とUplift Modelling
傾向スコア解析とUplift Modelling傾向スコア解析とUplift Modelling
傾向スコア解析とUplift Modelling
Yohei Sato
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
Takashi J OZAKI
 
データ解析のための勉強会第7章
データ解析のための勉強会第7章データ解析のための勉強会第7章
データ解析のための勉強会第7章
TokorosawaYoshio
 
因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"
takehikoihayashi
 
状態空間モデルの考え方・使い方 - TokyoR #38
状態空間モデルの考え方・使い方 - TokyoR #38状態空間モデルの考え方・使い方 - TokyoR #38
状態空間モデルの考え方・使い方 - TokyoR #38
horihorio
 
[DL輪読会]Attention is not Explanation (NAACL2019)
[DL輪読会]Attention is not Explanation (NAACL2019)[DL輪読会]Attention is not Explanation (NAACL2019)
[DL輪読会]Attention is not Explanation (NAACL2019)
Deep Learning JP
 
ML Ops 実装の現場から
ML Ops 実装の現場からML Ops 実装の現場から
ML Ops 実装の現場から
慎一郎 畠
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方
ychtanaka
 
マハラノビス距離とユークリッド距離の違い
マハラノビス距離とユークリッド距離の違いマハラノビス距離とユークリッド距離の違い
マハラノビス距離とユークリッド距離の違い
wada, kazumi
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
takehikoihayashi
 
マインドフルネスと人工知能
マインドフルネスと人工知能マインドフルネスと人工知能
マインドフルネスと人工知能
Youichiro Miyake
 
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリングベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
宏喜 佐野
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
Yoichi Ochiai
 

What's hot (20)

卒論執筆・スライド作成のポイント
卒論執筆・スライド作成のポイント卒論執筆・スライド作成のポイント
卒論執筆・スライド作成のポイント
 
合成変量とアンサンブル:回帰森と加法モデルの要点
合成変量とアンサンブル:回帰森と加法モデルの要点合成変量とアンサンブル:回帰森と加法モデルの要点
合成変量とアンサンブル:回帰森と加法モデルの要点
 
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
「データサイエンティスト・ブーム」後の企業におけるデータ分析者像を探る
 
固有表現抽出と適用例のご紹介
固有表現抽出と適用例のご紹介固有表現抽出と適用例のご紹介
固有表現抽出と適用例のご紹介
 
Visualizing Data Using t-SNE
Visualizing Data Using t-SNEVisualizing Data Using t-SNE
Visualizing Data Using t-SNE
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
 
傾向スコア解析とUplift Modelling
傾向スコア解析とUplift Modelling傾向スコア解析とUplift Modelling
傾向スコア解析とUplift Modelling
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
 
データ解析のための勉強会第7章
データ解析のための勉強会第7章データ解析のための勉強会第7章
データ解析のための勉強会第7章
 
因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"
 
状態空間モデルの考え方・使い方 - TokyoR #38
状態空間モデルの考え方・使い方 - TokyoR #38状態空間モデルの考え方・使い方 - TokyoR #38
状態空間モデルの考え方・使い方 - TokyoR #38
 
[DL輪読会]Attention is not Explanation (NAACL2019)
[DL輪読会]Attention is not Explanation (NAACL2019)[DL輪読会]Attention is not Explanation (NAACL2019)
[DL輪読会]Attention is not Explanation (NAACL2019)
 
ML Ops 実装の現場から
ML Ops 実装の現場からML Ops 実装の現場から
ML Ops 実装の現場から
 
工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方工学系大学4年生のための論文の読み方
工学系大学4年生のための論文の読み方
 
マハラノビス距離とユークリッド距離の違い
マハラノビス距離とユークリッド距離の違いマハラノビス距離とユークリッド距離の違い
マハラノビス距離とユークリッド距離の違い
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
 
マインドフルネスと人工知能
マインドフルネスと人工知能マインドフルネスと人工知能
マインドフルネスと人工知能
 
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリングベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
ベイジアンモデリングによるマーケティングサイエンス〜状態空間モデルを用いたモデリング
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 

Viewers also liked

WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処” WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
Hajime Sasaki
 
2016年6月版データマエショリスト入門
2016年6月版データマエショリスト入門2016年6月版データマエショリスト入門
2016年6月版データマエショリスト入門
Yuya Matsumura
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティスト
Shohei Hido
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方
Shohei Hido
 
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
Takashi J OZAKI
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
Shintaro Fukushima
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
Koichi Hamada
 

Viewers also liked (7)

WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処” WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
WI2研究会(公開用) “データ分析でよく使う前処理の整理と対処”
 
2016年6月版データマエショリスト入門
2016年6月版データマエショリスト入門2016年6月版データマエショリスト入門
2016年6月版データマエショリスト入門
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティスト
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方
 
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
21世紀で最もセクシーな職業!?「データサイエンティスト」の実像に迫る
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
 

Similar to ビジネスの現場のデータ分析における理想と現実

Thinking datascientist itself
Thinking datascientist itselfThinking datascientist itself
Thinking datascientist itself
HiroyukiOtsubo
 
セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44
horihorio
 
アクションマイニングを用いた最適なアクションの導出
アクションマイニングを用いた最適なアクションの導出アクションマイニングを用いた最適なアクションの導出
アクションマイニングを用いた最適なアクションの導出
Shintaro Fukushima
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
Shohei Hido
 
20120326 zansa勉強会発表資料 (公開用) 02 04-38
20120326 zansa勉強会発表資料 (公開用) 02 04-3820120326 zansa勉強会発表資料 (公開用) 02 04-38
20120326 zansa勉強会発表資料 (公開用) 02 04-38
tetsuro ito
 
OpenDataの知見共有とビジネス化
OpenDataの知見共有とビジネス化OpenDataの知見共有とビジネス化
OpenDataの知見共有とビジネス化
Satoshi Iida
 
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
Hiroko Onari
 
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
yuzoakakura
 
JPA2019 Symposium 1
JPA2019 Symposium 1JPA2019 Symposium 1
JPA2019 Symposium 1
Jun Kashihara
 
teaming and weak internal information
teaming and weak internal informationteaming and weak internal information
teaming and weak internal information
Hiroko Onari
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方
Recruit Lifestyle Co., Ltd.
 
Gaiaxセミナー資料20111216
Gaiaxセミナー資料20111216Gaiaxセミナー資料20111216
Gaiaxセミナー資料20111216
ITmedia_HR(人事・採用)
 
Gaiaxセミナー20111216「採用現場が考えるソーシャル」
Gaiaxセミナー20111216「採用現場が考えるソーシャル」Gaiaxセミナー20111216「採用現場が考えるソーシャル」
Gaiaxセミナー20111216「採用現場が考えるソーシャル」
URANO HEIYA
 
20131213 itサービスに求められる人材像
20131213 itサービスに求められる人材像20131213 itサービスに求められる人材像
20131213 itサービスに求められる人材像
jun_suto
 
20131221 次世代共創マーケティング
20131221 次世代共創マーケティング20131221 次世代共創マーケティング
20131221 次世代共創マーケティング
晴生 山崎
 
20220422佐賀銀行新入行員研修
20220422佐賀銀行新入行員研修20220422佐賀銀行新入行員研修
20220422佐賀銀行新入行員研修
KazuhitoKitamura
 

Similar to ビジネスの現場のデータ分析における理想と現実 (16)

Thinking datascientist itself
Thinking datascientist itselfThinking datascientist itself
Thinking datascientist itself
 
セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44セグメンテーションの考え方・使い方 - TokyoR #44
セグメンテーションの考え方・使い方 - TokyoR #44
 
アクションマイニングを用いた最適なアクションの導出
アクションマイニングを用いた最適なアクションの導出アクションマイニングを用いた最適なアクションの導出
アクションマイニングを用いた最適なアクションの導出
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
 
20120326 zansa勉強会発表資料 (公開用) 02 04-38
20120326 zansa勉強会発表資料 (公開用) 02 04-3820120326 zansa勉強会発表資料 (公開用) 02 04-38
20120326 zansa勉強会発表資料 (公開用) 02 04-38
 
OpenDataの知見共有とビジネス化
OpenDataの知見共有とビジネス化OpenDataの知見共有とビジネス化
OpenDataの知見共有とビジネス化
 
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
Thank you communication network in organization 感謝ネットワークからみる組織のコミュニケーションの形
 
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
データジャーナリズム―異業種のコラボレーションがニュースを変える― (2013年12月)
 
JPA2019 Symposium 1
JPA2019 Symposium 1JPA2019 Symposium 1
JPA2019 Symposium 1
 
teaming and weak internal information
teaming and weak internal informationteaming and weak internal information
teaming and weak internal information
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方
 
Gaiaxセミナー資料20111216
Gaiaxセミナー資料20111216Gaiaxセミナー資料20111216
Gaiaxセミナー資料20111216
 
Gaiaxセミナー20111216「採用現場が考えるソーシャル」
Gaiaxセミナー20111216「採用現場が考えるソーシャル」Gaiaxセミナー20111216「採用現場が考えるソーシャル」
Gaiaxセミナー20111216「採用現場が考えるソーシャル」
 
20131213 itサービスに求められる人材像
20131213 itサービスに求められる人材像20131213 itサービスに求められる人材像
20131213 itサービスに求められる人材像
 
20131221 次世代共創マーケティング
20131221 次世代共創マーケティング20131221 次世代共創マーケティング
20131221 次世代共創マーケティング
 
20220422佐賀銀行新入行員研修
20220422佐賀銀行新入行員研修20220422佐賀銀行新入行員研修
20220422佐賀銀行新入行員研修
 

More from Takashi J OZAKI

直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
Takashi J OZAKI
 
Taste of Wine vs. Data Science
Taste of Wine vs. Data ScienceTaste of Wine vs. Data Science
Taste of Wine vs. Data Science
Takashi J OZAKI
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
Takashi J OZAKI
 
Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601
Takashi J OZAKI
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?
Takashi J OZAKI
 
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Takashi J OZAKI
 
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
Takashi J OZAKI
 
Jc 20141003 tjo
Jc 20141003 tjoJc 20141003 tjo
Jc 20141003 tjo
Takashi J OZAKI
 
データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)
Takashi J OZAKI
 
Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}
Takashi J OZAKI
 
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Takashi J OZAKI
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
Takashi J OZAKI
 
Simple perceptron by TJO
Simple perceptron by TJOSimple perceptron by TJO
Simple perceptron by TJO
Takashi J OZAKI
 

More from Takashi J OZAKI (13)

直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
直感的な単変量モデルでは予測できない「ワインの味」を多変量モデルで予測する
 
Taste of Wine vs. Data Science
Taste of Wine vs. Data ScienceTaste of Wine vs. Data Science
Taste of Wine vs. Data Science
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
 
Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601Tech Lab Paak講演会 20150601
Tech Lab Paak講演会 20150601
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?
 
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
Deep Learningと他の分類器をRで比べてみよう in Japan.R 2014
 
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
『手を動かしながら学ぶ ビジネスに活かすデータマイニング』で目指したもの・学んでもらいたいもの
 
Jc 20141003 tjo
Jc 20141003 tjoJc 20141003 tjo
Jc 20141003 tjo
 
データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)データ分析というお仕事のこれまでとこれから(HCMPL2014)
データ分析というお仕事のこれまでとこれから(HCMPL2014)
 
Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}Visualization of Supervised Learning with {arules} + {arulesViz}
Visualization of Supervised Learning with {arules} + {arulesViz}
 
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
Rによるやさしい統計学第20章「検定力分析によるサンプルサイズの決定」
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
 
Simple perceptron by TJO
Simple perceptron by TJOSimple perceptron by TJO
Simple perceptron by TJO
 

Recently uploaded

第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
Takuya Minagawa
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
shogotaguchi
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
TsuyoshiSaito7
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
TsuyoshiSaito7
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
Hironori Washizaki
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
iPride Co., Ltd.
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 

Recently uploaded (12)

第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
第61回CV勉強会「CVPR2024読み会」(前編)発表資料:State Space Models for Event Cameras
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
「福利厚生をコストから投資へ」AIで社員1人ひとりに最適な支援を届ける 全く新しいカフェテリアプラン
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 

ビジネスの現場のデータ分析における理想と現実