Simbol matematika dasar

          Nama


 Simbol    Dibaca sebagai                   Penjelasan                         Contoh


                   Kategori


          kesamaan


                                x = y berarti x and y mewakili hal
  =          sama dengan
                                atau nilai yang sama.
                                                                   1+1=2


                       umum


          Ketidaksamaan

                            x ≠ y berarti x dan y tidak
  ≠       tidak sama dengan mewakili hal atau nilai yang
                            sama.
                                                                      1≠2


                       umum


          ketidaksamaan

  <                             x < y berarti x lebih kecil dari y.
           lebih kecil dari;                                          3<4
           lebih besar dari                                           5>4
                                x > y means x lebih besar dari y.
  >
                 order theory


          inequality            x ≤ y berarti x lebih kecil dari

  ≤                             atau sama dengan y.
                                                                      3 ≤ 4 and 5 ≤ 5
                                                                      5 ≥ 4 and 5 ≥ 5
            lebih kecil dari x ≥ y berarti x lebih besar dari
          atau sama dengan, atau sama dengan y.
            lebih besar dari
≥   atau sama dengan


           order theory


    tambah


                          4 + 6 berarti jumlah antara 4 dan
          tambah                                              2+7=9
                          6.


             aritmatika

+   disjoint union

                                                              A1={1,2,3,4} ∧
                                                              A2={2,4,5,7} ⇒
    the disjoint union A1 + A2 means the disjoint union
                                                              A1 + A2 = {(1,1), (2,1),
      of … and …       of sets A1 and A2.
                                                              (3,1), (4,1), (2,2), (4,2),
                                                              (5,2), (7,2)}

        teori himpunan


    kurang


          kurang          9 − 4 berarti 9 dikurangi 4.        8−3=5


             aritmatika



−   tanda negatif


          negatif         −3 berarti negatif dari angka 3.    −(−5) = 5


             aritmatika


    set-theoretic
                          A − B berarti himpunan yang         {1,2,4} − {1,3,4} = {2}
    complement
                          mempunyai semua anggota dari
A yang tidak terdapat pada B.
     minus; without


               set theory


    multiplication


           kali             3 × 4 berarti perkalian 3 oleh 4.    7 × 8 = 56


               aritmatika


    Cartesian product

    produk Cartesian
    ... dan ...; produk X × Y berarti himpunan semua
    langsung dari ... pasangan memerintahkan dengan {1,2} × {3,4} =
×   dan ...             elemen pertama dari masing-
                                                     {(1,3),(1,4),(2,3),(2,4)}
                            masing pasangan dipilih dari X dan
                            elemen kedua yang dipilih dari Y.



       teori himpunan


    cross product


                            u × v means the cross product of (1,2,5) × (3,4,−1) =
          cross
                            vectors u and v                  (−22, 16, − 2)


        vector algebra


    division
÷                                                                2 ÷ 4 = .5
           bagi             6 ÷ 3 atau 6/3 berati 6 dibagi 3.
                                                                 12/4 = 3
/
               aritmatika
square root


                             √x berarti bilangan positif yang
        akar kuadrat                                              √4 = 2
                             kuadratnya x.


           bilangan real



√    complex square
     root


        akar kuadrat         if z = r exp(iφ) diwakili dalam
       kompleks; akar        koordinat polar dengan -π < φ ≤      √(-1) = i
          kuadrat            π, then √z = √r exp(iφ/2).


                  Bilangan
                 kompleks


     absolute value

                             |x| means the distance in the real
                                                                  |3| = 3, |-5| = |5|
||    nilai mutlak dari      line (or the complex plane)
                             between x and zero.
                                                                  |i| = 1, |3+4i| = 5


                  numbers


     factorial



!         faktorial          n! adalah hasil dari 1×2×...×n.      4! = 1 × 2 × 3 × 4 = 24


          combinatorics


     probability
     distribution            X ~ D, means the random
                                                                  X ~ N(0,1), the standard
~                            variable X has the probability
                             distribution D.
                                                                  normal distribution
      has distribution
statistika


    material                A ⇒ B means if A is true then B
⇒   implication             is also true; if A is false then
                            nothing is said about B.
                                                         x = 2 ⇒ x2 = 4 is true, but
                         → may mean the same as ⇒, or it 2
     implies; if .. then                                 x = 4 ⇒ x = 2 is in
→                        may have the meaning for
                         functions given below.
                                                         general false (since x could
                                                         be −2).
                        ⊃ may mean the same as ⇒, or it
⊃   propositional logic may have the meaning for
                        superset given below.


    material
    equivalence
⇔
                            A ⇔ B means A is true if B is
                                                                 x + 5 = y +2 ⇔ x + 3 = y
     if and only if; iff    true and A is false if B is false.

↔
    propositional logic


    logical negation
                            The statement ¬A is true if and
¬                           only if A is false.
                                                                 ¬(¬A) ⇔ A
            not
                            A slash placed through another       x ≠ y ⇔ ¬(x = y)

˜                           operator is the same as "¬"
                            placed in front.
    propositional logic


    logical
    conjunction or
    meet in a lattice

                            The statement A ∧ B is true if A     n < 4 ∧ n >2 ⇔ n = 3
∧           and             and B are both true; else it is
                            false.
                                                                 when n is a natural
                                                                 number.

          propositional
           logic, lattice
                  theory
logical disjunction
     or join in a lattice


                             The statement A ∨ B is true if A n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3
∨             or
                             or B (or both) are true; if both are when n is a natural
                             false, the statement is false.       number.

           propositional
            logic, lattice
                   theory


     exclusive or



⊕            xor
                             The statement A ⊕ B is true
                                                               (¬A) ⊕ A is always true, A
                             when either A or B, but not both,
                                                               ⊕ A is always false.
                             are true. A ⊻ B means the same.
           propositional
         logic, Boolean

⊻
                 algebra




     universal
     quantification



∀    for all; for any; for
              each
                           ∀ x: P(x) means P(x) is true for
                           all x.
                                                                 ∀ n ∈ N: n2 ≥ n.



         predicate logic


     existential
     quantification


∃        there exists
                             ∃ x: P(x) means there is at least
                             one x such that P(x) is true.
                                                                 ∃ n ∈ N: n is even.



         predicate logic


                             ∃! x: P(x) means there is exactly   ∃! n ∈ N: n + 5 = 2n.
∃!   uniqueness
quantification        one x such that P(x) is true.


         there exists
         exactly one


          predicate logic


      definition
:=                       x := y or x ≡ y means x is defined
                         to be another name for y (but      cosh x := (1/2)(exp x +
         is defined as   note that ≡ can also mean other    exp (−x))
 ≡                       things, such as congruence).
                                                            A XOR B :⇔
                         P :⇔ Q means P is defined to be (A ∨ B) ∧ ¬(A ∧ B)
              everywhere logically equivalent to Q.
:⇔

      set brackets


                            {a,b,c} means the set consisting
{,}      the set of ...
                            of a, b, and c.
                                                                N = {0,1,2,...}


          teori himpunan


      set builder
      notation
{:}                        {x : P(x)} means the set of all x
                                                                {n ∈ N : n2 < 20} =
       the set of ... such for which P(x) is true. {x | P(x)}
                                                                {0,1,2,3,4}
             that ...      is the same as {x : P(x)}.
{|}
          teori himpunan


      himpunan kosong
                            ∅ berarti himpunan yang tidak
                            memiliki elemen. {} juga berarti    {n ∈ N : 1 < n2 < 4} = ∅
                            hal yang sama.
∅     himpunan kosong
teori himpunan
{}

     set membership


∈    is an element of; is a ∈ S means a is an element of   (1/2)−1 ∈ N
      not an element of the set S; a ∉ S means a is not an
                          element of S.                    2−1 ∉ N
∉
      everywhere, teori
            himpunan


     subset
⊆                          A ⊆ B means every element of A
                           is also element of B.
        is a subset of                                      A ∩ B ⊆ A; Q ⊂ R
                           A ⊂ B means A ⊆ B but A ≠ B.
⊂
         teori himpunan


     superset
⊇                          A ⊇ B means every element of B
                           is also element of A.
       is a superset of                                     A ∪ B ⊇ B; R ⊃ Q
                           A ⊃ B means A ⊇ B but A ≠ B.
⊃
         teori himpunan


     set-theoretic union


                          A ∪ B means the set that contains
∪    the union of ... and
          ...; union
                          all the elements from A and also A ⊆ B ⇔ A ∪ B = B
                          all those from B, but no others.


         teori himpunan



∩    set-theoretic
     intersection
                           A ∩ B means the set that contains {x ∈ R : x2 = 1} ∩ N = {1}
                           all those elements that A and B
have in common.
         intersected with;
             intersect


            teori himpunan


        set-theoretic
        complement

                               A  B means the set that contains
                                                                   {1,2,3,4}  {3,4,5,6} =
         minus; without
                               all those elements of A that are
                               not in B.
                                                                   {1,2}


            teori himpunan


        function
        application

                               f(x) berarti nilai fungsi f pada    Jika f(x) := x2, maka f(3) =
                of             elemen x.                           32 = 9.



 ()         teori himpunan


        precedence
        grouping
                               Perform the operations inside the (8/4)/2 = 2/2 = 1, but
                               parentheses first.                8/(4/2) = 8/2 = 4.

                        umum


        function arrow


                               f: X → Y means the function f       Let f: Z → N be defined by
f:X→Y       from ... to
                               maps the set X into the set Y.      f(x) = x2.


            teori himpunan


        function               fog is the function, such that      if f(x) = 2x, and g(x) = x +
  o     composition            (fog)(x) = f(g(x)).                 3, then (fog)(x) = 2(x + 3).
composed with


       teori himpunan


    Bilangan asli



N           N
                        N berarti {0,1,2,3,...}, but see the
                        article on natural numbers for a     {|a| : a ∈ Z} = N
                        different convention.

             Bilangan
ℕ

    Bilangan bulat



Z           Z
                        Z berarti
                                                            {a : |a| ∈ N} = Z
                        {...,−3,−2,−1,0,1,2,3,...}.


             Bilangan
ℤ

    Bilangan rasional



Q           Q
                                                            3.14 ∈ Q
                        Q berarti {p/q : p,q ∈ Z, q ≠ 0}.
                                                            π∉Q

             Bilangan
ℚ

    Bilangan real
                                                            π∈R
                        R berarti {limn→∞ an : ∀ n ∈ N:
                        an ∈ Q, the limit exists}.
                                                            √(−1) ∉ R
            R
R
                    Bilangan


ℝ

        Bilangan
        kompleks


C                  C
                                 C means {a + bi : a,b ∈ R}.          i = √(−1) ∈ C




 ℂ                  Bilangan




        infinity

                                 ∞ is an element of the extended

∞              infinity
                                 number line that is greater than
                                 all real numbers; it often occurs
                                                                      limx→0 1/|x| = ∞
                                 in limits.

                       numbers


        pi


                                 π berarti perbandingan (rasio)       A = πr² adalah luas
 π                 pi
                                 antara keliling lingkaran dengan
                                 diameternya.
                                                                      lingkaran dengan jari-jari
                                                                      (radius) r

                   Euclidean
                   geometry


        norm
                                 ||x|| is the norm of the element x
|| ||                            of a normed vector space.
                                                                      ||x+y|| ≤ ||x|| + ||y||
        norm of; length of
linear algebra


    summation


                                                                   ∑k=14 k2 = 12 + 22 + 32 +
∑   sum over ... from
       ... to ... of
                      ∑k=1n ak means a1 + a2 + ... + an.
                                                                   42 = 1 + 4 + 9 + 16 = 30


              aritmatika


    product


                                                                   ∏k=14 (k + 2) = (1 + 2)(2 +
      product over ...
                            ∏k=1n ak means a1a2···an.              2)(3 + 2)(4 + 2) = 3 × 4 ×
      from ... to ... of
                                                                   5 × 6 = 360


              aritmatika

∏   Cartesian product


       the Cartesian
                            ∏i=0nYi means the set of all (n+1)-
      product of; the                                           ∏n=13R = Rn
                            tuples (y0,...,yn).
     direct product of


              set theory


    derivative


                            f '(x) is the derivative of the
        … prime;
'    derivative of …
                            function f at the point x, i.e., the
                            slope of the tangent there.
                                                                   If f(x) = x2, then f '(x) = 2x



                 kalkulus


    indefinite integral     ∫ f(x) dx means a function whose
∫   or antiderivative       derivative is f.
                                                                   ∫x2 dx = x3/3 + C
indefinite integral
        of …; the
     antiderivative of
            …


               kalkulus


    definite integral


                         ∫ b f(x) dx means the signed area
    integral from ... to a
                         between the x-axis and the graph
       ... of ... with                                     ∫0b x2 dx = b3/3;
                         of the function f between x = a
         respect to
                         and x = b.


               kalkulus


    gradient


                          ∇f (x1, …, xn) is the vector of
∇       del, nabla,
        gradient of
                          partial derivatives (df / dx1, …, df
                          / dxn).
                                                               If f (x,y,z) = 3xy + z² then
                                                               ∇f = (3y, 3x, 2z)


               kalkulus


    partial derivative

                        With f (x1, …, xn), ∂f/∂xi is the
     partial derivative derivative of f with respect to xi,    If f(x,y) = x2y, then ∂f/∂x =
             of         with all other variables kept          2xy
                        constant.

∂              kalkulus


    boundary
                                                               ∂{x : ||x|| ≤ 2} =
                          ∂M means the boundary of M
                                                               {x : || x || = 2}
       boundary of
topology


     perpendicular

                         x ⊥ y means x is perpendicular to
     is perpendicular to y; or more generally x is         If l⊥m and m⊥n then l || n.
                         orthogonal to y.

                 geometri

⊥    bottom element


         the bottom         x = ⊥ means x is the smallest
                                                               ∀x : x ∧ ⊥ = ⊥
           element          element.


           lattice theory


     entailment

                            A ⊧ B means the sentence A
                            entails the sentence B, that is
|=         entails
                            every model in which A is true, B
                                                              A ⊧ A ∨ ¬A
                            is also true.

           model theory


     inference


     infers or is derived
             from
|-                          x ⊢ y means y is derived from x.   A → B ⊢ ¬B → ¬A


          propositional
        logic, predicate
                   logic


     normal subgroup                                           Z(G) ◅ G
◅                           N ◅ G means that N is a normal
subgroup of group G.
       is a normal
       subgroup of


         group theory


    quotient group

                                                        {0, a, 2a, b, b+a, b+2a} /
                        G/H means the quotient of group
/         mod
                        G modulo its subgroup H.
                                                        {0, b} = {{0, b}, {a, b+a},
                                                        {2a, b+2a}}

         group theory


    isomorphism

                                                         Q / {1, −1} ≈ V,
                        G ≈ H means that group G is
≈    is isomorphic to
                        isomorphic to group H
                                                         where Q is the quaternion
                                                         group and V is the Klein
                                                         four-group.

         group theory

Simbol matematika dasar

  • 1.
    Simbol matematika dasar Nama Simbol Dibaca sebagai Penjelasan Contoh Kategori kesamaan x = y berarti x and y mewakili hal = sama dengan atau nilai yang sama. 1+1=2 umum Ketidaksamaan x ≠ y berarti x dan y tidak ≠ tidak sama dengan mewakili hal atau nilai yang sama. 1≠2 umum ketidaksamaan < x < y berarti x lebih kecil dari y. lebih kecil dari; 3<4 lebih besar dari 5>4 x > y means x lebih besar dari y. > order theory inequality x ≤ y berarti x lebih kecil dari ≤ atau sama dengan y. 3 ≤ 4 and 5 ≤ 5 5 ≥ 4 and 5 ≥ 5 lebih kecil dari x ≥ y berarti x lebih besar dari atau sama dengan, atau sama dengan y. lebih besar dari
  • 2.
    atau sama dengan order theory tambah 4 + 6 berarti jumlah antara 4 dan tambah 2+7=9 6. aritmatika + disjoint union A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒ the disjoint union A1 + A2 means the disjoint union A1 + A2 = {(1,1), (2,1), of … and … of sets A1 and A2. (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)} teori himpunan kurang kurang 9 − 4 berarti 9 dikurangi 4. 8−3=5 aritmatika − tanda negatif negatif −3 berarti negatif dari angka 3. −(−5) = 5 aritmatika set-theoretic A − B berarti himpunan yang {1,2,4} − {1,3,4} = {2} complement mempunyai semua anggota dari
  • 3.
    A yang tidakterdapat pada B. minus; without set theory multiplication kali 3 × 4 berarti perkalian 3 oleh 4. 7 × 8 = 56 aritmatika Cartesian product produk Cartesian ... dan ...; produk X × Y berarti himpunan semua langsung dari ... pasangan memerintahkan dengan {1,2} × {3,4} = × dan ... elemen pertama dari masing- {(1,3),(1,4),(2,3),(2,4)} masing pasangan dipilih dari X dan elemen kedua yang dipilih dari Y. teori himpunan cross product u × v means the cross product of (1,2,5) × (3,4,−1) = cross vectors u and v (−22, 16, − 2) vector algebra division ÷ 2 ÷ 4 = .5 bagi 6 ÷ 3 atau 6/3 berati 6 dibagi 3. 12/4 = 3 / aritmatika
  • 4.
    square root √x berarti bilangan positif yang akar kuadrat √4 = 2 kuadratnya x. bilangan real √ complex square root akar kuadrat if z = r exp(iφ) diwakili dalam kompleks; akar koordinat polar dengan -π < φ ≤ √(-1) = i kuadrat π, then √z = √r exp(iφ/2). Bilangan kompleks absolute value |x| means the distance in the real |3| = 3, |-5| = |5| || nilai mutlak dari line (or the complex plane) between x and zero. |i| = 1, |3+4i| = 5 numbers factorial ! faktorial n! adalah hasil dari 1×2×...×n. 4! = 1 × 2 × 3 × 4 = 24 combinatorics probability distribution X ~ D, means the random X ~ N(0,1), the standard ~ variable X has the probability distribution D. normal distribution has distribution
  • 5.
    statistika material A ⇒ B means if A is true then B ⇒ implication is also true; if A is false then nothing is said about B. x = 2 ⇒ x2 = 4 is true, but → may mean the same as ⇒, or it 2 implies; if .. then x = 4 ⇒ x = 2 is in → may have the meaning for functions given below. general false (since x could be −2). ⊃ may mean the same as ⇒, or it ⊃ propositional logic may have the meaning for superset given below. material equivalence ⇔ A ⇔ B means A is true if B is x + 5 = y +2 ⇔ x + 3 = y if and only if; iff true and A is false if B is false. ↔ propositional logic logical negation The statement ¬A is true if and ¬ only if A is false. ¬(¬A) ⇔ A not A slash placed through another x ≠ y ⇔ ¬(x = y) ˜ operator is the same as "¬" placed in front. propositional logic logical conjunction or meet in a lattice The statement A ∧ B is true if A n < 4 ∧ n >2 ⇔ n = 3 ∧ and and B are both true; else it is false. when n is a natural number. propositional logic, lattice theory
  • 6.
    logical disjunction or join in a lattice The statement A ∨ B is true if A n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 ∨ or or B (or both) are true; if both are when n is a natural false, the statement is false. number. propositional logic, lattice theory exclusive or ⊕ xor The statement A ⊕ B is true (¬A) ⊕ A is always true, A when either A or B, but not both, ⊕ A is always false. are true. A ⊻ B means the same. propositional logic, Boolean ⊻ algebra universal quantification ∀ for all; for any; for each ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ N: n2 ≥ n. predicate logic existential quantification ∃ there exists ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ N: n is even. predicate logic ∃! x: P(x) means there is exactly ∃! n ∈ N: n + 5 = 2n. ∃! uniqueness
  • 7.
    quantification one x such that P(x) is true. there exists exactly one predicate logic definition := x := y or x ≡ y means x is defined to be another name for y (but cosh x := (1/2)(exp x + is defined as note that ≡ can also mean other exp (−x)) ≡ things, such as congruence). A XOR B :⇔ P :⇔ Q means P is defined to be (A ∨ B) ∧ ¬(A ∧ B) everywhere logically equivalent to Q. :⇔ set brackets {a,b,c} means the set consisting {,} the set of ... of a, b, and c. N = {0,1,2,...} teori himpunan set builder notation {:} {x : P(x)} means the set of all x {n ∈ N : n2 < 20} = the set of ... such for which P(x) is true. {x | P(x)} {0,1,2,3,4} that ... is the same as {x : P(x)}. {|} teori himpunan himpunan kosong ∅ berarti himpunan yang tidak memiliki elemen. {} juga berarti {n ∈ N : 1 < n2 < 4} = ∅ hal yang sama. ∅ himpunan kosong
  • 8.
    teori himpunan {} set membership ∈ is an element of; is a ∈ S means a is an element of (1/2)−1 ∈ N not an element of the set S; a ∉ S means a is not an element of S. 2−1 ∉ N ∉ everywhere, teori himpunan subset ⊆ A ⊆ B means every element of A is also element of B. is a subset of A ∩ B ⊆ A; Q ⊂ R A ⊂ B means A ⊆ B but A ≠ B. ⊂ teori himpunan superset ⊇ A ⊇ B means every element of B is also element of A. is a superset of A ∪ B ⊇ B; R ⊃ Q A ⊃ B means A ⊇ B but A ≠ B. ⊃ teori himpunan set-theoretic union A ∪ B means the set that contains ∪ the union of ... and ...; union all the elements from A and also A ⊆ B ⇔ A ∪ B = B all those from B, but no others. teori himpunan ∩ set-theoretic intersection A ∩ B means the set that contains {x ∈ R : x2 = 1} ∩ N = {1} all those elements that A and B
  • 9.
    have in common. intersected with; intersect teori himpunan set-theoretic complement A B means the set that contains {1,2,3,4} {3,4,5,6} = minus; without all those elements of A that are not in B. {1,2} teori himpunan function application f(x) berarti nilai fungsi f pada Jika f(x) := x2, maka f(3) = of elemen x. 32 = 9. () teori himpunan precedence grouping Perform the operations inside the (8/4)/2 = 2/2 = 1, but parentheses first. 8/(4/2) = 8/2 = 4. umum function arrow f: X → Y means the function f Let f: Z → N be defined by f:X→Y from ... to maps the set X into the set Y. f(x) = x2. teori himpunan function fog is the function, such that if f(x) = 2x, and g(x) = x + o composition (fog)(x) = f(g(x)). 3, then (fog)(x) = 2(x + 3).
  • 10.
    composed with teori himpunan Bilangan asli N N N berarti {0,1,2,3,...}, but see the article on natural numbers for a {|a| : a ∈ Z} = N different convention. Bilangan ℕ Bilangan bulat Z Z Z berarti {a : |a| ∈ N} = Z {...,−3,−2,−1,0,1,2,3,...}. Bilangan ℤ Bilangan rasional Q Q 3.14 ∈ Q Q berarti {p/q : p,q ∈ Z, q ≠ 0}. π∉Q Bilangan ℚ Bilangan real π∈R R berarti {limn→∞ an : ∀ n ∈ N: an ∈ Q, the limit exists}. √(−1) ∉ R R
  • 11.
    R Bilangan ℝ Bilangan kompleks C C C means {a + bi : a,b ∈ R}. i = √(−1) ∈ C ℂ Bilangan infinity ∞ is an element of the extended ∞ infinity number line that is greater than all real numbers; it often occurs limx→0 1/|x| = ∞ in limits. numbers pi π berarti perbandingan (rasio) A = πr² adalah luas π pi antara keliling lingkaran dengan diameternya. lingkaran dengan jari-jari (radius) r Euclidean geometry norm ||x|| is the norm of the element x || || of a normed vector space. ||x+y|| ≤ ||x|| + ||y|| norm of; length of
  • 12.
    linear algebra summation ∑k=14 k2 = 12 + 22 + 32 + ∑ sum over ... from ... to ... of ∑k=1n ak means a1 + a2 + ... + an. 42 = 1 + 4 + 9 + 16 = 30 aritmatika product ∏k=14 (k + 2) = (1 + 2)(2 + product over ... ∏k=1n ak means a1a2···an. 2)(3 + 2)(4 + 2) = 3 × 4 × from ... to ... of 5 × 6 = 360 aritmatika ∏ Cartesian product the Cartesian ∏i=0nYi means the set of all (n+1)- product of; the ∏n=13R = Rn tuples (y0,...,yn). direct product of set theory derivative f '(x) is the derivative of the … prime; ' derivative of … function f at the point x, i.e., the slope of the tangent there. If f(x) = x2, then f '(x) = 2x kalkulus indefinite integral ∫ f(x) dx means a function whose ∫ or antiderivative derivative is f. ∫x2 dx = x3/3 + C
  • 13.
    indefinite integral of …; the antiderivative of … kalkulus definite integral ∫ b f(x) dx means the signed area integral from ... to a between the x-axis and the graph ... of ... with ∫0b x2 dx = b3/3; of the function f between x = a respect to and x = b. kalkulus gradient ∇f (x1, …, xn) is the vector of ∇ del, nabla, gradient of partial derivatives (df / dx1, …, df / dxn). If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z) kalkulus partial derivative With f (x1, …, xn), ∂f/∂xi is the partial derivative derivative of f with respect to xi, If f(x,y) = x2y, then ∂f/∂x = of with all other variables kept 2xy constant. ∂ kalkulus boundary ∂{x : ||x|| ≤ 2} = ∂M means the boundary of M {x : || x || = 2} boundary of
  • 14.
    topology perpendicular x ⊥ y means x is perpendicular to is perpendicular to y; or more generally x is If l⊥m and m⊥n then l || n. orthogonal to y. geometri ⊥ bottom element the bottom x = ⊥ means x is the smallest ∀x : x ∧ ⊥ = ⊥ element element. lattice theory entailment A ⊧ B means the sentence A entails the sentence B, that is |= entails every model in which A is true, B A ⊧ A ∨ ¬A is also true. model theory inference infers or is derived from |- x ⊢ y means y is derived from x. A → B ⊢ ¬B → ¬A propositional logic, predicate logic normal subgroup Z(G) ◅ G ◅ N ◅ G means that N is a normal
  • 15.
    subgroup of groupG. is a normal subgroup of group theory quotient group {0, a, 2a, b, b+a, b+2a} / G/H means the quotient of group / mod G modulo its subgroup H. {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}} group theory isomorphism Q / {1, −1} ≈ V, G ≈ H means that group G is ≈ is isomorphic to isomorphic to group H where Q is the quaternion group and V is the Klein four-group. group theory