SlideShare a Scribd company logo
1 of 2
           The gap between the top of the valence band and bottom of the conduction band is called the energy band gap (Energy gap Eg). It may be large, small, or zero, depending upon the material.<br />Case I: One can have a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band. This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.<br />      CB<br />          CB<br />VB          VB                                                                                                                  Overlap<br /> <br />Case II:  In this case, as shown in Fig. A large band gap Eg exists (Eg > 3 eV). There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.<br /> <br /> CB<br /> <br /> Eg(>3 eV)<br /> <br />          VB<br />Case III: This situation is shown in Fig.  Here a finite but small band gap (Eg < 3 eV) exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.<br /> CB<br />  Eg(<3 eV)<br /> VB<br />Semiconductors<br />Based on the purity, semiconductors are classified into two types,<br />1. Intrinsic semiconductor and<br />2. Extrinsic semiconductor.<br />Intrinsic semiconductor<br />A semiconductor which is pure and contains no impurity is known as an intrinsic semiconductor. Example: pure germanium (Ge) and silicon (Si).<br /> Each Si and Ge atom is surrounded by four nearest neighbours. We know that Si and Ge have four valence electrons. In its crystalline structure, every Si or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms, and also to take share of one electron from each such neighbour. These shared electrons pairs are referred to as forming a covalent bond.<br />Fig. Intrinsic semiconductor<br />As the temperature increases, more thermal energy becomes available to these electrons and some of these electrons may break–away (becoming free electrons contributing to conduction). The thermal energy effectively ionizes only a few atoms in the crystalline lattice and creates a vacancy in the bond.  <br />The neighbourhood, from which the free electron (with charge –q) has come out leaves a vacancy with an effective charge (+q). This vacancy with the effective positive electronic charge is called a hole. The hole behaves as an apparent free particle with effective positive charge.<br />An intrinsic semiconductor will behave like an insulator at T = 0 K as shown in Fig. It is the thermal energy at higher temperatures (T > 0K), which excites some electrons from the valence band to the conduction band. These thermally excited electrons at T > 0 K, partially occupy the conduction band. Therefore, the energy-band diagram of an intrinsic semiconductor will be as shown in Fig. Here, some electrons are shown in the conduction band. These have come from the valence band leaving equal number of holes there.<br />In intrinsic semiconductors, the number of free electrons, ne is equal to the number of holes, nh. That is ne = nh = ni<br />Where ni is called intrinsic carrier concentration.<br />
Semi conductors

More Related Content

What's hot

Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devicesAbha Agrawal
 
semiconductor - description and application
semiconductor - description and applicationsemiconductor - description and application
semiconductor - description and applicationBishnupadaSarkar2
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidRai University
 
Solids, Conductors, Insulators & Semiconductors
 Solids, Conductors, Insulators & Semiconductors Solids, Conductors, Insulators & Semiconductors
Solids, Conductors, Insulators & SemiconductorsKamalKhan822
 
Introduction to semiconductor materials
Introduction to semiconductor materialsIntroduction to semiconductor materials
Introduction to semiconductor materialsDr. Ghanshyam Singh
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics ruwaghmare
 
EDC ( P-type & N-type )
EDC ( P-type & N-type )EDC ( P-type & N-type )
EDC ( P-type & N-type )Pritam Shil
 
Semiconductor Diodes Engineering Circuit Analysis
Semiconductor Diodes Engineering Circuit AnalysisSemiconductor Diodes Engineering Circuit Analysis
Semiconductor Diodes Engineering Circuit AnalysisUMAR ALI
 
Introduction to semiconductor devices
Introduction to semiconductor devicesIntroduction to semiconductor devices
Introduction to semiconductor devicesshiva Reddy
 
Chapter 4: Introduction to Semiconductors
Chapter 4: Introduction to SemiconductorsChapter 4: Introduction to Semiconductors
Chapter 4: Introduction to SemiconductorsJeremyLauKarHei
 

What's hot (20)

Semiconductor physics
Semiconductor physicsSemiconductor physics
Semiconductor physics
 
Semiconductor devices
Semiconductor devicesSemiconductor devices
Semiconductor devices
 
semiconductor - description and application
semiconductor - description and applicationsemiconductor - description and application
semiconductor - description and application
 
Phy 4240 lec (7)
Phy 4240 lec (7)Phy 4240 lec (7)
Phy 4240 lec (7)
 
Unit 2 semiconductors
Unit 2  semiconductors Unit 2  semiconductors
Unit 2 semiconductors
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
 
Solids, Conductors, Insulators & Semiconductors
 Solids, Conductors, Insulators & Semiconductors Solids, Conductors, Insulators & Semiconductors
Solids, Conductors, Insulators & Semiconductors
 
Introduction to semiconductor materials
Introduction to semiconductor materialsIntroduction to semiconductor materials
Introduction to semiconductor materials
 
Solid state electronics
Solid state electronicsSolid state electronics
Solid state electronics
 
Energy bands insolids
Energy bands insolidsEnergy bands insolids
Energy bands insolids
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics
 
EDC ( P-type & N-type )
EDC ( P-type & N-type )EDC ( P-type & N-type )
EDC ( P-type & N-type )
 
Introduction to semiconductors
Introduction to  semiconductorsIntroduction to  semiconductors
Introduction to semiconductors
 
Semiconductor Diodes Engineering Circuit Analysis
Semiconductor Diodes Engineering Circuit AnalysisSemiconductor Diodes Engineering Circuit Analysis
Semiconductor Diodes Engineering Circuit Analysis
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
Introduction to semiconductor devices
Introduction to semiconductor devicesIntroduction to semiconductor devices
Introduction to semiconductor devices
 
Chapter 4: Introduction to Semiconductors
Chapter 4: Introduction to SemiconductorsChapter 4: Introduction to Semiconductors
Chapter 4: Introduction to Semiconductors
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 

Viewers also liked (20)

Analysis of ship management for better practices
Analysis of ship management for better practicesAnalysis of ship management for better practices
Analysis of ship management for better practices
 
Semi conductors
Semi conductorsSemi conductors
Semi conductors
 
Shipmanagement System Selection Process
Shipmanagement System Selection ProcessShipmanagement System Selection Process
Shipmanagement System Selection Process
 
Ss for b,ed
Ss for b,edSs for b,ed
Ss for b,ed
 
ISPS REVIVE
ISPS REVIVEISPS REVIVE
ISPS REVIVE
 
17th Edition Part 4 3
17th  Edition  Part 4 317th  Edition  Part 4 3
17th Edition Part 4 3
 
pn junction diodes
pn junction diodespn junction diodes
pn junction diodes
 
Transistor
TransistorTransistor
Transistor
 
Ship dry docking
Ship dry dockingShip dry docking
Ship dry docking
 
Auxiliary machinery
Auxiliary machineryAuxiliary machinery
Auxiliary machinery
 
Ship Organization
Ship OrganizationShip Organization
Ship Organization
 
ISM Code
ISM CodeISM Code
ISM Code
 
Light-emitting diodes
Light-emitting diodes Light-emitting diodes
Light-emitting diodes
 
Ship survey presentation
Ship survey presentationShip survey presentation
Ship survey presentation
 
2 classification societies
2 classification societies2 classification societies
2 classification societies
 
Pipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine UsePipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine Use
 
Zener diodes
Zener diodesZener diodes
Zener diodes
 
Parts of a Ship Engine
Parts of a Ship Engine Parts of a Ship Engine
Parts of a Ship Engine
 
Edc(electronics devices and circuits)
Edc(electronics devices and circuits)Edc(electronics devices and circuits)
Edc(electronics devices and circuits)
 
Diodes
DiodesDiodes
Diodes
 

Similar to Semi conductors

ENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptBiswajeetMishra21
 
Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Rawat DA Greatt
 
semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....amruthatk3
 
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidDiploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidRai University
 
semiconductor-physics-3.pdf. Semiconductor
semiconductor-physics-3.pdf.  Semiconductorsemiconductor-physics-3.pdf.  Semiconductor
semiconductor-physics-3.pdf. SemiconductorMinaNath2
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.pptkasthuri73
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptsauravnair2003
 
Topic energy band gap material science ppt
Topic  energy band gap material science pptTopic  energy band gap material science ppt
Topic energy band gap material science pptSubhashYadav144
 
Unit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsUnit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsFarhat Ansari
 
Module 1 Semiconductors (1).pptx
Module 1  Semiconductors (1).pptxModule 1  Semiconductors (1).pptx
Module 1 Semiconductors (1).pptxPriyaSharma135745
 
UNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxUNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxDHARUNESHBOOPATHY
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физикJkl L
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solidsutpal sarkar
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorjayamartha
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorjayamartha
 
Fisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductorFisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductorjayamartha
 

Similar to Semi conductors (20)

ENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSpptENERGY BANDS AND EFFECTIVE MASSppt
ENERGY BANDS AND EFFECTIVE MASSppt
 
Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)Semiconductors (rawat d agreatt)
Semiconductors (rawat d agreatt)
 
semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....semiconductor and hall effect.pptx chemistry .....
semiconductor and hall effect.pptx chemistry .....
 
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solidDiploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
Diploma sem 2 applied science physics-unit 3-chap-1 band theory of solid
 
semiconductor-physics-3.pdf. Semiconductor
semiconductor-physics-3.pdf.  Semiconductorsemiconductor-physics-3.pdf.  Semiconductor
semiconductor-physics-3.pdf. Semiconductor
 
semo conductor.ppt
semo conductor.pptsemo conductor.ppt
semo conductor.ppt
 
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.pptTRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
TRM-11fhsdbjbfffffffffffffffffffffffffffffffffffffff.ppt
 
Topic energy band gap material science ppt
Topic  energy band gap material science pptTopic  energy band gap material science ppt
Topic energy band gap material science ppt
 
Unit1.2 Band Theory of Solids
Unit1.2 Band Theory of SolidsUnit1.2 Band Theory of Solids
Unit1.2 Band Theory of Solids
 
Module 1 Semiconductors (1).pptx
Module 1  Semiconductors (1).pptxModule 1  Semiconductors (1).pptx
Module 1 Semiconductors (1).pptx
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
UNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptxUNIT 3 Analog Electronics.pptx
UNIT 3 Analog Electronics.pptx
 
хагас дамжуулагчийн физик
хагас дамжуулагчийн физикхагас дамжуулагчийн физик
хагас дамжуулагчийн физик
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductor
 
Fisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductorFisika Modern 15 molecules andsolid_semiconductor
Fisika Modern 15 molecules andsolid_semiconductor
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
Presentation1.pdf
Presentation1.pdfPresentation1.pdf
Presentation1.pdf
 
Fisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductorFisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductor
 

More from sunmo

Temple
TempleTemple
Templesunmo
 
Unit II
Unit IIUnit II
Unit IIsunmo
 
Unit i
Unit i Unit i
Unit i sunmo
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSsunmo
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSsunmo
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elementssunmo
 

More from sunmo (6)

Temple
TempleTemple
Temple
 
Unit II
Unit IIUnit II
Unit II
 
Unit i
Unit i Unit i
Unit i
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICS
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elements
 

Recently uploaded

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Recently uploaded (20)

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

Semi conductors

  • 1. The gap between the top of the valence band and bottom of the conduction band is called the energy band gap (Energy gap Eg). It may be large, small, or zero, depending upon the material.<br />Case I: One can have a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band. This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.<br /> CB<br /> CB<br />VB VB Overlap<br /> <br />Case II: In this case, as shown in Fig. A large band gap Eg exists (Eg > 3 eV). There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.<br /> <br /> CB<br /> <br /> Eg(>3 eV)<br /> <br /> VB<br />Case III: This situation is shown in Fig. Here a finite but small band gap (Eg < 3 eV) exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.<br /> CB<br /> Eg(<3 eV)<br /> VB<br />Semiconductors<br />Based on the purity, semiconductors are classified into two types,<br />1. Intrinsic semiconductor and<br />2. Extrinsic semiconductor.<br />Intrinsic semiconductor<br />A semiconductor which is pure and contains no impurity is known as an intrinsic semiconductor. Example: pure germanium (Ge) and silicon (Si).<br /> Each Si and Ge atom is surrounded by four nearest neighbours. We know that Si and Ge have four valence electrons. In its crystalline structure, every Si or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms, and also to take share of one electron from each such neighbour. These shared electrons pairs are referred to as forming a covalent bond.<br />Fig. Intrinsic semiconductor<br />As the temperature increases, more thermal energy becomes available to these electrons and some of these electrons may break–away (becoming free electrons contributing to conduction). The thermal energy effectively ionizes only a few atoms in the crystalline lattice and creates a vacancy in the bond. <br />The neighbourhood, from which the free electron (with charge –q) has come out leaves a vacancy with an effective charge (+q). This vacancy with the effective positive electronic charge is called a hole. The hole behaves as an apparent free particle with effective positive charge.<br />An intrinsic semiconductor will behave like an insulator at T = 0 K as shown in Fig. It is the thermal energy at higher temperatures (T > 0K), which excites some electrons from the valence band to the conduction band. These thermally excited electrons at T > 0 K, partially occupy the conduction band. Therefore, the energy-band diagram of an intrinsic semiconductor will be as shown in Fig. Here, some electrons are shown in the conduction band. These have come from the valence band leaving equal number of holes there.<br />In intrinsic semiconductors, the number of free electrons, ne is equal to the number of holes, nh. That is ne = nh = ni<br />Where ni is called intrinsic carrier concentration.<br />