SlideShare a Scribd company logo
1 of 10
Download to read offline
Mathematics – I ( MA 2111 )

                                   Unit I : MATRICES

                                           Part – A
                                                                            A
1. If λ is an eigen value of a non singular matrix A, Show that                 is an eigen
                                                                            λ
   value of adj A.
               Let λ be an eigen value of A and X be the corresponding eigen vector.
               Then, AX = λ X .
                               1
               By property,        is an eigen value of A-1.
                               λ
               We have adj A= A-1      A
               ∴ Eigen value of adj A = Eigen value of A-1     A
                                            1             A
                                      =         A =  .
                                       λ           λ
 2. Let λ be an eigen value of a singular matrix A with the eigen vector X. Show
                                       –1
       that 1/ λ is an eigen value of A with eigen vector X.
   Proof: Let λ be an eigen value and X be an eigen vector of A.
              ∴ (A – λ I) x = 0 ⇒ A x – λ I x = 0
              ∴ A x = λ I x ⇒ AX = λ X
                                     –1
      Premultiplying both sides by A
                        –1          –1              –1           –1
                      A (AX) = A ( λ X) ⇒ (A A) X = λ (A X)
                                                 –1
                                       IX = λ (A X)
                                                –1            –1
                                       X = λ (A X) ⇒ λ (A X) = X
                                           –1
                                       ∴ A X = X/ λ
                                                –1
              Hence, 1/ λ is an eigen value of A .

                                                                                             3
3. If λ 1 , λ 2, λ 3,…, λ n,are the eigen values of an n x n matrix A, then show that λ 1 ,
          3     3        3                            3
        λ 2 , λ 3 ,…, λ n are the eigen values of A .
                Let λ be an eigen value of A and X be the corresponding eigen vector.
                Then, AX = λ X                                ( λ = λ 1, λ 2, λ 3, … λ n)
               ∴A2 X = (AA) X
                       = A (AX)
                                                         2
                       = A ( λ X) = λ (AX) = λ ( λ X) = λ X
                           3       3
               Similarly, A X = λ X
                     3                      3
               ∴ λ is an eigen value of A
                                                                       2 −3
4. Find the sum and product of the eigen values of the matrix       
                                                               4 −2 
       The sum of the eigen values = Sum of the diagonal elements = 2 - 2 = 0
       The product of the eigen values = Determinant value of the matrix = 2(-2) + 12 = 8.

                                                8 −6 2 
5. If 3 and 15 are the two eigen values of A = − 6 7 − 4 , find A , without
                                                        
                                                2 −4 3 
                                                        
expanding the determinant.
         Let λ 1 = 3, λ 2 = 15.
         Sum of the eigen values = trace of A. i.e., λ 1 + λ 2 + λ3 = 8 + 7 + 3
         ⇒ 3 + 15 + λ3 = 18.
         ⇒ λ3 = 0.
         ⇒ A = 0. (since product of the eigen values = A )
                                                                2 0 1
                                                                         
6. Find the sum and product of the eigen values of the matrix  0 2 0 
                                                                 1 0 2
                                                                         
        The sum of the eigen values = Sum of the diagonal elements = 2 + 2 + 2 = 8

         The product of the eigen values
                                                      2 0 1
                 = Determinant values of the matrix = 0 2 0 = 2(4 – 0) – 0 (0 – 0) + 1 (0 –
                                                           1 0 2
         2) = 8 – 2 = 6
                                   1 3
7. Find the eigen values of     .
                             2 1
         The characteristic equation of A is given by A − λI = 0.
                  1-λ      3
             i.e.,             = 0 ⇒ (1- λ) (1- λ) – 6 = 0.
                    2 1-λ
                 ⇒ λ2 – 2λ – 5 = 0.
                         2 ± 4 + 20
                 ⇒ λ=                = 1 ± √6.
                              2
                 ∴ The eigen values of A are 1 + √6 and 1 - √6.

                                4    6   6
8. Two eigen values of A =     1    3   2  are equal and they are double the
                                            
                                − 1 − 5 − 2
                                           
third.
   Find the eigen values of A2 and A-1.

         Let the third eigen value be λ3 = λ.
         Given that two eigen values are equal and they are double the third i.e., λ1 = λ2 =
2λ.
         Sum of the eigen values = trace of A.
         ∴2λ + 2λ + λ = 4 + 3 - 2 = 5.
         ⇒ 5 λ = 5 i.e., λ =1.
         ∴ Eigen values of A are 2, 2, 1.
                                                                                    1     1
         Hence the eigen values of A2 are 4, 4, 1 and the eigen values of A-1 are     ,
                                                                                    2     2
and 1.
 2 5 −1
9. Find the eigen values of A if the matrix A is  0 3 2 
                                –1
                                                              
                                                     0 0 4 
                                                              
                                                                                         –1
        If λ 1 , λ 2, λ 3 are the eigen values of A then the eigen values of the matrix A are
          1 1 1
            ,    ,    .
         λ1 λ 2 λ3
        First we have to find the eigen values of A.
        Since the given matrix is a triangular matrix the eigen values of A are the diagonal
        elements 2, 3, 4.
                                  –1    1 1 1
        ∴The eigen values of A are , , .
                                        2 3 4


                                                    a 4 
10. Find the constants a and b such that the matrix      has 3 and -2 as its eigen
                                                    1 b 
values.
                   a 4 
          Let A =       
                   1 b 
          Since sum of the eigen values = sum of the diagonal matrix,
          a+b=3–2=1               ….. (1)
          Since product of eigen values is determinant value of matrix,
          ab – 4 = 3 (–2) = – 6
          ∴ ab = –2 …………. (2)
          solving (1) and (2), we get the values of a and b
          ∴a=1–b
          (2) ⇒ (1 – b) b = –2
          b2 – b – 2 = 0
          b = – 1, b = 2
          ∴ (1) ⇒ a + b = 1 ⇒ a + 2 = 1 ⇒ a = – 1
          ∴ a = –1, b = 2


       1                             1 4
11. If   is an eigen vector of
                                      3 2  , find the corresponding eigen – value.
                                            
       1                                  
                                                                                         1
          Let    λ be an eigen value corresponding to the eigen vector X =   .
                                                                           1
                                                                                          
                                      1 4  1    1
          Then AX = λX implies   3 2  1 = λ
                                                  
                                                    1
                                                 
          ⇒ 1 + 4 = λ and 3 + 2 = 5.
          ∴ λ = 5.

                                                                1 1 3
12. If X = ( −1 0 1)   T is the eigen vector of the matrix A =  1 5 1  find the
                                                                      
                                                               3 1 1
                                                                      
    corresponding eigen value.
0
                                                                    
       The eigen vector of the matrix A is given by ( A − λI ) X =  0 
                                                                   0
                                                                    
                 1 1 3               -1
                                     
       Here A =  1 5 1  and X =  0 
                  3 1 1             1
                                     
                          1 − λ  1        3 
                                            
               A – λI =  1      5−λ       1 
                           3     1          
                                         1− λ
                          
                   1 − λ     1    3   -1      0
                                               
               ∴ 1         5−λ    1   0  = 0
                    3        1  1− λ  1 
                                                0
                                                 
              (1 – λ)(–1) + 1 (0) + 3 (1) = 0 ⇒ – 1 + λ + 0 + 3 = 0 ⇒ λ + 2 = 0
       ∴λ = – 2 is the corresponding eigen value.

                                                       6 −2 2 
                                                                 
13. The product of two eigen values of the matrix A =  −2 3 −1 is 16. Find the third
                                                       2 −1 3 
                                                                 
    eigen value.
                                          6 −2 2
        The product of all eigen values = −2 3 −1 = 6(9 – 1) + 2(–6 + 2) +2(2 – 6) =32
                                            2   −1   3
       Product of two eigen values = 16
       The third eigen value = 32 / 16 =2
                                       2 2 1
                                              
14. Two eigen values of the matrix A =  1 3 1  are equal to 1 each. Find the
                                       1 2 2
                                              
                     -1
    eigen values of A .
       Sum of the eigen values = 2 + 3 + 2 = 7 ( Sum of the diagonal elements)
       Sum of two given eigen values = 1 + 1 = 2
       ∴The 3rd eigen value = 7 – 2 = 5
       The eigen values of A are 1, 1, 5
                              –1
       ∴The eigen value of A are 1, 1, 1/5.

                                           1 1 
15. If the Eigen values of the matrix A =       are 2 and -2, find the eigen values of
                                           3 −1
 T
A .
                                            T
         Eigenvalues of A = Eigenvalues of A
                            T
         ∴Eigenvalues of A are 2, –2.

                                         1 2 3 
                               3                 
16. Find the Eigen values of A given A =  0 2 −7 
                                         0 0 3 
                                                 
1 2 3 
                               
       Given A =  0 2 −7 
                    0 0 3 
                               
        Given A is an upper triangular matrix
       Hence the eigen values are 1, 2, 3
       i.e., the eigen values of the given matrix A are 1, 2, 3.
       By the property, the eigenvalues of the matrix A3 are 13, 23, 33.

                                                            3 −1
17. Verify Cayley-Hamilton theorem for the matrix A =            
                                                            −1 5 
                      3 − λ −1
       | A − λI | =
                       −1 5 − λ
                                           2
                 = (3 – λ )(5 – λ ) – 1 = λ – 8 λ + 14
                                                     2
       The characteristic equation is |A – λ I| = λ – 8 λ + 14 = 0
                                                   2
       By Cayley-Hamilton theorem, we have A – 8 A + 14 I = 0
              3 −1  3 −1  10 −8 
       A2 =                   =           
              −1 5   −1 5   −8 26 
        2                10 −8      3 −1        1 0 0 0
       A – 8 A + 14 I =         − 8        + 14    =   
                         −8 26      −1 5        0 1 0 0
       Hence Cayley Hamilton theorem is verified.

                                                      1 4
18. Using Cayley-Hamilton theorem find the inverse of    
                                                      2 3
                1 4
        Let A =    
                2 3
                     1− λ  4
       | A − λI |=
                      2   3−λ
           2
       = λ – 4λ – 5
                                     2
       By Cayley Hamilton theorem, A – 4A – 5I = 0
                       –1   –1 2       –1         –1
       Multiplying by A , A A – 4A A – 5A I = 0
                       ⇒ A – 4I – 5A–1 = 0
                         –1
                      5A = A – 4I
                              1 4       1 0      1 4   4 0   −3 4 
                            =       - 4  0 1  =  2 3  -  0 4  =  2 −1
                              2 3                                    
                        1     1  −3 4 
                   ∴ A– =
                              5  2 −1
                                       
           1 0 
19. If A =       , express A3 in terms of A and I using Cayley-Hamilton theorem.
            4 5
                
        The Cha. Equation of the given matrix is A - λI = 0
                1 0       1 0              1-λ  0
       (i.e.,)        -λ        =0 ⇒               =0
                4 5      0 1                4  5−λ
                (1 – λ)(5 – λ) – 0 = 0
                (1 – λ)(5 – λ)     =0
5 – λ – 5λ + λ2 = 0
                 λ2 – 6λ + 5      =0
       By Cayley Hamilton theorem
       [Every square matrix A satisfies its own cha. equation]
       (i.e.,) A2 – 6A + 5I = 0, A2 = 6A – 5I
       multiply A on both sides
                A3 – 6A2 + 5A = 0
                        A3 = 6A2 – 5A
                            = 6 [6A – 5I] – 5A
                            = 36A – 30I – 5A
                            = 31A – 30I

                                                     1 4             5    4    3
20. Use Cayley – Hamilton theorem for the matrix A =     to express A – 4A – 7A
                                                     2 3
+
        2
    11A – A – 10I as a linear polynomial in A.
                  1 4
        Given A =     
                  2 3
       The characteristic equation of A is A - λI = 0
       i.e., λ2 – S1 λ + S2 = 0 where
       S1 = sum of the main diagonal elements = 1 + 3 = 4
                     1 4
       S2 = A =             =3–8=–5
                     2 3
       ∴ The characteristic equation of A is λ2 – 4λ – 5 = 0
       By Cayley – Hamilton theorem, we get
                 A2 – 4A – 5I = 0            ……….. (1)


       To find : A5 – 4A4 – 7A3 + 11A2 – A – 10I
              ∴ A5 – 4A4 – 7A3 + 11A2 – A – 10I
              = (A2 – 4A – 5I)(A3 – 2A + 3I) + A + 5I
              = 0 + A + 5I = A + 5I by (1)
              which is a linear polynomial in A.
                                              –1
21. If A is an orthogonal matrix show that A is also orthogonal.
        For an orthogonal matrix, transpose will be the inverse
             T       –1
        ∴A =A               … (1)
               T      –1
        Let A = A = B              … (2)
                 T       –1 T     T –1   –1
        Then B = (A ) =(A ) = B from (2)
             T      –1
        ∴ B = B ⇒ matrix B is orthogonal
                         –1
                  i.e., A is also orthogonal.
                  Hence proved.

22. If A is an orthogonal matrix prove that | A | = ±1
    Proof: Let A be the orthogonal matrix. Let λ be an eigen value.
        By defn. of orthogonal matrix, AA′ = A′A = I.
        Also AX = λ X … (1) where x is eigen vector.
        Taking transpose on both sides.
                 (AX) ′ = ( λ X) ′
                  X′A′ = λ X′ ….(2)                   since [AB] ′ = B′A′
Multiplying (2) and (1)
        (X′A′)(AX) = ( λ X′)( λ X)
        X′ (A′A) X = λ 2 (X′X)
        X′IX          = λ 2 (X′X)
        X′X           = λ 2 (X′X)
                    2
        (X′X) – λ (X′X) = 0
        (X′X) (1 – λ 2) = 0
               ∴1 – λ 2 = 0                              [X′X ≠ 0]
            λ 2 = 1;          λ = ±1        Hence the proof.

23. Determine the nature of the following quadratic form f(x1, x2, x3)= x12 + 2x22
        Here λ 1 = 1, λ 2 = 2, λ 3 = 0. Two of the eigen values are positive.
                ∴The quadratic form is semi positive definite.
                                                 2           2
24. Find the nature of the quadratic form 8x – 4xy + 5y .
        The matrix corresponding to the quadratic form
                                    8 −2 
                8x2 – 4xy + 5y2 is         
                                    −2 5 
        The eigen values are given by
                 8-λ − 2
                              = 0 ⇒ (8 – λ )(5 – λ ) – 4 = 0 ⇒ 40 – 8 λ – 8 λ + λ 2 – 4 = 0
                 −2 5-λ
               λ 2 – 13 λ + 36 = 0       ⇒ ( λ – 9)( λ – 4) = 0
        ∴ λ = 9, λ = 4
        ∴The nature of the quadratic is positive definite.

25. Find the matrix form for the quadratic form x12 + 2x1x2 + 6x22.

                                                1 1 
        The matrix of the Quadratic form is A =     .
                                                1 6 

                                               a b
26. Find the condition for a real matrix 
                                                   to be positive definite.
                                                   
                                               b c
                              a b
        Here D1= a , D2 =         where D1 and D2 are the principal subdeterminants of the
                              b c
        given matrix. For the matrix to be positive definite, a > 0 and ac - b2 >0
        i.e., ac > b2.

27. If A is the symmetric matrix corresponding to a quadratic form in three
    variables such that trace (A) = 0, find the nature of the quadratic form.
        We have, sum of the eigen values = trace (A) = 0.
        ⇒ λ 1+ λ 2+ λ 3 = 0.
        ⇒ λ 1, λ 2, λ 3 cannot be all positive or negative. Atleast one positive or one
        negative. Therefore the nature of the quadratic form is indefinite.

                                             6 1 − 7
                                                    
28. Write the quadratic form for the matrix  1 2 0  .
                                            − 7 0 1 
                                                    
x
                                         T             
       The Quadratic form is given by X AX, where X =  y  .
                                                      z
                                                       
                             6 1 − 7  x 
              T
                                      
       Now X AX = ( x y z )  1 2 0   y 
                            − 7 0 1   z 
                                           
                                     
                  = 6x2 + 2y2 + z2 + 2xy -14xz.

29. Find the nature of the quadratic form 2x2 + 3y2 + 2z2 + 2xy
                                                2 1 0
                                                      
       The matrix of the Quadratic form is A =  1 3 0 
                                                0 0 2
                                                      
       D1 = 2, D2 = 6 – 1 =5, D3 = 12 – 2 =10.
       D1> 0 , D2 >0 , D3>0.
       ∴The nature of the quadratic form is positive definite.

                             ----------------------------------

                             ASSIGNMENT QUESTIONS

                                                      2 2 1
                                                             
   1. Find the eigen values and eigen vectors of A =  1 3 1  .
                                                      1 2 2
                                                             
                                                        (8 marks) (May ’09)(May
   ’09)

                                                                 4 1 1
                                                                         
   2. Find the eigen values and the eigen vectors of the matrix  1 4 1 
                                                                 1 1 4
                                                                         
                                                                   (8 marks) (May
   ’09)
  3. Find the eigen values and corresponding eigen vectors of the matrix
   1 1 3
          
  1 5 1 .
   3 1 1
          
                                                             (8 marks)(May/June
  2009)

                                                                     11 −4 −7 
                                                                               
   4. Find all the eigen values and eigen vectors of the matrix A =  7 −2 −5 
                                                                    10 −4 −6 
                                                                               
                                                               (8 marks)(May/June
   2007)
 2 0 −1
                                                                
  5. Verify Cayley Hamilton theorem for the matrix A =  0 2 0  and hence
                                                        −1 0 2 
                                                                
  find
       A-1 and A4 .                            (8 marks) (May ’09&Nov/Dec
  2008)


                                                                   2 −1 
   6. Using Cayley-Hamilton theorem find A-1 and A3 + A6 , if A =       .
                                                                   5 −2 
                                                               (8 marks) (May
   ’09)


   7. Using Cayley-Hamilton theorem evaluate the matrix A8- 5A7 + 7A6 - 3A5 + A4 –
                                2 1 1
           3     2                    
       5A - 8A + 2A –I if A =  0 1 0              (6 marks) (May ’06) (May
                                1 1 2
                                      
   2009)
                                                                2 −1 1 
                                               5                           
   8. Verify Cayley-Hamilton theorem and find A for the matrix  −1 2 −1
                                                                1 −1 2 
                                                                           
                                                           (8 marks)(May/June
2009)
               1 0 0
                     
   9. If A =  1 0 1  . Then show that An = An-2+A2-I for n ≥ 3 using
               0 1 0
                     
      Cayley-Hamilton theorem.                           (6 marks)(Jan 2006)


                                                2 1 1
                                                      
   10. Find the characteristic equation of A =  0 1 0  and hence express the
                                                1 1 2
                                                      
       matrix
         A5 in terms of A2, A and I.                       (6 marks ) (April/May
   2005)
 2 1 −1 
                                           
   11. Diagonalise the matrix A =  1 1 −2  by means of orthogonal
                                   −1 −2 1 
                                           
       transformation.
                                                   (12 marks) (May ’09)

                        6 −2 2 
                               
   12. Diagonalize A =  −2 3 −1 by an orthogonal transformation.
                        2 −1 3 
                               
                                                       (10 marks)(Jan 2006)

   13. Reduce the given quadratic form Q to its canonical form using orthogonal
       transformation Q = x 2 + 3 y 2 + 3z 2 − 2 yz            (16 marks) (Jan 2009)


   14. Reduce the quadratic form 2xy + 2yz +2zx to the canonical form by an
       orthogonal reduction and state its nature.

       Reduce 2 x1 x2 + 2 x2 x3 + 2 x3 x1 to canonical form by an orthogonal
       transformation.
                                        (10 marks) (May ’09, Jan 2006 & April/May
       2005)


    15. Reduce the quadratic form x2 + 2y2 + z2 - 2xy +2yz to a canonical form by
       orthogonal reduction .                                      (8 marks) (May
’08)



      Reduce the quadratic form x12 + 2 x2 + x3 − 2 x1 x2 + 2 x2 x3 to the canonical form
                                         2    2


      through an orthogonal transformation and hence show that it is positive semi-
      definite. Give also a non-zero set of values ( x1, x2 , x3 ) which makes this
   quadratic
      form to zero.                                          (16 marks)(May/June
   2009)


                           *******************************

More Related Content

What's hot

Sifat Bangun Datar Segitiga dan Kongruensinya
Sifat Bangun Datar Segitiga dan KongruensinyaSifat Bangun Datar Segitiga dan Kongruensinya
Sifat Bangun Datar Segitiga dan Kongruensinya
Desy Aryanti
 
Mathematics- Circle Presentation
Mathematics- Circle PresentationMathematics- Circle Presentation
Mathematics- Circle Presentation
Monnie Bao Jia
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
Nofal Umair
 
Lecture 20 section 10-2 - the parabola
Lecture 20   section 10-2 - the parabolaLecture 20   section 10-2 - the parabola
Lecture 20 section 10-2 - the parabola
njit-ronbrown
 

What's hot (20)

Engineering mathematics presentation
Engineering mathematics presentationEngineering mathematics presentation
Engineering mathematics presentation
 
Teorema green dalam bidang
Teorema green dalam bidangTeorema green dalam bidang
Teorema green dalam bidang
 
Sifat Bangun Datar Segitiga dan Kongruensinya
Sifat Bangun Datar Segitiga dan KongruensinyaSifat Bangun Datar Segitiga dan Kongruensinya
Sifat Bangun Datar Segitiga dan Kongruensinya
 
Angle bisector pp
Angle bisector ppAngle bisector pp
Angle bisector pp
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
Mathematics- Circle Presentation
Mathematics- Circle PresentationMathematics- Circle Presentation
Mathematics- Circle Presentation
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
PPT Matriks
PPT MatriksPPT Matriks
PPT Matriks
 
Applications of trignometry
Applications of trignometryApplications of trignometry
Applications of trignometry
 
3 Vektor Posisi
3 Vektor Posisi3 Vektor Posisi
3 Vektor Posisi
 
CHAPTER -10 CIRCLE 9TH CLASS NCERT
CHAPTER -10  CIRCLE 9TH CLASS NCERT CHAPTER -10  CIRCLE 9TH CLASS NCERT
CHAPTER -10 CIRCLE 9TH CLASS NCERT
 
Lecture 20 section 10-2 - the parabola
Lecture 20   section 10-2 - the parabolaLecture 20   section 10-2 - the parabola
Lecture 20 section 10-2 - the parabola
 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativity
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
Dihedral groups & abeliangroups
Dihedral groups & abeliangroupsDihedral groups & abeliangroups
Dihedral groups & abeliangroups
 
Normal subgroups- Group theory
Normal subgroups- Group theoryNormal subgroups- Group theory
Normal subgroups- Group theory
 
Basic geometrical constructions
Basic geometrical constructionsBasic geometrical constructions
Basic geometrical constructions
 
Engineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answersEngineering Mathematics 2 questions & answers
Engineering Mathematics 2 questions & answers
 

Viewers also liked (7)

Cayley Hamilton Theorem
Cayley Hamilton Theorem Cayley Hamilton Theorem
Cayley Hamilton Theorem
 
Cayley – hamiltion theorem By Sunny
Cayley – hamiltion theorem By SunnyCayley – hamiltion theorem By Sunny
Cayley – hamiltion theorem By Sunny
 
Arthur cayley
Arthur cayleyArthur cayley
Arthur cayley
 
Bernhardriemann
BernhardriemannBernhardriemann
Bernhardriemann
 
Applications of linear algebra
Applications of linear algebraApplications of linear algebra
Applications of linear algebra
 
Circuit Analysis – DC Circuits
Circuit Analysis – DC CircuitsCircuit Analysis – DC Circuits
Circuit Analysis – DC Circuits
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011
 

Similar to Unit i

Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
 
eigenvalueandeigenvector72-80-160505220126 (1).pdf
eigenvalueandeigenvector72-80-160505220126 (1).pdfeigenvalueandeigenvector72-80-160505220126 (1).pdf
eigenvalueandeigenvector72-80-160505220126 (1).pdf
Sunny432360
 

Similar to Unit i (20)

eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Eigenvalues
EigenvaluesEigenvalues
Eigenvalues
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
DOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdfDOC-20231230-WA0001..pdf
DOC-20231230-WA0001..pdf
 
Lecture_06_Part_1.ppt
Lecture_06_Part_1.pptLecture_06_Part_1.ppt
Lecture_06_Part_1.ppt
 
Eigenvalues - Contd
Eigenvalues - ContdEigenvalues - Contd
Eigenvalues - Contd
 
Partial midterm set7 soln linear algebra
Partial midterm set7 soln linear algebraPartial midterm set7 soln linear algebra
Partial midterm set7 soln linear algebra
 
Eigen valus n vectors
Eigen valus n vectors Eigen valus n vectors
Eigen valus n vectors
 
eigenvalueandeigenvector72-80-160505220126 (1).pdf
eigenvalueandeigenvector72-80-160505220126 (1).pdfeigenvalueandeigenvector72-80-160505220126 (1).pdf
eigenvalueandeigenvector72-80-160505220126 (1).pdf
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
Eigenstuff
EigenstuffEigenstuff
Eigenstuff
 
Eigenstuff
EigenstuffEigenstuff
Eigenstuff
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Linear algebra
Linear algebraLinear algebra
Linear algebra
 
Linear algebra
Linear algebraLinear algebra
Linear algebra
 
Diagonalization of matrix
Diagonalization of matrixDiagonalization of matrix
Diagonalization of matrix
 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
 
Eigen value and vectors
Eigen value and vectorsEigen value and vectors
Eigen value and vectors
 
derogatory and non derogatory matrices
derogatory and non derogatory matricesderogatory and non derogatory matrices
derogatory and non derogatory matrices
 
Note.pdf
Note.pdfNote.pdf
Note.pdf
 

More from sunmo

Temple
TempleTemple
Temple
sunmo
 
Unit II
Unit IIUnit II
Unit II
sunmo
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICS
sunmo
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
sunmo
 
Semi conductors
Semi conductorsSemi conductors
Semi conductors
sunmo
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elements
sunmo
 

More from sunmo (6)

Temple
TempleTemple
Temple
 
Unit II
Unit IIUnit II
Unit II
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICS
 
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYSENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
ENGINEERING PHYSICS -SEMICONDUCTING MATERIALS PROBLEMS KEYS
 
Semi conductors
Semi conductorsSemi conductors
Semi conductors
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elements
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

Unit i

  • 1. Mathematics – I ( MA 2111 ) Unit I : MATRICES Part – A A 1. If λ is an eigen value of a non singular matrix A, Show that is an eigen λ value of adj A. Let λ be an eigen value of A and X be the corresponding eigen vector. Then, AX = λ X . 1 By property, is an eigen value of A-1. λ We have adj A= A-1 A ∴ Eigen value of adj A = Eigen value of A-1 A 1 A = A = . λ λ 2. Let λ be an eigen value of a singular matrix A with the eigen vector X. Show –1 that 1/ λ is an eigen value of A with eigen vector X. Proof: Let λ be an eigen value and X be an eigen vector of A. ∴ (A – λ I) x = 0 ⇒ A x – λ I x = 0 ∴ A x = λ I x ⇒ AX = λ X –1 Premultiplying both sides by A –1 –1 –1 –1 A (AX) = A ( λ X) ⇒ (A A) X = λ (A X) –1 IX = λ (A X) –1 –1 X = λ (A X) ⇒ λ (A X) = X –1 ∴ A X = X/ λ –1 Hence, 1/ λ is an eigen value of A . 3 3. If λ 1 , λ 2, λ 3,…, λ n,are the eigen values of an n x n matrix A, then show that λ 1 , 3 3 3 3 λ 2 , λ 3 ,…, λ n are the eigen values of A . Let λ be an eigen value of A and X be the corresponding eigen vector. Then, AX = λ X ( λ = λ 1, λ 2, λ 3, … λ n) ∴A2 X = (AA) X = A (AX) 2 = A ( λ X) = λ (AX) = λ ( λ X) = λ X 3 3 Similarly, A X = λ X 3 3 ∴ λ is an eigen value of A  2 −3 4. Find the sum and product of the eigen values of the matrix    4 −2  The sum of the eigen values = Sum of the diagonal elements = 2 - 2 = 0 The product of the eigen values = Determinant value of the matrix = 2(-2) + 12 = 8.  8 −6 2  5. If 3 and 15 are the two eigen values of A = − 6 7 − 4 , find A , without    2 −4 3   
  • 2. expanding the determinant. Let λ 1 = 3, λ 2 = 15. Sum of the eigen values = trace of A. i.e., λ 1 + λ 2 + λ3 = 8 + 7 + 3 ⇒ 3 + 15 + λ3 = 18. ⇒ λ3 = 0. ⇒ A = 0. (since product of the eigen values = A ) 2 0 1   6. Find the sum and product of the eigen values of the matrix  0 2 0   1 0 2   The sum of the eigen values = Sum of the diagonal elements = 2 + 2 + 2 = 8 The product of the eigen values 2 0 1 = Determinant values of the matrix = 0 2 0 = 2(4 – 0) – 0 (0 – 0) + 1 (0 – 1 0 2 2) = 8 – 2 = 6  1 3 7. Find the eigen values of  .  2 1 The characteristic equation of A is given by A − λI = 0. 1-λ 3 i.e., = 0 ⇒ (1- λ) (1- λ) – 6 = 0. 2 1-λ ⇒ λ2 – 2λ – 5 = 0. 2 ± 4 + 20 ⇒ λ= = 1 ± √6. 2 ∴ The eigen values of A are 1 + √6 and 1 - √6. 4 6 6 8. Two eigen values of A =  1 3 2  are equal and they are double the  − 1 − 5 − 2   third. Find the eigen values of A2 and A-1. Let the third eigen value be λ3 = λ. Given that two eigen values are equal and they are double the third i.e., λ1 = λ2 = 2λ. Sum of the eigen values = trace of A. ∴2λ + 2λ + λ = 4 + 3 - 2 = 5. ⇒ 5 λ = 5 i.e., λ =1. ∴ Eigen values of A are 2, 2, 1. 1 1 Hence the eigen values of A2 are 4, 4, 1 and the eigen values of A-1 are , 2 2 and 1.
  • 3.  2 5 −1 9. Find the eigen values of A if the matrix A is  0 3 2  –1   0 0 4    –1 If λ 1 , λ 2, λ 3 are the eigen values of A then the eigen values of the matrix A are 1 1 1 , , . λ1 λ 2 λ3 First we have to find the eigen values of A. Since the given matrix is a triangular matrix the eigen values of A are the diagonal elements 2, 3, 4. –1 1 1 1 ∴The eigen values of A are , , . 2 3 4 a 4  10. Find the constants a and b such that the matrix   has 3 and -2 as its eigen 1 b  values. a 4  Let A =   1 b  Since sum of the eigen values = sum of the diagonal matrix, a+b=3–2=1 ….. (1) Since product of eigen values is determinant value of matrix, ab – 4 = 3 (–2) = – 6 ∴ ab = –2 …………. (2) solving (1) and (2), we get the values of a and b ∴a=1–b (2) ⇒ (1 – b) b = –2 b2 – b – 2 = 0 b = – 1, b = 2 ∴ (1) ⇒ a + b = 1 ⇒ a + 2 = 1 ⇒ a = – 1 ∴ a = –1, b = 2 1 1 4 11. If   is an eigen vector of    3 2  , find the corresponding eigen – value.   1   1 Let λ be an eigen value corresponding to the eigen vector X =   . 1    1 4  1 1 Then AX = λX implies   3 2  1 = λ     1      ⇒ 1 + 4 = λ and 3 + 2 = 5. ∴ λ = 5.  1 1 3 12. If X = ( −1 0 1) T is the eigen vector of the matrix A =  1 5 1  find the   3 1 1   corresponding eigen value.
  • 4. 0   The eigen vector of the matrix A is given by ( A − λI ) X =  0  0   1 1 3  -1     Here A =  1 5 1  and X =  0   3 1 1 1     1 − λ 1 3    A – λI =  1 5−λ 1   3 1  1− λ  1 − λ 1 3   -1 0       ∴ 1 5−λ 1   0  = 0  3 1 1− λ  1    0     (1 – λ)(–1) + 1 (0) + 3 (1) = 0 ⇒ – 1 + λ + 0 + 3 = 0 ⇒ λ + 2 = 0 ∴λ = – 2 is the corresponding eigen value.  6 −2 2    13. The product of two eigen values of the matrix A =  −2 3 −1 is 16. Find the third  2 −1 3    eigen value. 6 −2 2 The product of all eigen values = −2 3 −1 = 6(9 – 1) + 2(–6 + 2) +2(2 – 6) =32 2 −1 3 Product of two eigen values = 16 The third eigen value = 32 / 16 =2 2 2 1   14. Two eigen values of the matrix A =  1 3 1  are equal to 1 each. Find the 1 2 2   -1 eigen values of A . Sum of the eigen values = 2 + 3 + 2 = 7 ( Sum of the diagonal elements) Sum of two given eigen values = 1 + 1 = 2 ∴The 3rd eigen value = 7 – 2 = 5 The eigen values of A are 1, 1, 5 –1 ∴The eigen value of A are 1, 1, 1/5. 1 1  15. If the Eigen values of the matrix A =   are 2 and -2, find the eigen values of 3 −1 T A . T Eigenvalues of A = Eigenvalues of A T ∴Eigenvalues of A are 2, –2. 1 2 3  3   16. Find the Eigen values of A given A =  0 2 −7  0 0 3   
  • 5. 1 2 3    Given A =  0 2 −7  0 0 3    Given A is an upper triangular matrix Hence the eigen values are 1, 2, 3 i.e., the eigen values of the given matrix A are 1, 2, 3. By the property, the eigenvalues of the matrix A3 are 13, 23, 33.  3 −1 17. Verify Cayley-Hamilton theorem for the matrix A =    −1 5  3 − λ −1 | A − λI | = −1 5 − λ 2 = (3 – λ )(5 – λ ) – 1 = λ – 8 λ + 14 2 The characteristic equation is |A – λ I| = λ – 8 λ + 14 = 0 2 By Cayley-Hamilton theorem, we have A – 8 A + 14 I = 0  3 −1  3 −1  10 −8  A2 =    =   −1 5   −1 5   −8 26  2  10 −8   3 −1 1 0 0 0 A – 8 A + 14 I =   − 8  + 14  =   −8 26   −1 5  0 1 0 0 Hence Cayley Hamilton theorem is verified. 1 4 18. Using Cayley-Hamilton theorem find the inverse of   2 3 1 4 Let A =   2 3 1− λ 4 | A − λI |= 2 3−λ 2 = λ – 4λ – 5 2 By Cayley Hamilton theorem, A – 4A – 5I = 0 –1 –1 2 –1 –1 Multiplying by A , A A – 4A A – 5A I = 0 ⇒ A – 4I – 5A–1 = 0 –1 5A = A – 4I 1 4  1 0  1 4   4 0   −3 4  =   - 4  0 1  =  2 3  -  0 4  =  2 −1 2 3         1 1 −3 4  ∴ A– = 5  2 −1   1 0  19. If A =  , express A3 in terms of A and I using Cayley-Hamilton theorem.  4 5  The Cha. Equation of the given matrix is A - λI = 0  1 0  1 0 1-λ 0 (i.e.,)   -λ  =0 ⇒ =0  4 5 0 1 4 5−λ (1 – λ)(5 – λ) – 0 = 0 (1 – λ)(5 – λ) =0
  • 6. 5 – λ – 5λ + λ2 = 0 λ2 – 6λ + 5 =0 By Cayley Hamilton theorem [Every square matrix A satisfies its own cha. equation] (i.e.,) A2 – 6A + 5I = 0, A2 = 6A – 5I multiply A on both sides A3 – 6A2 + 5A = 0 A3 = 6A2 – 5A = 6 [6A – 5I] – 5A = 36A – 30I – 5A = 31A – 30I 1 4 5 4 3 20. Use Cayley – Hamilton theorem for the matrix A =   to express A – 4A – 7A 2 3 + 2 11A – A – 10I as a linear polynomial in A. 1 4 Given A =   2 3 The characteristic equation of A is A - λI = 0 i.e., λ2 – S1 λ + S2 = 0 where S1 = sum of the main diagonal elements = 1 + 3 = 4 1 4 S2 = A = =3–8=–5 2 3 ∴ The characteristic equation of A is λ2 – 4λ – 5 = 0 By Cayley – Hamilton theorem, we get A2 – 4A – 5I = 0 ……….. (1) To find : A5 – 4A4 – 7A3 + 11A2 – A – 10I ∴ A5 – 4A4 – 7A3 + 11A2 – A – 10I = (A2 – 4A – 5I)(A3 – 2A + 3I) + A + 5I = 0 + A + 5I = A + 5I by (1) which is a linear polynomial in A. –1 21. If A is an orthogonal matrix show that A is also orthogonal. For an orthogonal matrix, transpose will be the inverse T –1 ∴A =A … (1) T –1 Let A = A = B … (2) T –1 T T –1 –1 Then B = (A ) =(A ) = B from (2) T –1 ∴ B = B ⇒ matrix B is orthogonal –1 i.e., A is also orthogonal. Hence proved. 22. If A is an orthogonal matrix prove that | A | = ±1 Proof: Let A be the orthogonal matrix. Let λ be an eigen value. By defn. of orthogonal matrix, AA′ = A′A = I. Also AX = λ X … (1) where x is eigen vector. Taking transpose on both sides. (AX) ′ = ( λ X) ′ X′A′ = λ X′ ….(2) since [AB] ′ = B′A′
  • 7. Multiplying (2) and (1) (X′A′)(AX) = ( λ X′)( λ X) X′ (A′A) X = λ 2 (X′X) X′IX = λ 2 (X′X) X′X = λ 2 (X′X) 2 (X′X) – λ (X′X) = 0 (X′X) (1 – λ 2) = 0 ∴1 – λ 2 = 0 [X′X ≠ 0] λ 2 = 1; λ = ±1 Hence the proof. 23. Determine the nature of the following quadratic form f(x1, x2, x3)= x12 + 2x22 Here λ 1 = 1, λ 2 = 2, λ 3 = 0. Two of the eigen values are positive. ∴The quadratic form is semi positive definite. 2 2 24. Find the nature of the quadratic form 8x – 4xy + 5y . The matrix corresponding to the quadratic form  8 −2  8x2 – 4xy + 5y2 is    −2 5  The eigen values are given by 8-λ − 2 = 0 ⇒ (8 – λ )(5 – λ ) – 4 = 0 ⇒ 40 – 8 λ – 8 λ + λ 2 – 4 = 0 −2 5-λ λ 2 – 13 λ + 36 = 0 ⇒ ( λ – 9)( λ – 4) = 0 ∴ λ = 9, λ = 4 ∴The nature of the quadratic is positive definite. 25. Find the matrix form for the quadratic form x12 + 2x1x2 + 6x22. 1 1  The matrix of the Quadratic form is A =  . 1 6  a b 26. Find the condition for a real matrix    to be positive definite.  b c a b Here D1= a , D2 = where D1 and D2 are the principal subdeterminants of the b c given matrix. For the matrix to be positive definite, a > 0 and ac - b2 >0 i.e., ac > b2. 27. If A is the symmetric matrix corresponding to a quadratic form in three variables such that trace (A) = 0, find the nature of the quadratic form. We have, sum of the eigen values = trace (A) = 0. ⇒ λ 1+ λ 2+ λ 3 = 0. ⇒ λ 1, λ 2, λ 3 cannot be all positive or negative. Atleast one positive or one negative. Therefore the nature of the quadratic form is indefinite.  6 1 − 7   28. Write the quadratic form for the matrix  1 2 0  . − 7 0 1   
  • 8. x T   The Quadratic form is given by X AX, where X =  y  . z    6 1 − 7  x  T     Now X AX = ( x y z )  1 2 0   y  − 7 0 1   z      = 6x2 + 2y2 + z2 + 2xy -14xz. 29. Find the nature of the quadratic form 2x2 + 3y2 + 2z2 + 2xy  2 1 0   The matrix of the Quadratic form is A =  1 3 0   0 0 2   D1 = 2, D2 = 6 – 1 =5, D3 = 12 – 2 =10. D1> 0 , D2 >0 , D3>0. ∴The nature of the quadratic form is positive definite. ---------------------------------- ASSIGNMENT QUESTIONS  2 2 1   1. Find the eigen values and eigen vectors of A =  1 3 1  .  1 2 2   (8 marks) (May ’09)(May ’09)  4 1 1   2. Find the eigen values and the eigen vectors of the matrix  1 4 1   1 1 4   (8 marks) (May ’09) 3. Find the eigen values and corresponding eigen vectors of the matrix  1 1 3   1 5 1 .  3 1 1   (8 marks)(May/June 2009)  11 −4 −7    4. Find all the eigen values and eigen vectors of the matrix A =  7 −2 −5  10 −4 −6    (8 marks)(May/June 2007)
  • 9.  2 0 −1   5. Verify Cayley Hamilton theorem for the matrix A =  0 2 0  and hence  −1 0 2    find A-1 and A4 . (8 marks) (May ’09&Nov/Dec 2008)  2 −1  6. Using Cayley-Hamilton theorem find A-1 and A3 + A6 , if A =  .  5 −2  (8 marks) (May ’09) 7. Using Cayley-Hamilton theorem evaluate the matrix A8- 5A7 + 7A6 - 3A5 + A4 –  2 1 1 3 2   5A - 8A + 2A –I if A =  0 1 0  (6 marks) (May ’06) (May  1 1 2   2009)  2 −1 1  5   8. Verify Cayley-Hamilton theorem and find A for the matrix  −1 2 −1  1 −1 2    (8 marks)(May/June 2009)  1 0 0   9. If A =  1 0 1  . Then show that An = An-2+A2-I for n ≥ 3 using  0 1 0   Cayley-Hamilton theorem. (6 marks)(Jan 2006)  2 1 1   10. Find the characteristic equation of A =  0 1 0  and hence express the  1 1 2   matrix A5 in terms of A2, A and I. (6 marks ) (April/May 2005)
  • 10.  2 1 −1    11. Diagonalise the matrix A =  1 1 −2  by means of orthogonal  −1 −2 1    transformation. (12 marks) (May ’09)  6 −2 2    12. Diagonalize A =  −2 3 −1 by an orthogonal transformation.  2 −1 3    (10 marks)(Jan 2006) 13. Reduce the given quadratic form Q to its canonical form using orthogonal transformation Q = x 2 + 3 y 2 + 3z 2 − 2 yz (16 marks) (Jan 2009) 14. Reduce the quadratic form 2xy + 2yz +2zx to the canonical form by an orthogonal reduction and state its nature. Reduce 2 x1 x2 + 2 x2 x3 + 2 x3 x1 to canonical form by an orthogonal transformation. (10 marks) (May ’09, Jan 2006 & April/May 2005) 15. Reduce the quadratic form x2 + 2y2 + z2 - 2xy +2yz to a canonical form by orthogonal reduction . (8 marks) (May ’08) Reduce the quadratic form x12 + 2 x2 + x3 − 2 x1 x2 + 2 x2 x3 to the canonical form 2 2 through an orthogonal transformation and hence show that it is positive semi- definite. Give also a non-zero set of values ( x1, x2 , x3 ) which makes this quadratic form to zero. (16 marks)(May/June 2009) *******************************