SlideShare a Scribd company logo
1 of 6
1.In a P-type Ge ni = 2.1 × 1019 m-3,density of boron =  4.5 × 1023 atoms m-3.The electron and hole mobility are 0.4 and0.2 m2 V-1 s-1 respectively. What is its conductivity before and after the addition of boron atoms?<br />Given data:<br />ni = 2.1 × 1019 m-3<br />µe= 0.4 m2 V-1 s-1<br />µh= 0.2 m2 V-1 s-1<br />nboron = 4.5 × 1023 atoms m-3<br />Solution:<br />           Before adding boron atoms, the semiconductor is an intrinsic SC<br />σi = ni e (µe + µh)<br />= 2.1×1019×1.6×10-19× (0.4+0.2)<br />  Before adding boron atoms, the semiconductor becomes a P-type SC<br />σi = nboron e µh<br />= 4.5 × 1023×1.6×10-19×0.2<br />2. Silicon contains 5 × 1028 atoms m-3.In a n-type Si sample the donor concentration is 1 atom per 2.5 × 107 Si atoms. Find out the position of Fermi level at 300 K? Assume that effective mass of an electron is equal to the free electron mass.<br />Given data:<br />nSilicon = 5 × 1028 atoms m-3<br />The donor concentration is 1 atom per 2.5 × 107 Si atoms<br />T=300 K<br />Eg(Si) = 1.1 eV=1.1×1.6×10-19 J =  1.76×10-19 J<br />me = mh = mo = 9.1×10-31 kg<br />Solution:<br />Donor atoms per m3 (Nd) = 5 × 10282.5 × 107<br />  =<br />Fermi energy for n-type SC<br />Ef = Ed+Ec2 + kbT lnNd22πmekb Th232<br />= Eg2 + kbT lnNd22πmekb Th232<br />=1.76×10-19 2 + 1.38×10-23×300×ln2 × 102122×3.14×9.1×10-31×1.38×10-23×3006.625×10-34232 <br />=<br />3. Determine the density of the donor atoms which have to be added to intrinsic Ge to make it a n-type material of resistivity 0.19×10-2 Ωm. It is given that the mobility of electrons in the n-type SC is 0.325m2V-1s-1.<br />Given data:<br />Resistivity ρ = 0.19×10-2 Ωm<br />Mobility µe= 0.325 m2 V-1 s-1<br />Solution:<br />σe = ne e µe <br />ne= σeeμe<br />= 1ρeμe<br />= 10.19×10-2×1.6×10-19×0.325<br />4. Consider a sample of n-type silicon with Nd=1021 /m3.Determine the electron and hole densities at 300 K. The intrinsic carrier concentration for Si is 9.8 ×1015/m3.<br />Given data:<br />Nd = 1021 /m3<br />ni = 9.8 ×1015/m3<br />Solution:<br />ni2 = ne×nh<br />It is n-type SC, so Nd = ne<br />(density of donor level electrons = density of electron in conduction band)<br />ne= 1021 /m3<br />nh= ni2ne<br />= 9.8×101521021<br /> <br /> 5. For intrinsic Si, the room temperature electrical conductivity is 4×10-4 Ω-1 m-1.The electron and hole mobilities are 0.14 and 0.04 m2V-1s-1 respectively. Compute electron and hole concentrations at room temperature.<br />Given data:<br />σi = 4 × 10-4 Ω-1 m-1<br />µe= 0.14 m2 V-1 s-1<br />µh= 0.04 m2 V-1 s-1<br />Solution:<br />           σi = ni e (µe + µh)<br />ni=  σie(μe+μh)<br />= 4×10-41.6×10-19×(0.14+0.04)<br />6. The intrinsic carrier density at room temperature in Ge is 2.37 ×1019 m-3. If the electron and hole mobilities are 0.38 and 0.18 m2V-1s-1 respectively. Calculate its resistivity.<br />Given data:<br />ni = 2.37 × 1019 m-3<br />µe= 0.38 m2 V-1 s-1<br />µh= 0.18 m2 V-1 s-1<br />Solution:<br />           σi = ni e (µe + µh)<br />ρi= 1σi<br />7. The electron and hole mobilities in In-Sb  SC are 6 and 0.2 m2V-1s-1 respectively. At room temperature resistivity of In-Sb is 2×10-4 Ωm. Assuming that the material is intrinsic, determine its intrinsic carrier density at room temperature.<br />Given data:<br />ρi = 2 × 10-4 Ωm<br />µe= 6 m2 V-1 s-1<br />µh= 0.2 m2 V-1 s-1<br />Solution:<br />           σi = ni e (µe + µh)<br />ρi= 1σi<br />ni=  1ρie(μe+μh)<br />8. The energy gap of Si is 1.1 eV. Its electron and hole mobilities at room temperature are 0.48 and 0.13 m2V-1s-1 respectively. Evaluate its conductivity.<br />Given data:<br />Eg = 1.1 eV= 1.1×1.6×10-19 J =  1.76×10-19 J<br />µe= 0.48 m2 V-1 s-1<br />µh= 0.13 m2 V-1 s-1<br />Solution:<br />σi = ni e (µe + µh)<br />ni= 22πmekb Th232e-Eg2kbT<br />Assuming me = mh = mo = 9.1×10-31 kg<br />= 22×3.14×9.1×10-31×1.38×10-23×3006.625×10-34232e-1.76×10-192×1.38×10-23×300<br />9. For Si SC with band gap energy is 1.2 eV. Determine the position of Fermi level at 300K.If me=0.12 mo and mh=0.28mo.<br />Given data:<br />T=300 K<br />Eg(Si) = 1.2 eV=1.1×1.6×10-19 J =  1.92×10-19 J<br />me = 0.12mo <br />mh = 0.28mo <br />Solution:<br />Ef= Eg2 + 3kbT4 lnmhme<br />= 1.92×10-192 + (3×1.38×10-23×300)4 ln0.28 mo0.12mo<br />10. In an intrinsic SC, the energy gap is1.2 eV. What is the ratio between its conductivity at 600 K and that at 300 K.<br />Given data:<br />T1=600 K<br />T2=300 K<br />Eg(Si) = 1.2 eV=1.2×1.6×10-19 J =  1.92×10-19 J<br />Solution:<br />σ = Ce-Eg2kbT<br />Let σ1 be the electrical conductivity at T1 K and σ2 the electrical conductivity at T2 K.  <br />σ1 = Ce-Eg2kbT1<br />σ2 = Ce-Eg2kbT2<br /> σ1σ2      = e-Eg2kb1T1- 1T2<br /> = e-1.92×10-192×1.38×10-231600 - 1300<br />Note:       logex = lnx =2.302 × log10x<br />11. At 20oc the conductivity of Ge is 2 Ω-1m-1. Find the conductivity of Ge at 40oc.Band gap energy of Ge is 0.72 eV.<br />Given data:<br />T1=20oc =293 K<br />σ1 =2 Ω-1m-1<br />T2=40oc = 313 K<br />Eg(Si) = 0.72 eV=0.72×1.6×10-19 J =  1.152×10-19 J<br />Solution:<br />Let σ1 be the electrical conductivity at T1 K and σ2 the electrical conductivity at T2 K.  <br />σ1 = Ce-Eg2kbT1<br />σ2 = Ce-Eg2kbT2<br /> σ1σ2      = e-Eg2kb1T1- 1T2<br />σ2= σ1 eEg2kb1T1- 1T2<br />12. The band gap energy of intrinsic SCs A and B are0.36eV and 0.72 eV respectively. Compare the intrinsic career density of A and B at 300 K.<br />Given data:<br />T= 300 K<br />Eg1 = 0.36 eV=0.36×1.6×10-19 J = 0.576×10-19 J<br />Eg2 = 0.72 eV=0.72×1.6×10-19 J = 1.152×10-19 J<br />Solution:<br />σiA = niA e (µe + µh)<br />σiB = niB e (µe + µh)<br /> σiAσiB= niAe(μe+μh)niBe(μe+μh)<br />σiAσiB=  niA niB<br />We know,<br />σiA = Ce-Eg12kbT<br />σiB = Ce-Eg22kbT<br />niA niB= σiAσiB<br />= eEg2-Eg12kbT<br />13. Determine the density of the donor atoms which have to be added to intrinsic Ge to make it an n-type material of resistivity 0.19×10-2Ωm. It is given that the mobility of electrons in the n-type SC is 0.325m2V-1s-1<br />Given data:<br />ρ = 0.19 × 10-2 Ωm<br />µe= 0.325 m2 V-1 s-1<br />Solution:<br />µe= σenee <br />ne= σeµee& σe = 1ρ<br />=10.19×10-2×0.325×1.6×10-19<br />14. The hall coefficient of certain Si specimen was found to be -7.35×10-5 C-1m3 from 100 to 400 K. Determine the nature of the SC if the conductivity was found to be 200 Ω-1m-1.Calculate the density and mobility of the charge carrier.<br />Given data:<br />Rh = -7.35×10-5 C-1m3<br />σe = 200 Ω-1m-1<br />Solution:<br />The negative sign of the hall coefficient indicates that the nature of the SC is n-type.<br />ne=1.18Rhe<br />= 1.187.35×10-5×1.6×10-19<br />µe= σenee <br />15. An electric field of 100 Vm-1 is applied to a sample of n-type SC whose hall coefficient is -0.0125 C-1m3.Determine the current density in the sample, assuming electron mobility to be 0.36 m2 V-1 s-1.<br />Given data:<br />Rh = -0.0125 C-1m3<br />Eh = 100 Vm-1<br />µe= 0.36 m2 V-1 s-1<br />Solution:<br />ne= 1.18Rhe<br />σe= ne e µe<br />J= σe E<br />16.A Si plate of thickness 1mm, breadth 10mm and length 100mm is placed in a magnetic field of 0.5 Wbm-2 acting perpendicular to its thickness. If 10-2 A current flows along its length, calculate the hall coefficient, if the hall voltage developed is 1.83 mV.<br />Given data:<br />t = 1 mm = 0.001 m<br />B= 0.5 Wbm-2<br />I = 10-2 A<br />Vh = 1.83 mV = 1.83 × 10-3 V<br />Solution:<br />Rh= VhtIB<br />    = 1.83×10-3×0.00110-2×0.5<br />
Semiconductor Properties
Semiconductor Properties
Semiconductor Properties
Semiconductor Properties
Semiconductor Properties

More Related Content

What's hot

Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumK. M.
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
Metal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor CapacitorsMetal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor Capacitorstahamohssein
 
Electrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositesElectrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositeskumarbhaskar786
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devicesSiddharth Panda
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaK. M.
 
Problems on fermi part 2
Problems on fermi part 2Problems on fermi part 2
Problems on fermi part 2kiranmadhale1
 
Density of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaDensity of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaManu Shreshtha
 
Band theory of solid
Band theory of solidBand theory of solid
Band theory of solidKeyur Patel
 
Piezoelectric Materials
Piezoelectric MaterialsPiezoelectric Materials
Piezoelectric Materialsfoysalmd
 

What's hot (20)

Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
Fabrication of P-N Junction
Fabrication of P-N JunctionFabrication of P-N Junction
Fabrication of P-N Junction
 
Semiconductor and it's types
Semiconductor and it's typesSemiconductor and it's types
Semiconductor and it's types
 
Metal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor CapacitorsMetal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor Capacitors
 
Electrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositesElectrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano composites
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devices
 
Density of states of bulk semiconductor
Density of states of bulk semiconductorDensity of states of bulk semiconductor
Density of states of bulk semiconductor
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomena
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
Ppt19 magnetic-potential
Ppt19  magnetic-potentialPpt19  magnetic-potential
Ppt19 magnetic-potential
 
Metal oxide semiconductor
Metal oxide semiconductorMetal oxide semiconductor
Metal oxide semiconductor
 
Continiuty Equation
Continiuty EquationContiniuty Equation
Continiuty Equation
 
Problems on fermi part 2
Problems on fermi part 2Problems on fermi part 2
Problems on fermi part 2
 
Density of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaDensity of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu Shreshtha
 
Spintronics ppt
Spintronics pptSpintronics ppt
Spintronics ppt
 
Magnetic materials final
Magnetic materials finalMagnetic materials final
Magnetic materials final
 
Band theory of solid
Band theory of solidBand theory of solid
Band theory of solid
 
Piezoelectric Materials
Piezoelectric MaterialsPiezoelectric Materials
Piezoelectric Materials
 
Ferrites
Ferrites Ferrites
Ferrites
 

Similar to Semiconductor Properties

Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPY
Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPYAtomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPY
Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPYumesh dhamija
 
semiconductor devices problems_solutions.pdf
semiconductor devices problems_solutions.pdfsemiconductor devices problems_solutions.pdf
semiconductor devices problems_solutions.pdfssuser87c04b
 
1692281392-(5)_semiconductor_physics.pdf
1692281392-(5)_semiconductor_physics.pdf1692281392-(5)_semiconductor_physics.pdf
1692281392-(5)_semiconductor_physics.pdfMayurVashisth
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.pptSc Pattar
 
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)Malik Xufyan
 
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik Xufyan
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik XufyanChemistry (F.Sc.1) Chapter # 05 Numericals- Malik Xufyan
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik XufyanMalik Xufyan
 
Atomic structure (part 1)
Atomic structure (part 1)Atomic structure (part 1)
Atomic structure (part 1)Chris Sonntag
 
Atomic structure - Electron Configurations and Periodic Table
Atomic structure - Electron Configurations and Periodic TableAtomic structure - Electron Configurations and Periodic Table
Atomic structure - Electron Configurations and Periodic TableChris Sonntag
 
Final term maths revision EEM evbwh.pptx
Final term maths revision EEM evbwh.pptxFinal term maths revision EEM evbwh.pptx
Final term maths revision EEM evbwh.pptxssuserbe76c3
 
Slot A Analytical Questions.pdf
Slot A Analytical Questions.pdfSlot A Analytical Questions.pdf
Slot A Analytical Questions.pdfNagaiKumaresan1
 
Chemistry Atomic spectra with numericals
Chemistry Atomic spectra with numericalsChemistry Atomic spectra with numericals
Chemistry Atomic spectra with numericalsJawadSattar1
 
Material science 6.pptx
Material science 6.pptxMaterial science 6.pptx
Material science 6.pptxkareemhamad3
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27Carlo Magno
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problemsDr.SHANTHI K.G
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 

Similar to Semiconductor Properties (20)

Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPY
Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPYAtomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPY
Atomic structure - Multiple Choice Questions For IIT-JEE, NEET, SAT,KVPY
 
semiconductor devices problems_solutions.pdf
semiconductor devices problems_solutions.pdfsemiconductor devices problems_solutions.pdf
semiconductor devices problems_solutions.pdf
 
1692281392-(5)_semiconductor_physics.pdf
1692281392-(5)_semiconductor_physics.pdf1692281392-(5)_semiconductor_physics.pdf
1692281392-(5)_semiconductor_physics.pdf
 
Chem140alecture3.ppt
Chem140alecture3.pptChem140alecture3.ppt
Chem140alecture3.ppt
 
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)
F.Sc.1.Chemistry.Ch.5.Numericals (Malik Xufyan)
 
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik Xufyan
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik XufyanChemistry (F.Sc.1) Chapter # 05 Numericals- Malik Xufyan
Chemistry (F.Sc.1) Chapter # 05 Numericals- Malik Xufyan
 
Atomic structure (part 1)
Atomic structure (part 1)Atomic structure (part 1)
Atomic structure (part 1)
 
Atomic structure - Electron Configurations and Periodic Table
Atomic structure - Electron Configurations and Periodic TableAtomic structure - Electron Configurations and Periodic Table
Atomic structure - Electron Configurations and Periodic Table
 
Final term maths revision EEM evbwh.pptx
Final term maths revision EEM evbwh.pptxFinal term maths revision EEM evbwh.pptx
Final term maths revision EEM evbwh.pptx
 
643a4b39c9460_ppt.pptx
643a4b39c9460_ppt.pptx643a4b39c9460_ppt.pptx
643a4b39c9460_ppt.pptx
 
Slot A Analytical Questions.pdf
Slot A Analytical Questions.pdfSlot A Analytical Questions.pdf
Slot A Analytical Questions.pdf
 
Electron Scattering in Copper.pdf
Electron Scattering in Copper.pdfElectron Scattering in Copper.pdf
Electron Scattering in Copper.pdf
 
Chemistry Atomic spectra with numericals
Chemistry Atomic spectra with numericalsChemistry Atomic spectra with numericals
Chemistry Atomic spectra with numericals
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Material science 6.pptx
Material science 6.pptxMaterial science 6.pptx
Material science 6.pptx
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 
Ch1
Ch1Ch1
Ch1
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 

More from sunmo

Temple
TempleTemple
Templesunmo
 
Unit II
Unit IIUnit II
Unit IIsunmo
 
Unit i
Unit i Unit i
Unit i sunmo
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSsunmo
 
Semi conductors
Semi conductorsSemi conductors
Semi conductorssunmo
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elementssunmo
 

More from sunmo (6)

Temple
TempleTemple
Temple
 
Unit II
Unit IIUnit II
Unit II
 
Unit i
Unit i Unit i
Unit i
 
CONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICSCONDUCTING MATERIALS-BASICS
CONDUCTING MATERIALS-BASICS
 
Semi conductors
Semi conductorsSemi conductors
Semi conductors
 
Electron configuration for all elements
Electron configuration for all elementsElectron configuration for all elements
Electron configuration for all elements
 

Recently uploaded

Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Semiconductor Properties

  • 1. 1.In a P-type Ge ni = 2.1 × 1019 m-3,density of boron = 4.5 × 1023 atoms m-3.The electron and hole mobility are 0.4 and0.2 m2 V-1 s-1 respectively. What is its conductivity before and after the addition of boron atoms?<br />Given data:<br />ni = 2.1 × 1019 m-3<br />µe= 0.4 m2 V-1 s-1<br />µh= 0.2 m2 V-1 s-1<br />nboron = 4.5 × 1023 atoms m-3<br />Solution:<br /> Before adding boron atoms, the semiconductor is an intrinsic SC<br />σi = ni e (µe + µh)<br />= 2.1×1019×1.6×10-19× (0.4+0.2)<br /> Before adding boron atoms, the semiconductor becomes a P-type SC<br />σi = nboron e µh<br />= 4.5 × 1023×1.6×10-19×0.2<br />2. Silicon contains 5 × 1028 atoms m-3.In a n-type Si sample the donor concentration is 1 atom per 2.5 × 107 Si atoms. Find out the position of Fermi level at 300 K? Assume that effective mass of an electron is equal to the free electron mass.<br />Given data:<br />nSilicon = 5 × 1028 atoms m-3<br />The donor concentration is 1 atom per 2.5 × 107 Si atoms<br />T=300 K<br />Eg(Si) = 1.1 eV=1.1×1.6×10-19 J = 1.76×10-19 J<br />me = mh = mo = 9.1×10-31 kg<br />Solution:<br />Donor atoms per m3 (Nd) = 5 × 10282.5 × 107<br /> =<br />Fermi energy for n-type SC<br />Ef = Ed+Ec2 + kbT lnNd22πmekb Th232<br />= Eg2 + kbT lnNd22πmekb Th232<br />=1.76×10-19 2 + 1.38×10-23×300×ln2 × 102122×3.14×9.1×10-31×1.38×10-23×3006.625×10-34232 <br />=<br />3. Determine the density of the donor atoms which have to be added to intrinsic Ge to make it a n-type material of resistivity 0.19×10-2 Ωm. It is given that the mobility of electrons in the n-type SC is 0.325m2V-1s-1.<br />Given data:<br />Resistivity ρ = 0.19×10-2 Ωm<br />Mobility µe= 0.325 m2 V-1 s-1<br />Solution:<br />σe = ne e µe <br />ne= σeeμe<br />= 1ρeμe<br />= 10.19×10-2×1.6×10-19×0.325<br />4. Consider a sample of n-type silicon with Nd=1021 /m3.Determine the electron and hole densities at 300 K. The intrinsic carrier concentration for Si is 9.8 ×1015/m3.<br />Given data:<br />Nd = 1021 /m3<br />ni = 9.8 ×1015/m3<br />Solution:<br />ni2 = ne×nh<br />It is n-type SC, so Nd = ne<br />(density of donor level electrons = density of electron in conduction band)<br />ne= 1021 /m3<br />nh= ni2ne<br />= 9.8×101521021<br /> <br /> 5. For intrinsic Si, the room temperature electrical conductivity is 4×10-4 Ω-1 m-1.The electron and hole mobilities are 0.14 and 0.04 m2V-1s-1 respectively. Compute electron and hole concentrations at room temperature.<br />Given data:<br />σi = 4 × 10-4 Ω-1 m-1<br />µe= 0.14 m2 V-1 s-1<br />µh= 0.04 m2 V-1 s-1<br />Solution:<br /> σi = ni e (µe + µh)<br />ni= σie(μe+μh)<br />= 4×10-41.6×10-19×(0.14+0.04)<br />6. The intrinsic carrier density at room temperature in Ge is 2.37 ×1019 m-3. If the electron and hole mobilities are 0.38 and 0.18 m2V-1s-1 respectively. Calculate its resistivity.<br />Given data:<br />ni = 2.37 × 1019 m-3<br />µe= 0.38 m2 V-1 s-1<br />µh= 0.18 m2 V-1 s-1<br />Solution:<br /> σi = ni e (µe + µh)<br />ρi= 1σi<br />7. The electron and hole mobilities in In-Sb SC are 6 and 0.2 m2V-1s-1 respectively. At room temperature resistivity of In-Sb is 2×10-4 Ωm. Assuming that the material is intrinsic, determine its intrinsic carrier density at room temperature.<br />Given data:<br />ρi = 2 × 10-4 Ωm<br />µe= 6 m2 V-1 s-1<br />µh= 0.2 m2 V-1 s-1<br />Solution:<br /> σi = ni e (µe + µh)<br />ρi= 1σi<br />ni= 1ρie(μe+μh)<br />8. The energy gap of Si is 1.1 eV. Its electron and hole mobilities at room temperature are 0.48 and 0.13 m2V-1s-1 respectively. Evaluate its conductivity.<br />Given data:<br />Eg = 1.1 eV= 1.1×1.6×10-19 J = 1.76×10-19 J<br />µe= 0.48 m2 V-1 s-1<br />µh= 0.13 m2 V-1 s-1<br />Solution:<br />σi = ni e (µe + µh)<br />ni= 22πmekb Th232e-Eg2kbT<br />Assuming me = mh = mo = 9.1×10-31 kg<br />= 22×3.14×9.1×10-31×1.38×10-23×3006.625×10-34232e-1.76×10-192×1.38×10-23×300<br />9. For Si SC with band gap energy is 1.2 eV. Determine the position of Fermi level at 300K.If me=0.12 mo and mh=0.28mo.<br />Given data:<br />T=300 K<br />Eg(Si) = 1.2 eV=1.1×1.6×10-19 J = 1.92×10-19 J<br />me = 0.12mo <br />mh = 0.28mo <br />Solution:<br />Ef= Eg2 + 3kbT4 lnmhme<br />= 1.92×10-192 + (3×1.38×10-23×300)4 ln0.28 mo0.12mo<br />10. In an intrinsic SC, the energy gap is1.2 eV. What is the ratio between its conductivity at 600 K and that at 300 K.<br />Given data:<br />T1=600 K<br />T2=300 K<br />Eg(Si) = 1.2 eV=1.2×1.6×10-19 J = 1.92×10-19 J<br />Solution:<br />σ = Ce-Eg2kbT<br />Let σ1 be the electrical conductivity at T1 K and σ2 the electrical conductivity at T2 K. <br />σ1 = Ce-Eg2kbT1<br />σ2 = Ce-Eg2kbT2<br /> σ1σ2 = e-Eg2kb1T1- 1T2<br /> = e-1.92×10-192×1.38×10-231600 - 1300<br />Note: logex = lnx =2.302 × log10x<br />11. At 20oc the conductivity of Ge is 2 Ω-1m-1. Find the conductivity of Ge at 40oc.Band gap energy of Ge is 0.72 eV.<br />Given data:<br />T1=20oc =293 K<br />σ1 =2 Ω-1m-1<br />T2=40oc = 313 K<br />Eg(Si) = 0.72 eV=0.72×1.6×10-19 J = 1.152×10-19 J<br />Solution:<br />Let σ1 be the electrical conductivity at T1 K and σ2 the electrical conductivity at T2 K. <br />σ1 = Ce-Eg2kbT1<br />σ2 = Ce-Eg2kbT2<br /> σ1σ2 = e-Eg2kb1T1- 1T2<br />σ2= σ1 eEg2kb1T1- 1T2<br />12. The band gap energy of intrinsic SCs A and B are0.36eV and 0.72 eV respectively. Compare the intrinsic career density of A and B at 300 K.<br />Given data:<br />T= 300 K<br />Eg1 = 0.36 eV=0.36×1.6×10-19 J = 0.576×10-19 J<br />Eg2 = 0.72 eV=0.72×1.6×10-19 J = 1.152×10-19 J<br />Solution:<br />σiA = niA e (µe + µh)<br />σiB = niB e (µe + µh)<br /> σiAσiB= niAe(μe+μh)niBe(μe+μh)<br />σiAσiB= niA niB<br />We know,<br />σiA = Ce-Eg12kbT<br />σiB = Ce-Eg22kbT<br />niA niB= σiAσiB<br />= eEg2-Eg12kbT<br />13. Determine the density of the donor atoms which have to be added to intrinsic Ge to make it an n-type material of resistivity 0.19×10-2Ωm. It is given that the mobility of electrons in the n-type SC is 0.325m2V-1s-1<br />Given data:<br />ρ = 0.19 × 10-2 Ωm<br />µe= 0.325 m2 V-1 s-1<br />Solution:<br />µe= σenee <br />ne= σeµee& σe = 1ρ<br />=10.19×10-2×0.325×1.6×10-19<br />14. The hall coefficient of certain Si specimen was found to be -7.35×10-5 C-1m3 from 100 to 400 K. Determine the nature of the SC if the conductivity was found to be 200 Ω-1m-1.Calculate the density and mobility of the charge carrier.<br />Given data:<br />Rh = -7.35×10-5 C-1m3<br />σe = 200 Ω-1m-1<br />Solution:<br />The negative sign of the hall coefficient indicates that the nature of the SC is n-type.<br />ne=1.18Rhe<br />= 1.187.35×10-5×1.6×10-19<br />µe= σenee <br />15. An electric field of 100 Vm-1 is applied to a sample of n-type SC whose hall coefficient is -0.0125 C-1m3.Determine the current density in the sample, assuming electron mobility to be 0.36 m2 V-1 s-1.<br />Given data:<br />Rh = -0.0125 C-1m3<br />Eh = 100 Vm-1<br />µe= 0.36 m2 V-1 s-1<br />Solution:<br />ne= 1.18Rhe<br />σe= ne e µe<br />J= σe E<br />16.A Si plate of thickness 1mm, breadth 10mm and length 100mm is placed in a magnetic field of 0.5 Wbm-2 acting perpendicular to its thickness. If 10-2 A current flows along its length, calculate the hall coefficient, if the hall voltage developed is 1.83 mV.<br />Given data:<br />t = 1 mm = 0.001 m<br />B= 0.5 Wbm-2<br />I = 10-2 A<br />Vh = 1.83 mV = 1.83 × 10-3 V<br />Solution:<br />Rh= VhtIB<br /> = 1.83×10-3×0.00110-2×0.5<br />