SlideShare a Scribd company logo
Scanning Speed Effect on Mechanical Properties
of Ti-6Al-4V Alloy Processed by Electron Beam
Additive Manufacturing
Xiaoqing Wang, Xibing Gong , Kevin Chou
Mechanical Engineering Department
The University of Alabama
June 11, 2015
1
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
2
Introduction of EBAM
 1997, Arcam in Sweden
 Freedom of design
 High productivity
 Excellent material properties
 Too-less manufacturing
3
Arcam A2X
http://www.arcam.com/technology/products/arcam-a2x-3/
 Making full-density functional metallic parts or cellular parts
 Complex and strong components used in aerospace industries and
medical implant (Orthopedic)
4
Introduction of EBAM
Electrons
Kinetic energy: ~ 60 KeV
Temperature: > 2500 °C
In vacuum environment
Layer thickness: 0.05 ~ 0.2 mm
Manufacturing process:
Powder spreading
Pre-hearting
Contour melting
Hatch melting
Oak Ridge NL National Laboratory https://www.youtube.com/watch?v=M_qSnjKN7f8&list=PLUMSQMrg3EMs7uEcy-AF0ua087ErJH2r8
5
Introduction of EBAM
Electron beam technology
Fast beam translation
High scan speed
Efficient manufacturing
High energy beam
High melting capacity
Ultimately high productivity
Vacuum environment
Eliminates impurities
Warm process
Decreases the residual stresses & distortion
Arcam Q10
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
6
7
Motivation of this study
The effects of beam scanning speed
Microstructure
Mechanical properties (E, H)
Nanoindentation test
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
8
9
Experiments / Manufacturing of Ti-6Al-4V parts
Table 1. Compositions of Ti6Al4V powder
Composition Al V C Fe O N H Ti
Arcam Ti6Al4V
(wt. %)
6 4 0.03 0.1 0.15 0.01 0.003 Balance
*1 Torr=0.0013157895 atm
Powders diameter: 45 ~ 100 µm
10
Experiments / Manufacturing of Ti-6Al-4V parts
EBAM parts
(60 (L) × 5.5 (W) × 25 (H) mm )
Process parameters
Beam size: 0.5 mm
Upper chamber
 7.5 × 10−7
Toll*
 Keep beam quality
Fabrication chamber
 7.5 × 10−5 Torr
 Avoid oxidation
Layer thickness: ~ 70 um
*1 Torr=0.0013157895 atm
Y
Z
X
2
1
BuildingDirection
60 mm
25mm
5.5 mm
11
Samples preparation
Dimension (mm)
 11 (L) × 5.5 (W) ×7 (H)
Method
 Electrical discharge machining
12
Samples preparation
Mounted
Epoxy resin
Ground
Silicon carbide grinding paper
Size: 120 down to 1000 grits
Coolant: Water
Polish solution
Diamond suspension
Size: 6 ~ 0.5 μm
13
Samples preparation
For microstructural analysis
Etched solution
1 ml hydrofluoric acid (50 wt. %)
3 ml (60 wt. %) nitric acid
7 ml distilled water.
Observed & analyzed
optical microscope (OM)
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
14
15
Nanoindentation test
 Triboindenter
 Resolution: 0.04 nm
 Tip
Type: Berkovich
Radius: 100 nm
Included angle: 142.3°
16
Nanoindentation test
Applied Load Function
Load Function
Control: Open loop
Shape: Trapezoid
Maximum load: 5000 uN
Loading Rate: Constant
Dwell Time: 10 s
Unloading Rate: Constant
17
 Test
Pattern: 5 × 5
Spacing: 5 um
Thermal equilibrium time: 0.5 h
Test time: 3
Nanoindentation test
18
Nanoindentation test
 Calculation of the elastic modulus
1
𝐸𝐸𝑟𝑟
=
1−𝜈𝜈𝑖𝑖
2
𝐸𝐸𝑖𝑖
+
1−𝜈𝜈𝑠𝑠
2
𝐸𝐸𝑠𝑠
Indenter
 Poisson's ratio: νi=0.07
 Young’s modulus: Ei=1140 GPa
 Reduced elastic modulus: Er
 Ti-6Al-4V
 Poisson's ratio: νs=0.342
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
19
20
Results and discussion / Elastic modulus
COMPARABLE
128
118 117
108
120
114 116
112
80
90
100
110
120
130
140
[13] [11] [26] [7] [14] [15] Z X
E,GPa
Studies
21
Results and discussion / Hardness
 Literature: Microhardness
 Different hardness testing methods  Variance of the hardness
 Nanoindentation hardness vs. Microhardness (>10-30%)
COMPARABLE/HIGHER
4.0
3.5
3.1
4.2 4.0
5.9 6.0
2.0
3.0
4.0
5.0
6.0
[13] [11] [26] [20] [21] Z X
H,GPa
Studies
Qian et al. 2005
22
Results and discussion / H – Z-Plane
Beam Scanning Speed (↑)  Hardness (↑)
SF 65
5.59 5.87 6.11
5.33
3.0
4.0
5.0
6.0
7.0
20 36 50 65
H,GPa
Speed Function
23
Results and discussion / H – X-Plane
5.24
6.00
6.52
5.62
3.0
4.0
5.0
6.0
7.0
20 36 50 65
H,GPa
Speed Function
24
Results and discussion / E – Z-Plane
115.4 116.3 119.0
114.3
80
90
100
110
120
130
20 36 50 65
E,GPa
Speed Function
25
Results and discussion / E – X-Plane
Z-plane vs. X-plane
113.2 111.7
125.3
108.2
80
95
110
125
140
20 36 50 65
E,GPa
Speed Function
>
26
Results and discussion
The principle of the EBAM
 Layer by layer → Weaker bonding force on the
X-plane → Building defects (↑)
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
27
28
Microstructure / X-Plane
Prior β grains
Grew along the build direction
Across multiple layers
Typical in high-energy materials processing
 Align the steepest temperature gradients
29
Microstructures / X-Plane
Martensitic phase, α′, appears as plates
Transformed from the β phase / high cooling rate / >
410 ℃/s
Commonly observed in Ti-6Al-4V alloy / rapid
solidifications / selective laser melting & electron
beam welding
30
Microstructures / Z-plane
Equiaxed grains
31
Typical Microstructures / Z-plane
More homogeneous microstructure
β fraction (↓) / Nanoindentation more
opportunity @ α platelet / Hard
32
Width of the columnar prior β
109.7
41.6 37.1
48.6
85.2
50.1 48.7 50.8
20
60
100
140
180
220
260
300
10 20 30 40 50 60 70
0
20
40
60
80
100
120
140
Equiaxedβsize,µm
Speed Function
Columnarβwidth,µm
Columnar β
Equiaxed β
 Scanning speed (↑) → Columnar structure width (↓) / Certain point
 SF20 (214 mm/s) / 109.7 µm vs. SF65 (529 mm/s) / 37.1 µm
 Speed Function 65
33
Relation of Microstructure & Mechanical properties
Hall-Petch’s relation
 Finer Microstructure → Stronger
SF 65 samples
Coarser microstructure
Defects
 Insufficient melt
 Percentage of pores
 Melting pool & Melting temperature (↓)
 Beam scanning speed (↑) → Serious
Outline
Introduction of EBAM
Motive of this study
Experiments
Manufacturing & samples preparation
Nanoindenation test
Results and discussion
Mechanical properties
Microstructure analysis
Summary
34
35
Elastic Modulus: 111.7~119.0 Gpa
Hardness: 5.24~6.52 Gpa
EBAM vs. Wrought: Superior / Comparable
Z-plane vs. X-plane: > Strengths (E, H)
Summary
36
Effect of Speed function
Beam scanning speed (↑) → E & H (↑)
 Attributed to the finer microstructure
Optimized mechanical properties
 SF36 ~ SF50
Summary
37
Sponsor: NASA
No. NNX11AM11A
Collaborator: Advanced Manufacturing Team,
Marshall Space Flight Center,
Huntsville, AL
Acknowledgement
38
Thanks for your attention!
39
Reference
[1] Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, and
Wicker RB. Metal fabrication by additive manufacturing using laser and electron beam melting
technologies. Journal of Materials Science & Technology 2012; 28(1): 1-14.
[2] Harrysson O, Deaton B, Bardin J, West H, Cansizoglu O, Cormier D and Marcellin-Little D. Evaluation of
titanium implant components directly fabricated through electron beam melting technology. In: Proc.
Conf. Mater. Process. Med. Dev., 2005, pp.15-20.
[3] Parthasarathy J, Starly B, Raman S, and Christensen A. (2010). Mechanical evaluation of porous
titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of
Biomedical Materials 2010; 3(3): 249-259.
[4] Gong X, Lydon J, Cooper K and Chou K. Microstructure Analysis and Nanoindentation Characterization
of Ti-6Al-4V Parts from Electron Beam Additive Manufacturing. In: Proc. ASME 2014 Int. Mech. Eng.
Congr. Expo., 2014, pp.1-8.
[5] Gong X, Anderson T and Chou K. Review on powder-based electron beam additive manufacturing
technology. Manufacturing Review 2014; 1: 1-12.
[6] Ladani L and Roy L. Mechanical Behavior of Ti-6Al-4V Manufactured by Electron Beam Additive
Fabrication. In: Proc. ASME 2013 Inter. Manuf. Sci. Eng. Conf., 2013, pp. V001T001A001.
[7] Larosa MA, Jardini AL, Zavaglia CAdC, Kharmandayan P, Calderoni DR and Maciel Filho R.
Microstructural and Mechanical Characterization of a Custom-Built Implant Manufactured in Titanium
Alloy by Direct Metal Laser Sintering. Advances in Mechanical Engineering 2014; 2014:1-8.
[8] Mohammadhosseini A, Fraser D, Masood S and Jahedi M. Microstructure and mechanical properties of
Ti-6Al-4V manufactured by electron beam melting process. Materials Research Innovations 2013; 17:
s106-s112.
40
[9] Puebla K, Murr LE, Gaytan SM, Martinez E, Medina F and Wicker RB. Effect of melt scan rate on
microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Materials Sciences and
Applications 2012; 3: 259.
[10] Cheng X, Li S, Murr L, Zhang Z, Hao Y, Yang R, Medina F and Wicker R. Compression deformation
behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. Journal of the
Mechanical Behavior of Biomedical Materials 2012; 16: 153-162.
[11] Facchini L, Magalini E, Robotti P and Molinari A. Microstructure and mechanical properties of Ti-6Al-
4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyping Journal 2009;
15(3): 171-178.
[12] Murr L, Gaytan S, Medina F, Martinez E, Hernandez D, Martinez L, Lopez M, Wicker R and Collins S.
Effect of build parameters and build geometries on residual microstructures and mechanical properties
of Ti-6Al-4V components built by electron beam melting (EBM). In: Proc. 20th Solid Freeform Fabr.
Symp., 2009, pp.3-5.
[13] Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH,
Martinez E, Martinez JL, Stafford SW, Brown DK, Hoppe T, Meyers W, Lindhe U and Wicker RB.
Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical
prototypes compared to wrought Ti-6Al-4V. Materials Characterization 2009; 60(2): 96-105.
[14] Schroeder J. Advanced Manufacturing Technology Changes the Way Implants are Designed and
Produced. BoneZone 2006; 5(3): 17-20.
[15] Thundal S. Rapid Manufacturing of Orthopedic Implants. Advanced Material Process 2008; 166(10):
60-62.
Reference
41
[16] Murr L, Gaytan S, Medina F, Lopez M, Martinez E and Wicker R. Additive Layered Manufacturing of
Reticulated Ti-6Al-4V Biomedical Mesh Structures by Electron Beam Melting. In: Proc. 25th Southern
Biomed. Eng. Conf., 2009, pp.23-28.
[17] Koike M, Greer P, Owen K, Lilly, G., Murr LE, Gaytan SM, Martinez E and Okabe T. Evaluation of
Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser
Beam Melting. Materials 2011; 4(10): 1776-1792.
[18] Gong X, Lydon J, Cooper K and Chou K. Beam Speed Effects on Ti-6Al-4V Microstructures in
Electron Beam Additive Manufacturing. Journal of Materials Research 2014; 29(17): 1951-1959.
[19] Zäh MF and Lutzmann S. Modelling and simulation of electron beam melting. Production
Engineering 2010; 4(1): 15-23.
[20] Xue W, Wang C, Chen R and Deng Z. Structure and properties characterization of ceramic coatings
produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution. Materials Letters 2002;
52(6): 435-441.
[21] Barbieri F, Otani C, Lepienski C, Urruchi W, Maciel H and Petraconi G. Nanoindentation study of
Ti6Al4V alloy nitrided by low intensity plasma jet process. Vacuum 2002; 67(3): 457-461.
[22] Karlsson J, Snis A, Engqvist H. and Lausmaa J. Characterization and comparison of materials
produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. Journal of
Materials Processing Technology 2013; 213(12): 2109-2118.
[23] Gong X, Lydon J, Cooper K and Chou K. Characterization of Ti-6Al-4V powder in electron beam
melting additive manufacturing. International Journal of Powder Metallurgy 2015; 51(1): 1-10.
[24] Arcam (2008). Ti6Al4V Titanium Alloy, http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-
Titanium-Alloy.pdf.
Reference
42
[25] Gong X and Chou K. Characterization of Sintered Ti-6Al-4V Powders in Electron Beam Additive
Manufacturing. In: Proc. ASME 2013 Inter. Manuf. Sci. Eng. Conf., 2013, pp.V001T001A002.
[26] Baufeld B and Van der Biest O. Mechanical properties of Ti-6Al-4V specimens produced by shaped
metal deposition. Science and Technology of Advanced Materials 2009; 10(1): 015008.
[27] Qian L, Li M, Zhou Z, Yang H. and Shi X. Comparison of nano-indentation hardness to
microhardness. Surface and Coatings Technology 2005; 195(2-3): 264-271.
[28] Li R, Riester L, Watkins TR, Blau PJ and Shih AJ. Metallurgical analysis and nanoindentation
characterization of Ti-6Al-4V workpiece and chips in high-throughput drilling. Materials Science and
Engineering: A 2008; 472(1-2): 115-124.
[29] Ahmed T and Rack H. Phase transformations during cooling in α+β titanium alloys. Materials
Science and Engineering: A 1998; 243(1): 206-211.
[30] Liu S, Liu W, Harooni M, Ma J and Kovacevic R. Real-time monitoring of laser hot-wire cladding of
Inconel 625. Optics & Laser Technology 2014; 62(0): 124-134.
[31] Ma J, Kong F, Liu W, Carlson B and Kovacevic R. Study on the strength and failure modes of laser
welded galvanized DP980 steel lap joints. Journal of Materials Processing Technology 2014; 214(8):
1696-1709.
Reference

More Related Content

What's hot

Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SAEstimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
IJRES Journal
 
Dilip Kumar Bagal Journal
Dilip Kumar Bagal JournalDilip Kumar Bagal Journal
Dilip Kumar Bagal Journal
Dilip Bagal
 
Wire Arc Additive Manufacturing
Wire Arc Additive ManufacturingWire Arc Additive Manufacturing
Wire Arc Additive Manufacturing
Batuhan Özçalık
 
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_20143rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014Bruno Charles De Cooman
 
Additive Manufacturing Simulation - Design and Process
Additive Manufacturing Simulation - Design and ProcessAdditive Manufacturing Simulation - Design and Process
Additive Manufacturing Simulation - Design and Process
Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...Solomon Berman
 
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
IJMER
 
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESSREVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
International Research Journal of Modernization in Engineering Technology and Science
 
2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities OverviewSolomon Berman
 
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015Bruno Charles De Cooman
 
PEO Applications
PEO ApplicationsPEO Applications
PEO Applications
Tony Schrank
 
23 steel 29
23 steel  2923 steel  29
23 steel 29
Alexander Decker
 
Ht3513491354
Ht3513491354Ht3513491354
Ht3513491354
IJERA Editor
 
Multipass Friction Stir Processing
Multipass Friction Stir Processing Multipass Friction Stir Processing
Multipass Friction Stir Processing
Prashant Soni
 
Effect of process parameters using friction stir processing /welding of steel...
Effect of process parameters using friction stir processing /welding of steel...Effect of process parameters using friction stir processing /welding of steel...
Effect of process parameters using friction stir processing /welding of steel...
Husain Mehdi
 
Ak4201243249
Ak4201243249Ak4201243249
Ak4201243249
IJERA Editor
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing
Saurabh Suman
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...mexat
 
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
Flexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll BarsFlexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll Bars
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
Padmanabhan Krishnan
 

What's hot (20)

Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SAEstimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
Estimation Of Optimum Dilution In The GMAW Process Using Integrated ANN-SA
 
Dilip Kumar Bagal Journal
Dilip Kumar Bagal JournalDilip Kumar Bagal Journal
Dilip Kumar Bagal Journal
 
Wire Arc Additive Manufacturing
Wire Arc Additive ManufacturingWire Arc Additive Manufacturing
Wire Arc Additive Manufacturing
 
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_20143rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014
3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014
 
Additive Manufacturing Simulation - Design and Process
Additive Manufacturing Simulation - Design and ProcessAdditive Manufacturing Simulation - Design and Process
Additive Manufacturing Simulation - Design and Process
 
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...
Surface Modification of Aluminum, Titanium and Magnesium Alloys by Plasma Ele...
 
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
Improvement of Surface Roughness of Nickel Alloy Specimen by Removing Recast ...
 
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESSREVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
REVIEW ON PROCESS PARAMETER OPTIMIZATION FOR FORGING PROCESS
 
2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview
 
AIAA presentation
AIAA presentationAIAA presentation
AIAA presentation
 
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015
IUMRS-ICAM 2015_Deformation Mechansims in IA Medium Mn Steel_OCT 25-29_2015
 
PEO Applications
PEO ApplicationsPEO Applications
PEO Applications
 
23 steel 29
23 steel  2923 steel  29
23 steel 29
 
Ht3513491354
Ht3513491354Ht3513491354
Ht3513491354
 
Multipass Friction Stir Processing
Multipass Friction Stir Processing Multipass Friction Stir Processing
Multipass Friction Stir Processing
 
Effect of process parameters using friction stir processing /welding of steel...
Effect of process parameters using friction stir processing /welding of steel...Effect of process parameters using friction stir processing /welding of steel...
Effect of process parameters using friction stir processing /welding of steel...
 
Ak4201243249
Ak4201243249Ak4201243249
Ak4201243249
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
 
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
Flexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll BarsFlexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll Bars
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
 

Similar to NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy processed by electron beam additive manufacturing

SAE 2015 World Congress: Chat With The Experts
SAE 2015 World Congress: Chat With The ExpertsSAE 2015 World Congress: Chat With The Experts
SAE 2015 World Congress: Chat With The Experts
Dave Palmer, P.E.
 
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURINGRETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
JyothiPrasadBM
 
CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14
SME_Engagement
 
C012641821
C012641821C012641821
C012641821
IOSR Journals
 
C012641821
C012641821C012641821
C012641821
IOSR Journals
 
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
iosrjce
 
M.tech project progress seminar i__sohini
M.tech project progress seminar  i__sohiniM.tech project progress seminar  i__sohini
M.tech project progress seminar i__sohini
Krushna Gouda
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir weldingluyenkimnet
 
Present. SOFE '17 China: Talk in SOFE Symp 2017 Prospects for stellarators b...
Present. SOFE '17 China: Talk in SOFE Symp 2017  Prospects for stellarators b...Present. SOFE '17 China: Talk in SOFE Symp 2017  Prospects for stellarators b...
Present. SOFE '17 China: Talk in SOFE Symp 2017 Prospects for stellarators b...
Vicent_Net
 
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
Gurudatt Rao
 
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloyThermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
Saurabh Chaudhary
 
Review of physical vapor deposition coatings
Review of physical vapor deposition coatingsReview of physical vapor deposition coatings
Review of physical vapor deposition coatings
Rathiram Naik
 
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100 HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
IAEME Publication
 
Presentation
PresentationPresentation
Presentation
KayDrive
 
Presentation
PresentationPresentation
Presentation
Marium Asim
 
Presentation
PresentationPresentation
Presentation
Marium Asim
 
Optimization of machining parameters in edm of cfrp composite using taguchi t...
Optimization of machining parameters in edm of cfrp composite using taguchi t...Optimization of machining parameters in edm of cfrp composite using taguchi t...
Optimization of machining parameters in edm of cfrp composite using taguchi t...
IAEME Publication
 
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET Journal
 

Similar to NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy processed by electron beam additive manufacturing (20)

SAE 2015 World Congress: Chat With The Experts
SAE 2015 World Congress: Chat With The ExpertsSAE 2015 World Congress: Chat With The Experts
SAE 2015 World Congress: Chat With The Experts
 
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURINGRETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
RETROFITMENT OF LASER CLADDING WITH CNC MACHINES FOR HYBRID LAYER MANUFACTURING
 
CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14CSIRO Additive Manufacturing - Aug 14
CSIRO Additive Manufacturing - Aug 14
 
C012641821
C012641821C012641821
C012641821
 
C012641821
C012641821C012641821
C012641821
 
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
Optimization of Weld Bead Geometry in Submerged Arc Welds Deposited On En24 S...
 
M.tech project progress seminar i__sohini
M.tech project progress seminar  i__sohiniM.tech project progress seminar  i__sohini
M.tech project progress seminar i__sohini
 
Sarava PhD Viva Presentation
Sarava PhD Viva PresentationSarava PhD Viva Presentation
Sarava PhD Viva Presentation
 
Friction stir welding
Friction stir weldingFriction stir welding
Friction stir welding
 
Present. SOFE '17 China: Talk in SOFE Symp 2017 Prospects for stellarators b...
Present. SOFE '17 China: Talk in SOFE Symp 2017  Prospects for stellarators b...Present. SOFE '17 China: Talk in SOFE Symp 2017  Prospects for stellarators b...
Present. SOFE '17 China: Talk in SOFE Symp 2017 Prospects for stellarators b...
 
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
Complex Oxide Based Resistance RAM(RRAM)_Thesis Defense_2012
 
3-IJRapidM50206_Butt et al
3-IJRapidM50206_Butt et al3-IJRapidM50206_Butt et al
3-IJRapidM50206_Butt et al
 
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloyThermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
Thermal stress and surface integrity Modeling in Micro-EDM on Titanium alloy
 
Review of physical vapor deposition coatings
Review of physical vapor deposition coatingsReview of physical vapor deposition coatings
Review of physical vapor deposition coatings
 
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100 HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
HEAT FLOW PREDICTION IN FRICTION STIR WELDED ALUMINIUM ALLOY 1100
 
Presentation
PresentationPresentation
Presentation
 
Presentation
PresentationPresentation
Presentation
 
Presentation
PresentationPresentation
Presentation
 
Optimization of machining parameters in edm of cfrp composite using taguchi t...
Optimization of machining parameters in edm of cfrp composite using taguchi t...Optimization of machining parameters in edm of cfrp composite using taguchi t...
Optimization of machining parameters in edm of cfrp composite using taguchi t...
 
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
IRJET- Experimental Investigation of Wear Behaviour of Aluminium Metal Matrix...
 

Recently uploaded

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 

Recently uploaded (20)

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 

NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy processed by electron beam additive manufacturing

  • 1. Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing Xiaoqing Wang, Xibing Gong , Kevin Chou Mechanical Engineering Department The University of Alabama June 11, 2015 1
  • 2. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 2
  • 3. Introduction of EBAM  1997, Arcam in Sweden  Freedom of design  High productivity  Excellent material properties  Too-less manufacturing 3 Arcam A2X http://www.arcam.com/technology/products/arcam-a2x-3/  Making full-density functional metallic parts or cellular parts  Complex and strong components used in aerospace industries and medical implant (Orthopedic)
  • 4. 4 Introduction of EBAM Electrons Kinetic energy: ~ 60 KeV Temperature: > 2500 °C In vacuum environment Layer thickness: 0.05 ~ 0.2 mm Manufacturing process: Powder spreading Pre-hearting Contour melting Hatch melting Oak Ridge NL National Laboratory https://www.youtube.com/watch?v=M_qSnjKN7f8&list=PLUMSQMrg3EMs7uEcy-AF0ua087ErJH2r8
  • 5. 5 Introduction of EBAM Electron beam technology Fast beam translation High scan speed Efficient manufacturing High energy beam High melting capacity Ultimately high productivity Vacuum environment Eliminates impurities Warm process Decreases the residual stresses & distortion Arcam Q10
  • 6. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 6
  • 7. 7 Motivation of this study The effects of beam scanning speed Microstructure Mechanical properties (E, H) Nanoindentation test
  • 8. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 8
  • 9. 9 Experiments / Manufacturing of Ti-6Al-4V parts Table 1. Compositions of Ti6Al4V powder Composition Al V C Fe O N H Ti Arcam Ti6Al4V (wt. %) 6 4 0.03 0.1 0.15 0.01 0.003 Balance *1 Torr=0.0013157895 atm Powders diameter: 45 ~ 100 µm
  • 10. 10 Experiments / Manufacturing of Ti-6Al-4V parts EBAM parts (60 (L) × 5.5 (W) × 25 (H) mm ) Process parameters Beam size: 0.5 mm Upper chamber  7.5 × 10−7 Toll*  Keep beam quality Fabrication chamber  7.5 × 10−5 Torr  Avoid oxidation Layer thickness: ~ 70 um *1 Torr=0.0013157895 atm
  • 11. Y Z X 2 1 BuildingDirection 60 mm 25mm 5.5 mm 11 Samples preparation Dimension (mm)  11 (L) × 5.5 (W) ×7 (H) Method  Electrical discharge machining
  • 12. 12 Samples preparation Mounted Epoxy resin Ground Silicon carbide grinding paper Size: 120 down to 1000 grits Coolant: Water Polish solution Diamond suspension Size: 6 ~ 0.5 μm
  • 13. 13 Samples preparation For microstructural analysis Etched solution 1 ml hydrofluoric acid (50 wt. %) 3 ml (60 wt. %) nitric acid 7 ml distilled water. Observed & analyzed optical microscope (OM)
  • 14. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 14
  • 15. 15 Nanoindentation test  Triboindenter  Resolution: 0.04 nm  Tip Type: Berkovich Radius: 100 nm Included angle: 142.3°
  • 16. 16 Nanoindentation test Applied Load Function Load Function Control: Open loop Shape: Trapezoid Maximum load: 5000 uN Loading Rate: Constant Dwell Time: 10 s Unloading Rate: Constant
  • 17. 17  Test Pattern: 5 × 5 Spacing: 5 um Thermal equilibrium time: 0.5 h Test time: 3 Nanoindentation test
  • 18. 18 Nanoindentation test  Calculation of the elastic modulus 1 𝐸𝐸𝑟𝑟 = 1−𝜈𝜈𝑖𝑖 2 𝐸𝐸𝑖𝑖 + 1−𝜈𝜈𝑠𝑠 2 𝐸𝐸𝑠𝑠 Indenter  Poisson's ratio: νi=0.07  Young’s modulus: Ei=1140 GPa  Reduced elastic modulus: Er  Ti-6Al-4V  Poisson's ratio: νs=0.342
  • 19. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 19
  • 20. 20 Results and discussion / Elastic modulus COMPARABLE 128 118 117 108 120 114 116 112 80 90 100 110 120 130 140 [13] [11] [26] [7] [14] [15] Z X E,GPa Studies
  • 21. 21 Results and discussion / Hardness  Literature: Microhardness  Different hardness testing methods  Variance of the hardness  Nanoindentation hardness vs. Microhardness (>10-30%) COMPARABLE/HIGHER 4.0 3.5 3.1 4.2 4.0 5.9 6.0 2.0 3.0 4.0 5.0 6.0 [13] [11] [26] [20] [21] Z X H,GPa Studies Qian et al. 2005
  • 22. 22 Results and discussion / H – Z-Plane Beam Scanning Speed (↑)  Hardness (↑) SF 65 5.59 5.87 6.11 5.33 3.0 4.0 5.0 6.0 7.0 20 36 50 65 H,GPa Speed Function
  • 23. 23 Results and discussion / H – X-Plane 5.24 6.00 6.52 5.62 3.0 4.0 5.0 6.0 7.0 20 36 50 65 H,GPa Speed Function
  • 24. 24 Results and discussion / E – Z-Plane 115.4 116.3 119.0 114.3 80 90 100 110 120 130 20 36 50 65 E,GPa Speed Function
  • 25. 25 Results and discussion / E – X-Plane Z-plane vs. X-plane 113.2 111.7 125.3 108.2 80 95 110 125 140 20 36 50 65 E,GPa Speed Function >
  • 26. 26 Results and discussion The principle of the EBAM  Layer by layer → Weaker bonding force on the X-plane → Building defects (↑)
  • 27. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 27
  • 28. 28 Microstructure / X-Plane Prior β grains Grew along the build direction Across multiple layers Typical in high-energy materials processing  Align the steepest temperature gradients
  • 29. 29 Microstructures / X-Plane Martensitic phase, α′, appears as plates Transformed from the β phase / high cooling rate / > 410 ℃/s Commonly observed in Ti-6Al-4V alloy / rapid solidifications / selective laser melting & electron beam welding
  • 31. 31 Typical Microstructures / Z-plane More homogeneous microstructure β fraction (↓) / Nanoindentation more opportunity @ α platelet / Hard
  • 32. 32 Width of the columnar prior β 109.7 41.6 37.1 48.6 85.2 50.1 48.7 50.8 20 60 100 140 180 220 260 300 10 20 30 40 50 60 70 0 20 40 60 80 100 120 140 Equiaxedβsize,µm Speed Function Columnarβwidth,µm Columnar β Equiaxed β  Scanning speed (↑) → Columnar structure width (↓) / Certain point  SF20 (214 mm/s) / 109.7 µm vs. SF65 (529 mm/s) / 37.1 µm  Speed Function 65
  • 33. 33 Relation of Microstructure & Mechanical properties Hall-Petch’s relation  Finer Microstructure → Stronger SF 65 samples Coarser microstructure Defects  Insufficient melt  Percentage of pores  Melting pool & Melting temperature (↓)  Beam scanning speed (↑) → Serious
  • 34. Outline Introduction of EBAM Motive of this study Experiments Manufacturing & samples preparation Nanoindenation test Results and discussion Mechanical properties Microstructure analysis Summary 34
  • 35. 35 Elastic Modulus: 111.7~119.0 Gpa Hardness: 5.24~6.52 Gpa EBAM vs. Wrought: Superior / Comparable Z-plane vs. X-plane: > Strengths (E, H) Summary
  • 36. 36 Effect of Speed function Beam scanning speed (↑) → E & H (↑)  Attributed to the finer microstructure Optimized mechanical properties  SF36 ~ SF50 Summary
  • 37. 37 Sponsor: NASA No. NNX11AM11A Collaborator: Advanced Manufacturing Team, Marshall Space Flight Center, Huntsville, AL Acknowledgement
  • 38. 38 Thanks for your attention!
  • 39. 39 Reference [1] Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, and Wicker RB. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science & Technology 2012; 28(1): 1-14. [2] Harrysson O, Deaton B, Bardin J, West H, Cansizoglu O, Cormier D and Marcellin-Little D. Evaluation of titanium implant components directly fabricated through electron beam melting technology. In: Proc. Conf. Mater. Process. Med. Dev., 2005, pp.15-20. [3] Parthasarathy J, Starly B, Raman S, and Christensen A. (2010). Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials 2010; 3(3): 249-259. [4] Gong X, Lydon J, Cooper K and Chou K. Microstructure Analysis and Nanoindentation Characterization of Ti-6Al-4V Parts from Electron Beam Additive Manufacturing. In: Proc. ASME 2014 Int. Mech. Eng. Congr. Expo., 2014, pp.1-8. [5] Gong X, Anderson T and Chou K. Review on powder-based electron beam additive manufacturing technology. Manufacturing Review 2014; 1: 1-12. [6] Ladani L and Roy L. Mechanical Behavior of Ti-6Al-4V Manufactured by Electron Beam Additive Fabrication. In: Proc. ASME 2013 Inter. Manuf. Sci. Eng. Conf., 2013, pp. V001T001A001. [7] Larosa MA, Jardini AL, Zavaglia CAdC, Kharmandayan P, Calderoni DR and Maciel Filho R. Microstructural and Mechanical Characterization of a Custom-Built Implant Manufactured in Titanium Alloy by Direct Metal Laser Sintering. Advances in Mechanical Engineering 2014; 2014:1-8. [8] Mohammadhosseini A, Fraser D, Masood S and Jahedi M. Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process. Materials Research Innovations 2013; 17: s106-s112.
  • 40. 40 [9] Puebla K, Murr LE, Gaytan SM, Martinez E, Medina F and Wicker RB. Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Materials Sciences and Applications 2012; 3: 259. [10] Cheng X, Li S, Murr L, Zhang Z, Hao Y, Yang R, Medina F and Wicker R. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials 2012; 16: 153-162. [11] Facchini L, Magalini E, Robotti P and Molinari A. Microstructure and mechanical properties of Ti-6Al- 4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyping Journal 2009; 15(3): 171-178. [12] Murr L, Gaytan S, Medina F, Martinez E, Hernandez D, Martinez L, Lopez M, Wicker R and Collins S. Effect of build parameters and build geometries on residual microstructures and mechanical properties of Ti-6Al-4V components built by electron beam melting (EBM). In: Proc. 20th Solid Freeform Fabr. Symp., 2009, pp.3-5. [13] Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL, Stafford SW, Brown DK, Hoppe T, Meyers W, Lindhe U and Wicker RB. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Materials Characterization 2009; 60(2): 96-105. [14] Schroeder J. Advanced Manufacturing Technology Changes the Way Implants are Designed and Produced. BoneZone 2006; 5(3): 17-20. [15] Thundal S. Rapid Manufacturing of Orthopedic Implants. Advanced Material Process 2008; 166(10): 60-62. Reference
  • 41. 41 [16] Murr L, Gaytan S, Medina F, Lopez M, Martinez E and Wicker R. Additive Layered Manufacturing of Reticulated Ti-6Al-4V Biomedical Mesh Structures by Electron Beam Melting. In: Proc. 25th Southern Biomed. Eng. Conf., 2009, pp.23-28. [17] Koike M, Greer P, Owen K, Lilly, G., Murr LE, Gaytan SM, Martinez E and Okabe T. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting. Materials 2011; 4(10): 1776-1792. [18] Gong X, Lydon J, Cooper K and Chou K. Beam Speed Effects on Ti-6Al-4V Microstructures in Electron Beam Additive Manufacturing. Journal of Materials Research 2014; 29(17): 1951-1959. [19] Zäh MF and Lutzmann S. Modelling and simulation of electron beam melting. Production Engineering 2010; 4(1): 15-23. [20] Xue W, Wang C, Chen R and Deng Z. Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution. Materials Letters 2002; 52(6): 435-441. [21] Barbieri F, Otani C, Lepienski C, Urruchi W, Maciel H and Petraconi G. Nanoindentation study of Ti6Al4V alloy nitrided by low intensity plasma jet process. Vacuum 2002; 67(3): 457-461. [22] Karlsson J, Snis A, Engqvist H. and Lausmaa J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. Journal of Materials Processing Technology 2013; 213(12): 2109-2118. [23] Gong X, Lydon J, Cooper K and Chou K. Characterization of Ti-6Al-4V powder in electron beam melting additive manufacturing. International Journal of Powder Metallurgy 2015; 51(1): 1-10. [24] Arcam (2008). Ti6Al4V Titanium Alloy, http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V- Titanium-Alloy.pdf. Reference
  • 42. 42 [25] Gong X and Chou K. Characterization of Sintered Ti-6Al-4V Powders in Electron Beam Additive Manufacturing. In: Proc. ASME 2013 Inter. Manuf. Sci. Eng. Conf., 2013, pp.V001T001A002. [26] Baufeld B and Van der Biest O. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition. Science and Technology of Advanced Materials 2009; 10(1): 015008. [27] Qian L, Li M, Zhou Z, Yang H. and Shi X. Comparison of nano-indentation hardness to microhardness. Surface and Coatings Technology 2005; 195(2-3): 264-271. [28] Li R, Riester L, Watkins TR, Blau PJ and Shih AJ. Metallurgical analysis and nanoindentation characterization of Ti-6Al-4V workpiece and chips in high-throughput drilling. Materials Science and Engineering: A 2008; 472(1-2): 115-124. [29] Ahmed T and Rack H. Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering: A 1998; 243(1): 206-211. [30] Liu S, Liu W, Harooni M, Ma J and Kovacevic R. Real-time monitoring of laser hot-wire cladding of Inconel 625. Optics & Laser Technology 2014; 62(0): 124-134. [31] Ma J, Kong F, Liu W, Carlson B and Kovacevic R. Study on the strength and failure modes of laser welded galvanized DP980 steel lap joints. Journal of Materials Processing Technology 2014; 214(8): 1696-1709. Reference