DigitalGlobe Overview
December 2013

Kumar Navulur, PhD

1
DigitalGlobe Constellation
Quickbird

GeoEye-1

WorldView-1

WorldView-2

IKONOS

0.82 m GSD
150,000 km2 /day

WorldView-3

0.65 m GSD
200,000 km2 /day

0.41 m GSD
700,000 km2 /day

0.5 m GSD
1,500,000 km2 /day

0.46 m GSD
1,200,000 km2 /day

2014
0.31 m GSD
680,000 km2 /day

DigitalGlobe Proprietary and Business Confidential
DigitalGlobe Archive

4

2

0

0

0

0

0

0

0

0

Sq Km

3
WorldView2 & 3 VNIR and CAVIS VNIR bands are
optimized for different missions
1.0
0.9

yellow
590-630

coastal
400-452

blue
448-510

green
514-586

red
632-692

red-edge
706-746

NIR1
772-890

NIR2
866-954

0.8

WorldView2/3 – VNIR Bands
0.7
0.6

LDCM Panchromatic

LDCM

0.5
0.4

LDCM Blue

LDCM Green

LDCM Red

LDCM NIR

WorldView3 - CAVIS VNIR Bands
897-927
water-2

0.3
0.2
0.1

405-420
Desert Clouds

459-479
Blue
Aerosol-1

525-585
green

635-685
Red
Aerosol-2

845-885
water-1

930-965
water-3

0.0
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Aeronet 10nm Bands

4
WorldView3 SWIR and CAVIS3 SWIR bands are
optimized for different missions
1.0

WorldView3 – 8 SWIR Bands
0.9

0.8

1640-1680
MS11

2145-2185 2235-2285
MS13
MS15

0.7
0.6

1195-1225
MS9

0.5

0.4

1550-1590
MS10
LDCM
Cirrus

1710-1750
MS12

2185-2225
MS14

2295-2365
MS16

LDCM SWIR 2

LDCM SWIR 1

WorldView3 - CAVIS3 SWIR Bands
2105-2245
Aerosol-3

0.3
0.2

0.1

1370-1410
CIRRUS

1620-1680
snow / cloud

1220-1252
Aerosol-NDVI

2105-2245
Aerosol-3

0.0
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40

Aeronet 10nm Bands

25nm

5
Satellite Spectral Comparison
MODIS
(250+ m)

ASTER

2 (R)

(15/30 m)

4 (NIR) backward

(1.2 / 3.7)
Coastal

CAVIS
(30 m)

300

3 (NIR) nadir

Red
Blue Yellow Edge

Green Red

Aerosol 1

Desert
Cloud

7 (SWIR 3)

9 (SWIR 5)

Stereo
1 (G)

WV-3

5 (SWIR 1)

6 (SWIR 2)

NIR 2

SWIR 2

NIR 1

Aerosol 2

SWIR 1

Water 2

SWIR 4

SWIR 3

NDVI - SWIR

Snow

10 (SWIR 6)

8
(SWIR4)

SWIR 6

SWIR 5

SWIR 8

SWIR 7

Aerosol 3
Cloud Height
Parallax

Green

500

Wavelength in nanometers

Water 1

700

Water 3

900

Cirrus

Aerosol 3

1100 1300 1500 1700 1900 2100 2300 2500
DigitalGlobe Proprietary and Business Confidential

6
CAMP processor enables high quality information &
insight extraction, and multi-temporal analysis-1
Color image of a typical 21km x 17km scene

Addressed Effects
• Opaque clouds
• Cirrus clouds
• Aerosols
• Water vapor
• Ice/Snow
• Shadows
• BRDF
Core Products
• Reflectance imagery
accurate to within 1%
absolute
• Utility masks located to
~1m CE90/LE90
4 km

visibility

11 km

7
CAMP processor enables high quality information &
insight extraction, and multi-temporal analysis-2
Aerosol variability on a typical 21km x 17km scene

Addressed Effects
• Opaque clouds
• Cirrus clouds
• Aerosols
• Water vapor
• Ice/Snow
• Shadows
• BRDF
Core Products
• Reflectance imagery
accurate to within 1%
absolute
• Utility masks located to
~1m CE90/LE90
4 km

visibility

11 km

8
CAMP processor enables high quality information &
insight extraction, and multi-temporal analysis-3
Atmospherically corrected color image of a typical 21km x 17km scene

Addressed Effects
• Opaque clouds
• Cirrus clouds
• Aerosols
• Water vapor
• Ice/Snow
• Shadows
• BRDF
Core Products
• Reflectance imagery
accurate to within 1%
absolute
• Utility masks located to
~1m CE90/LE90
4 km

visibility

11 km

9
Where are we headed: Enable Automated
Information Extraction
Water vapor
Distortion

Reflectance or Radiance

Enables
developing
spectral models
for automated
information
extraction

Reflectance

Aerosol
Distortion

Wavelength (nm)

Blue

Green

Red

Infrared

DigitalGlobe Proprietary and Business Confidential

10
NDVI values from TOA and surface reflectance

Water Vapor absorption

0.887
(~10%)

0.894
(~13%)

0.811
0.789

Scattering

11
NDVI from TOA reflectance
Longmont (August 10, 2011 – WV2)

NDVI from TOA reflectance

no vegetation

vigorous vegetation

12
NDVI from Surface Reflectance
Longmont (August 10, 2011 – WV2)

NDVI from surface reflectance

LAI: 0.56 [m2 /m2]

LAI: 4.53 [m2 /m2]

LAI: 3.72 [m2 /m2]
LAI: 4.45 [m2 /m2]

no vegetation

vigorous vegetation

13
Time-Series Data Set
The data set used is composed of 21 images
acquired between 2002 and 2009 by
QuickBird over the city of Denver, Colorado.
The time-series covers part of the downtown
area and includes single family houses,
skyscrapers, apartment complexes, industrial
buildings, roads/highways, urban parks, and
bodies of water.

14
Change Detection
Denver – QB: July 17, 2002

Surface Refl. Change Detection
DN Change Detection

Denver – QB: August 22, 2008

Negative
Change

No-Change

Positive
Change

15
Time-series over Longmont, CO (2009-2012)
Date
meanSunAz meanSunEl meanSatAz meanSatEl
2010-06-05T18:02:26
141.0
68.9
165.1
71.8
2010-06-18T18:27:12
153.6
71.9
324.8
51.0
2010-06-24T18:09:52
141.9
70.0
218.4
80.9
2010-11-03T18:10:20
170.1
34.3
16.6
72.4
2010-11-03T18:10:30
170.2
34.3
18.0
78.0
2010-11-03T18:10:41
170.2
34.3
21.9
83.8
2010-11-03T18:10:52
170.3
34.3
93.3
89.0
2010-11-03T18:11:12
170.4
34.4
190.0
78.5
2011-03-29T17:59:02
153.4
50.6
77.3
62.6
2011-03-29T17:59:10
153.4
50.6
85.7
63.8
2011-03-29T17:59:21
153.5
50.6
98.1
64.7
2011-03-29T17:59:29
153.5
50.6
108.6
64.6
2011-03-29T17:59:40
153.6
50.6
120.8
63.5
2011-06-16T18:09:27
142.7
70.2
19.2
35.6
2011-08-09T18:33:50
161.6
64.9
248.9
57.6
2011-08-10T17:58:24
144.1
61.5
156.5
40.8
2011-08-10T17:58:15
144.1
61.5
153.6
43.0
2011-08-10T17:58:06
144.0
61.4
150.3
45.3
2011-08-20T18:30:05
162.5
61.5
258.4
66.5
2011-08-23T18:19:36
158.4
59.9
339.1
82.0
2011-08-23T18:20:10
158.6
59.9
214.7
77.4
2011-08-23T18:20:19
158.7
59.9
208.9
72.6
2011-09-22T18:18:55
166.8
49.6
0.9
77.6
2012-01-26T17:48:00
157.3
28.1
63.0
39.9
2012-04-13T18:18:10
159.9
58.0
115.4
87.0
2012-04-18T18:33:47
167.0
60.6
288.3
66.9

WV1 Image CatID
1 1020010009353000
2 10200100094A3700
3 10200100098B0A00
4 102001000A08B800
5 102001000A68D900
6 102001001109C500
7 10200100180FDD00
8 1020010018D32200

Date
meanSunAz meanSunEl meanSatAz meanSatEl
2009-10-18T18:14:10
170.0
39.7
238.0
70.9
2009-10-18T18:14:05
169.9
39.7
250.5
73.9
2009-10-18T18:13:55
169.9
39.6
283.8
76.4
2009-10-18T18:13:44
169.8
39.6
316.9
73.8
2009-10-18T18:13:39
169.8
39.6
327.9
71.2
2011-03-29T18:30:23
165.6
52.6
281.2
49.2
2012-01-09T18:07:03
164.4
26.4
185.0
52.2
2012-01-09T18:06:09
164.1
26.3
64.9
83.4

345

70

0

WV2
QB
WV1
Sun

15

330

30

60
315

50
40

45

300

60

30
20

zenith (°)

WV2 Image CatID
1 1030010005098C00
2 103001000582F000
3 10300100051AFE00
4 103001000784E200
5 10300100079DC100
6 103001000760B200
7 10300100077FC700
8 103001000701FC00
9 103001000913F200
10 103001000A847800
11 103001000AA58D00
12 103001000A655E00
13 103001000A905200
14 103001000B335B00
15 103001000C1D2D00
16 103001000CC40500
17 103001000D763100
18 103001000CC55900
19 103001000D46A300
20 103001000D824500
21 103001000DB4AA00
22 103001000D272200
23 103001000D7FF200
24 10300100111AD800
25 10300100129FE800
26 1030010013B5B300

285

75

10
0

270

90

10
20

255

105

30
40
50
QB Image

CatID
1 101001000A76CD00
2 101001000925E300
3 1010010009086100

Date
meanSunAz meanSunEl meanSatAz meanSatEl
2009-10-18T17:50:58
162.7
38.6
66.1
70.7
2009-02-05T18:09:05
161.5
32.3
263.3
79.1
2009-01-08T17:59:34
162.5
25.9
87.1
69.1

240

120
225

135

60
70

210

150
195

180

165

16
WV2: DG-AComp accuracy
0.50

Field measurement
DG-AComp
RMSE (MS)
concrete

concrete

0.0070

asphalt

0.45

0.0127

0.40

Reflectance

0.35
0.30
0.25
0.20
0.15
RMSE (PAN)

0.10

concrete
asphalt

asphalt

0.05

0.0013
0.0018

0.00
C

B

G

Y

R

RE

N1

N2

PAN

17
Calibrated Tarps
The tarps were manufactured to guarantee a flat spectral response between
400 nm and 1050 nm, with a peek-to-peek variation in reflectance less than
10% between 10° and 60° off-nadir [3][4].

[3] M. Pagnutti, K. Holekamp, R.E. Ryan, R.D. Vaughan, J.A. Russell, D. Prados, and T. Stanley, “Atmospheric
correction of high spatial resolution commercial satellite imagery products using modis atmospheric products”,
in Analysis of Multi-Temporal Remote Sensing Images, May 2005, pp. 115 – 119.
[4] K. Holekamp, “NASA radiometric characterization”, in High spatial resolution commercial imagery workshop,
Reston, VA, Nov. 2004
18
Data Set
Location
NASA Stennis Space Center, MS
NASA Stennis Space Center, MS
NASA Stennis Space Center, MS
NASA Stennis Space Center, MS
Brookings, SD
Brookings, SD
Brookings, SD
Brookings, SD
Wiggins, MS
Wiggins, MS
Wiggins, MS
Park Falls, WI

Date
7-Feb-06
10-Jan-04
14-Nov-02
12-Mar-05
15-Sep-03
7-Sep-02
20-Jul-02
18-Oct-05
15-Mar-06
7-Jan-06
25-Jan-06
5-Aug-05

Sat. Az.
208.2
259.7
274.2
268.4
284.4
191.4
349.7
298.2
319.5
300.0
296.6
261.5

Sat. El.
83.2
88.2
79.2
77.7
83.1
74.6
64.3
73.2
76.7
68.0
69.3
69.4

This set of 12 QuickBird images includes four 20 m2 spectrally-flat tarps having
nominally 3.5, 22, 34, and 52% reflectance in the visible through NIR spectral
region.

19
QB: DG-AComp accuracy
(52, 34, 22, and 3.5% reflectance)
1.0

DG-AComp

RMSE (MS)
52%

0.8

0.0155

34%

0.0127

22%

0.0155

3.5%

0.9

0.0082

Reflectance

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
B

G

R

NIR

20
Information Extraction: Exploiting various
dimensions of imagery

Spectral

Spatial/
Morphological

Temporal

DigitalGlobe Proprietary and Business Confidential

21
Information Extraction: Model Portability
Istanbul – WV02: Feb. 19, 2010
Honolulu – WV02: Apr. 25, 2010
Rio de Janeiro – WV02: Jan. 19, 2010

New York – WV02: Dec. 18, 2009

Six classes of interest:
1. Grass
2. Tree
3. Water
4. Soil
5. Built-up
6. Shadow
22
Information Extraction: Model Portability
Three different experiments using training pixels from:
1. Honolulu
2. Honolulu and Istanbul
3. Honolulu, Istanbul, and New York

DN

In all cases, the image of Rio de Janeiro has been used
ONLY for validation.

DN

Kappa Coefficient

Surf. Refl.

Surf. Refl.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Honolulu

Honolulu, Istanbul

Honolulu, Istanbul,
NewYork

23
DigitalGlobe Overview

DigitalGlobe Overview

  • 1.
  • 2.
    DigitalGlobe Constellation Quickbird GeoEye-1 WorldView-1 WorldView-2 IKONOS 0.82 mGSD 150,000 km2 /day WorldView-3 0.65 m GSD 200,000 km2 /day 0.41 m GSD 700,000 km2 /day 0.5 m GSD 1,500,000 km2 /day 0.46 m GSD 1,200,000 km2 /day 2014 0.31 m GSD 680,000 km2 /day DigitalGlobe Proprietary and Business Confidential
  • 3.
  • 4.
    WorldView2 & 3VNIR and CAVIS VNIR bands are optimized for different missions 1.0 0.9 yellow 590-630 coastal 400-452 blue 448-510 green 514-586 red 632-692 red-edge 706-746 NIR1 772-890 NIR2 866-954 0.8 WorldView2/3 – VNIR Bands 0.7 0.6 LDCM Panchromatic LDCM 0.5 0.4 LDCM Blue LDCM Green LDCM Red LDCM NIR WorldView3 - CAVIS VNIR Bands 897-927 water-2 0.3 0.2 0.1 405-420 Desert Clouds 459-479 Blue Aerosol-1 525-585 green 635-685 Red Aerosol-2 845-885 water-1 930-965 water-3 0.0 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Aeronet 10nm Bands 4
  • 5.
    WorldView3 SWIR andCAVIS3 SWIR bands are optimized for different missions 1.0 WorldView3 – 8 SWIR Bands 0.9 0.8 1640-1680 MS11 2145-2185 2235-2285 MS13 MS15 0.7 0.6 1195-1225 MS9 0.5 0.4 1550-1590 MS10 LDCM Cirrus 1710-1750 MS12 2185-2225 MS14 2295-2365 MS16 LDCM SWIR 2 LDCM SWIR 1 WorldView3 - CAVIS3 SWIR Bands 2105-2245 Aerosol-3 0.3 0.2 0.1 1370-1410 CIRRUS 1620-1680 snow / cloud 1220-1252 Aerosol-NDVI 2105-2245 Aerosol-3 0.0 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 Aeronet 10nm Bands 25nm 5
  • 6.
    Satellite Spectral Comparison MODIS (250+m) ASTER 2 (R) (15/30 m) 4 (NIR) backward (1.2 / 3.7) Coastal CAVIS (30 m) 300 3 (NIR) nadir Red Blue Yellow Edge Green Red Aerosol 1 Desert Cloud 7 (SWIR 3) 9 (SWIR 5) Stereo 1 (G) WV-3 5 (SWIR 1) 6 (SWIR 2) NIR 2 SWIR 2 NIR 1 Aerosol 2 SWIR 1 Water 2 SWIR 4 SWIR 3 NDVI - SWIR Snow 10 (SWIR 6) 8 (SWIR4) SWIR 6 SWIR 5 SWIR 8 SWIR 7 Aerosol 3 Cloud Height Parallax Green 500 Wavelength in nanometers Water 1 700 Water 3 900 Cirrus Aerosol 3 1100 1300 1500 1700 1900 2100 2300 2500 DigitalGlobe Proprietary and Business Confidential 6
  • 7.
    CAMP processor enableshigh quality information & insight extraction, and multi-temporal analysis-1 Color image of a typical 21km x 17km scene Addressed Effects • Opaque clouds • Cirrus clouds • Aerosols • Water vapor • Ice/Snow • Shadows • BRDF Core Products • Reflectance imagery accurate to within 1% absolute • Utility masks located to ~1m CE90/LE90 4 km visibility 11 km 7
  • 8.
    CAMP processor enableshigh quality information & insight extraction, and multi-temporal analysis-2 Aerosol variability on a typical 21km x 17km scene Addressed Effects • Opaque clouds • Cirrus clouds • Aerosols • Water vapor • Ice/Snow • Shadows • BRDF Core Products • Reflectance imagery accurate to within 1% absolute • Utility masks located to ~1m CE90/LE90 4 km visibility 11 km 8
  • 9.
    CAMP processor enableshigh quality information & insight extraction, and multi-temporal analysis-3 Atmospherically corrected color image of a typical 21km x 17km scene Addressed Effects • Opaque clouds • Cirrus clouds • Aerosols • Water vapor • Ice/Snow • Shadows • BRDF Core Products • Reflectance imagery accurate to within 1% absolute • Utility masks located to ~1m CE90/LE90 4 km visibility 11 km 9
  • 10.
    Where are weheaded: Enable Automated Information Extraction Water vapor Distortion Reflectance or Radiance Enables developing spectral models for automated information extraction Reflectance Aerosol Distortion Wavelength (nm) Blue Green Red Infrared DigitalGlobe Proprietary and Business Confidential 10
  • 11.
    NDVI values fromTOA and surface reflectance Water Vapor absorption 0.887 (~10%) 0.894 (~13%) 0.811 0.789 Scattering 11
  • 12.
    NDVI from TOAreflectance Longmont (August 10, 2011 – WV2) NDVI from TOA reflectance no vegetation vigorous vegetation 12
  • 13.
    NDVI from SurfaceReflectance Longmont (August 10, 2011 – WV2) NDVI from surface reflectance LAI: 0.56 [m2 /m2] LAI: 4.53 [m2 /m2] LAI: 3.72 [m2 /m2] LAI: 4.45 [m2 /m2] no vegetation vigorous vegetation 13
  • 14.
    Time-Series Data Set Thedata set used is composed of 21 images acquired between 2002 and 2009 by QuickBird over the city of Denver, Colorado. The time-series covers part of the downtown area and includes single family houses, skyscrapers, apartment complexes, industrial buildings, roads/highways, urban parks, and bodies of water. 14
  • 15.
    Change Detection Denver –QB: July 17, 2002 Surface Refl. Change Detection DN Change Detection Denver – QB: August 22, 2008 Negative Change No-Change Positive Change 15
  • 16.
    Time-series over Longmont,CO (2009-2012) Date meanSunAz meanSunEl meanSatAz meanSatEl 2010-06-05T18:02:26 141.0 68.9 165.1 71.8 2010-06-18T18:27:12 153.6 71.9 324.8 51.0 2010-06-24T18:09:52 141.9 70.0 218.4 80.9 2010-11-03T18:10:20 170.1 34.3 16.6 72.4 2010-11-03T18:10:30 170.2 34.3 18.0 78.0 2010-11-03T18:10:41 170.2 34.3 21.9 83.8 2010-11-03T18:10:52 170.3 34.3 93.3 89.0 2010-11-03T18:11:12 170.4 34.4 190.0 78.5 2011-03-29T17:59:02 153.4 50.6 77.3 62.6 2011-03-29T17:59:10 153.4 50.6 85.7 63.8 2011-03-29T17:59:21 153.5 50.6 98.1 64.7 2011-03-29T17:59:29 153.5 50.6 108.6 64.6 2011-03-29T17:59:40 153.6 50.6 120.8 63.5 2011-06-16T18:09:27 142.7 70.2 19.2 35.6 2011-08-09T18:33:50 161.6 64.9 248.9 57.6 2011-08-10T17:58:24 144.1 61.5 156.5 40.8 2011-08-10T17:58:15 144.1 61.5 153.6 43.0 2011-08-10T17:58:06 144.0 61.4 150.3 45.3 2011-08-20T18:30:05 162.5 61.5 258.4 66.5 2011-08-23T18:19:36 158.4 59.9 339.1 82.0 2011-08-23T18:20:10 158.6 59.9 214.7 77.4 2011-08-23T18:20:19 158.7 59.9 208.9 72.6 2011-09-22T18:18:55 166.8 49.6 0.9 77.6 2012-01-26T17:48:00 157.3 28.1 63.0 39.9 2012-04-13T18:18:10 159.9 58.0 115.4 87.0 2012-04-18T18:33:47 167.0 60.6 288.3 66.9 WV1 Image CatID 1 1020010009353000 2 10200100094A3700 3 10200100098B0A00 4 102001000A08B800 5 102001000A68D900 6 102001001109C500 7 10200100180FDD00 8 1020010018D32200 Date meanSunAz meanSunEl meanSatAz meanSatEl 2009-10-18T18:14:10 170.0 39.7 238.0 70.9 2009-10-18T18:14:05 169.9 39.7 250.5 73.9 2009-10-18T18:13:55 169.9 39.6 283.8 76.4 2009-10-18T18:13:44 169.8 39.6 316.9 73.8 2009-10-18T18:13:39 169.8 39.6 327.9 71.2 2011-03-29T18:30:23 165.6 52.6 281.2 49.2 2012-01-09T18:07:03 164.4 26.4 185.0 52.2 2012-01-09T18:06:09 164.1 26.3 64.9 83.4 345 70 0 WV2 QB WV1 Sun 15 330 30 60 315 50 40 45 300 60 30 20 zenith (°) WV2 Image CatID 1 1030010005098C00 2 103001000582F000 3 10300100051AFE00 4 103001000784E200 5 10300100079DC100 6 103001000760B200 7 10300100077FC700 8 103001000701FC00 9 103001000913F200 10 103001000A847800 11 103001000AA58D00 12 103001000A655E00 13 103001000A905200 14 103001000B335B00 15 103001000C1D2D00 16 103001000CC40500 17 103001000D763100 18 103001000CC55900 19 103001000D46A300 20 103001000D824500 21 103001000DB4AA00 22 103001000D272200 23 103001000D7FF200 24 10300100111AD800 25 10300100129FE800 26 1030010013B5B300 285 75 10 0 270 90 10 20 255 105 30 40 50 QB Image CatID 1 101001000A76CD00 2 101001000925E300 3 1010010009086100 Date meanSunAz meanSunEl meanSatAz meanSatEl 2009-10-18T17:50:58 162.7 38.6 66.1 70.7 2009-02-05T18:09:05 161.5 32.3 263.3 79.1 2009-01-08T17:59:34 162.5 25.9 87.1 69.1 240 120 225 135 60 70 210 150 195 180 165 16
  • 17.
    WV2: DG-AComp accuracy 0.50 Fieldmeasurement DG-AComp RMSE (MS) concrete concrete 0.0070 asphalt 0.45 0.0127 0.40 Reflectance 0.35 0.30 0.25 0.20 0.15 RMSE (PAN) 0.10 concrete asphalt asphalt 0.05 0.0013 0.0018 0.00 C B G Y R RE N1 N2 PAN 17
  • 18.
    Calibrated Tarps The tarpswere manufactured to guarantee a flat spectral response between 400 nm and 1050 nm, with a peek-to-peek variation in reflectance less than 10% between 10° and 60° off-nadir [3][4]. [3] M. Pagnutti, K. Holekamp, R.E. Ryan, R.D. Vaughan, J.A. Russell, D. Prados, and T. Stanley, “Atmospheric correction of high spatial resolution commercial satellite imagery products using modis atmospheric products”, in Analysis of Multi-Temporal Remote Sensing Images, May 2005, pp. 115 – 119. [4] K. Holekamp, “NASA radiometric characterization”, in High spatial resolution commercial imagery workshop, Reston, VA, Nov. 2004 18
  • 19.
    Data Set Location NASA StennisSpace Center, MS NASA Stennis Space Center, MS NASA Stennis Space Center, MS NASA Stennis Space Center, MS Brookings, SD Brookings, SD Brookings, SD Brookings, SD Wiggins, MS Wiggins, MS Wiggins, MS Park Falls, WI Date 7-Feb-06 10-Jan-04 14-Nov-02 12-Mar-05 15-Sep-03 7-Sep-02 20-Jul-02 18-Oct-05 15-Mar-06 7-Jan-06 25-Jan-06 5-Aug-05 Sat. Az. 208.2 259.7 274.2 268.4 284.4 191.4 349.7 298.2 319.5 300.0 296.6 261.5 Sat. El. 83.2 88.2 79.2 77.7 83.1 74.6 64.3 73.2 76.7 68.0 69.3 69.4 This set of 12 QuickBird images includes four 20 m2 spectrally-flat tarps having nominally 3.5, 22, 34, and 52% reflectance in the visible through NIR spectral region. 19
  • 20.
    QB: DG-AComp accuracy (52,34, 22, and 3.5% reflectance) 1.0 DG-AComp RMSE (MS) 52% 0.8 0.0155 34% 0.0127 22% 0.0155 3.5% 0.9 0.0082 Reflectance 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 B G R NIR 20
  • 21.
    Information Extraction: Exploitingvarious dimensions of imagery Spectral Spatial/ Morphological Temporal DigitalGlobe Proprietary and Business Confidential 21
  • 22.
    Information Extraction: ModelPortability Istanbul – WV02: Feb. 19, 2010 Honolulu – WV02: Apr. 25, 2010 Rio de Janeiro – WV02: Jan. 19, 2010 New York – WV02: Dec. 18, 2009 Six classes of interest: 1. Grass 2. Tree 3. Water 4. Soil 5. Built-up 6. Shadow 22
  • 23.
    Information Extraction: ModelPortability Three different experiments using training pixels from: 1. Honolulu 2. Honolulu and Istanbul 3. Honolulu, Istanbul, and New York DN In all cases, the image of Rio de Janeiro has been used ONLY for validation. DN Kappa Coefficient Surf. Refl. Surf. Refl. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Honolulu Honolulu, Istanbul Honolulu, Istanbul, NewYork 23