Reinforcement learning is a machine learning technique that involves an agent learning how to achieve a goal in an environment by trial-and-error using feedback in the form of rewards and punishments. The agent learns an optimal behavior or policy for achieving the maximum reward. Key elements of reinforcement learning include the agent, environment, states, actions, policy, reward function, and value function. Reinforcement learning problems can be solved using methods like dynamic programming, Monte Carlo methods, and temporal difference learning.