MATHEMATICS FORM 3 LINEAR INEQUALITY BY PN UMRAH BT DALIMUN
The sign ini linear inequalities  are: greater than < less than ≥  greater than or equal to ≤  less than or equal to
Example: 5  >  3 4  <  7 -5  <  -3 -4  >  -7 *   Known as equivalent inequalities  *
1. A linear inequality on a number  line   a. X  >  2   1  2  3  4 b. X  >  6   6  7  8  9 c. X  <  -1   -4  -3  -2  -1  d. X  <  10  7  8  9  10  11
a. X  ≥  3 2  3  4  5  6  7   b. X  ≤ -1 -3  -2  -1  0   c.  X  ≥  -8   -8  -7  -6 d. X  ≤  10   7  8  9  10
What is the differences between and
Example of the answers of inequalities:   a. X < 5  .:  X  =  4 , 3 , 2 , 1 , 0 … b. X  > 3  .:  X  =  4 , 5 , 6 , 7 ,  8 , … c.  X < 5⅓  .:  X  =  5 ,4 , 3 , 2 ,1 , … d  X  > 5⅓  .:  X  =  6 , 7 , 8, 9 , … e. X  < -4.5  .:  X = -5 , -6 , -7 , … f.  X  > -4.5  .:  X = -4 , -3 , -2 , -1 , …
Do the exercise on books
Choose the correct answer as the example given below: Example:   3 + 3 + 3  3³  ( >, < ) a.  2/5  1/3  ( > , < ) b.  1.2 kg  140 gram  ( > , < ) c.  6m  40 cm  ( > , < ) d.  23  31  ( > , < ) e.  -42  -53  ( > , < ) < click click click click click click click click click click
CONGRATULATION YOUR ANSWER IS CORRECT
SORRY! PLEASE TRY AGAIN
2. Draw the number line to answer the    questions: a.  X  > 2.4 b.  X <  1.5 c.  X  >  5 d.  X  <  0.2 e.  X  <  5⅓ f.  X  > 2½ g.  X  ≤ 2.4 h.  X  ≥  2 i.  X  ≥  -1.5 click click click click click click click click click click
Answer a click 2  3  4  5  6
Answer b click -2  -1  0  1  2
Answer c click 5  6  7  8  9
Answer d click -4  -3  - 2
Answer e click 1  2  3  4  5  6
Answer f click 2  3  4  5  6  7
Answer g click 0  1  2  3
Answer h click 2  3  4  5  6
-4  -3  -2  -1  0  1 Answer i click
New inequalities for a given inequalities when the number is added to substracted from multiply by a number divided by a number
In one operation the inequality must add or substracted or multiply or devide on both side . Example: 1)  2 < 4  [ × 2 ] 2 × 2  <  4  × 2 .:  4  <  8
2)  3  >  0  [ ÷ 3] 3/3  >  0/3 .:  1  >  0 3)  14  ≥  7  [ + 2 ] 14 + 2  ≥  7  +  2 .:  16  ≥  9 4)  – 3  ≥  – 4  [ -4  ]   –  3 – 4  ≥  – 4 – 4 .:  – 7  ≥  – 8
EXERCISES
1. Represent the following linear inequalities on a number line a) p ≤ 5 b) d  ≥  – 1 c)s  <  – 6 d) x  ≤ – 10
2. Write an inequality based on each number line below a. -2  -1  0  1  2 b. 6  7  8  9 c. 3  4  5  6  7 d. -5  -4  -3  -2  -1  0
3) Write a linear inequality base on each situation below a. It takes shelly  move than 20 minutes to  complete her home work b. A force of at least 10 N is required to lift  the load c. To qualify for the 100 M race you must  clock not more than 11 seconds d. The distance from Hisham’s house to the  bus station is less than 500M
4) Form a new inequality from the given inequalityby performing the operation stated in brackets . a.  4 < 6  [ +5 ] b.  –3 < 5  [ –2 ] c.  –10 > –15  [ × – 2 ] d.  – 4 > – 16  [ ÷ 4 ] e.  – 2 < 10  [ × – 3 ] f.  10 > – 4  [ ÷ – 2 ]
THE END THANK YOU

Puanumrahdalimon

  • 1.
    MATHEMATICS FORM 3LINEAR INEQUALITY BY PN UMRAH BT DALIMUN
  • 2.
    The sign inilinear inequalities are: greater than < less than ≥ greater than or equal to ≤ less than or equal to
  • 3.
    Example: 5 > 3 4 < 7 -5 < -3 -4 > -7 * Known as equivalent inequalities *
  • 4.
    1. A linearinequality on a number line a. X > 2 1 2 3 4 b. X > 6 6 7 8 9 c. X < -1 -4 -3 -2 -1 d. X < 10 7 8 9 10 11
  • 5.
    a. X ≥ 3 2 3 4 5 6 7 b. X ≤ -1 -3 -2 -1 0 c. X ≥ -8 -8 -7 -6 d. X ≤ 10 7 8 9 10
  • 6.
    What is thedifferences between and
  • 7.
    Example of theanswers of inequalities: a. X < 5 .: X = 4 , 3 , 2 , 1 , 0 … b. X > 3 .: X = 4 , 5 , 6 , 7 , 8 , … c. X < 5⅓ .: X = 5 ,4 , 3 , 2 ,1 , … d X > 5⅓ .: X = 6 , 7 , 8, 9 , … e. X < -4.5 .: X = -5 , -6 , -7 , … f. X > -4.5 .: X = -4 , -3 , -2 , -1 , …
  • 8.
  • 9.
    Choose the correctanswer as the example given below: Example: 3 + 3 + 3 3³ ( >, < ) a. 2/5 1/3 ( > , < ) b. 1.2 kg 140 gram ( > , < ) c. 6m 40 cm ( > , < ) d. 23 31 ( > , < ) e. -42 -53 ( > , < ) < click click click click click click click click click click
  • 10.
  • 11.
  • 12.
    2. Draw thenumber line to answer the questions: a. X > 2.4 b. X < 1.5 c. X > 5 d. X < 0.2 e. X < 5⅓ f. X > 2½ g. X ≤ 2.4 h. X ≥ 2 i. X ≥ -1.5 click click click click click click click click click click
  • 13.
    Answer a click2 3 4 5 6
  • 14.
    Answer b click-2 -1 0 1 2
  • 15.
    Answer c click5 6 7 8 9
  • 16.
    Answer d click-4 -3 - 2
  • 17.
    Answer e click1 2 3 4 5 6
  • 18.
    Answer f click2 3 4 5 6 7
  • 19.
  • 20.
    Answer h click2 3 4 5 6
  • 21.
    -4 -3 -2 -1 0 1 Answer i click
  • 22.
    New inequalities fora given inequalities when the number is added to substracted from multiply by a number divided by a number
  • 23.
    In one operationthe inequality must add or substracted or multiply or devide on both side . Example: 1) 2 < 4 [ × 2 ] 2 × 2 < 4 × 2 .: 4 < 8
  • 24.
    2) 3 > 0 [ ÷ 3] 3/3 > 0/3 .: 1 > 0 3) 14 ≥ 7 [ + 2 ] 14 + 2 ≥ 7 + 2 .: 16 ≥ 9 4) – 3 ≥ – 4 [ -4 ] – 3 – 4 ≥ – 4 – 4 .: – 7 ≥ – 8
  • 25.
  • 26.
    1. Represent thefollowing linear inequalities on a number line a) p ≤ 5 b) d ≥ – 1 c)s < – 6 d) x ≤ – 10
  • 27.
    2. Write aninequality based on each number line below a. -2 -1 0 1 2 b. 6 7 8 9 c. 3 4 5 6 7 d. -5 -4 -3 -2 -1 0
  • 28.
    3) Write alinear inequality base on each situation below a. It takes shelly move than 20 minutes to complete her home work b. A force of at least 10 N is required to lift the load c. To qualify for the 100 M race you must clock not more than 11 seconds d. The distance from Hisham’s house to the bus station is less than 500M
  • 29.
    4) Form anew inequality from the given inequalityby performing the operation stated in brackets . a. 4 < 6 [ +5 ] b. –3 < 5 [ –2 ] c. –10 > –15 [ × – 2 ] d. – 4 > – 16 [ ÷ 4 ] e. – 2 < 10 [ × – 3 ] f. 10 > – 4 [ ÷ – 2 ]
  • 30.