The document describes techniques for improving the computational performance of statistical analysis of big data in R. It uses as a case study the rlme package for rank-based regression of nested effects models. The workflow involves identifying bottlenecks, rewriting algorithms, benchmarking versions, and testing. Examples include replacing sorting with a faster C++ selection algorithm for the Wilcoxon Tau estimator, vectorizing a pairwise function, and preallocating memory for a covariance matrix calculation. The document suggests future directions like parallelization using MPI and GPUs to further optimize R for big data applications.