SlideShare a Scribd company logo
Photonic Band Gap Crystals
Srivatsan Balasubramanian
Summary
• Physics of photonic bandgap crystals.
• Photonic Crystals Classification.
• Fabrication.
• Applications.
• Protoype photonic band gap devices.
• Current Research.
• Future Directions.
• Conclusion.
What is a PBG ?
• A photonic band gap (PBG) crystal is a structure
that could manipulate beams of light in the same
way semiconductors control electric currents.
• A semiconductor cannot support electrons of
energy lying in the electronic band gap. Similarly,
a photonic crystal cannot support photons lying in
the photonic band gap. By preventing or allowing
light to propagate through a crystal, light
processing can be done .
This will revolutionize photonics the way transistors
revolutionized electronics.
How is a PBG fabricated ?
• Photonic crystals usually consist of dielectric
materials, that is, materials that serve as electrical
insulators or in which an electromagnetic field can
be propagated with low loss.
• Holes (of the order of the relevant wavelength) are
drilled into the dielectric in a lattice-like structure
and repeated identically and at regular intervals.
• If built precisely enough, the resulting holey
crystal will have what is known as a photonic band
gap, a range of frequencies within which a specific
wavelength of light is blocked .
How does a PBG work ?
• In semiconductors, electrons get scattered by the row of
atoms in the lattice separated by a few nanometers and
consequently an electronic band gap is formed. The
resulting band structure can be modified by doping.
• In a photonic crystal, perforations are analogous to atoms
in the semiconductor. Light entering the perforated
material will reflect and refract off interfaces between
glass and air. The complex pattern of overlapping beams
will lead to cancellation of a band of wavelengths in all
directions leading to prevention of propagation of this
band into the crystal. The resulting photonic band
structure can be modified by filling in some holes or
creating defects in the otherwise perfectly periodic system.
Physics of PBG
PBG formation can be regarded as the synergetic interplay between two distinct
resonance scattering mechanisms. The first is the “macroscopic” Bragg resonance from
a periodic array of scatterers. This leads to electromagnetic stop gaps when the wave
propagates in the direction of periodic modulation when an integer number, m=1,2,3…,
of half wavelengths coincides with the lattice spacing, L, of the dielectric microstructure.
The second is a “microscopic” scattering resonance from a single unit cell of the
material. In the illustration, this (maximum backscattering) occurs when precisely one
quarter of the wavelength coincides with the diameter, 2a, of a single dielectric well of
refractive index n. PBG formation is enhanced by choosing the materials parameters a,
L, and n such that both the macroscopic and microscopic resonances occur at the same
frequency.
Why is making a PBG hard ?
• Photonic band gap formation is facilitated if the
geometrical parameters of the photonic crystal are chosen
so that both the microscopic and macroscopic resonances
occur at precisely the same wavelength.
• Both of these scattering mechanisms must individually be
quite strong. In practice, this means that the underlying
solid material must have a very high refractive index
contrast (typically about 3.0 or higher and it is to precisely
achieve this contrast, holes are drilled into the medium.)
• The material should exhibit negligible absorption or
extinction of light (less than 1 dB/cm of attenuation.)
These conditions on the geometry, scattering strength, and
the purity of the dielectric material severely restrict the set of
engineered dielectrics that exhibit a PBG.
PBG materials
Materials used for making a PBG:
• Silicon
• Germanium
• Gallium Arsenide
• Indium Phosphide
PBG Classifications
Simple examples of one-, two-, and three-dimensional
photonic crystals. The different colors represent materials
with different dielectric constants. The defining feature of
a photonic crystal is the periodicity of dielectric material
along one or more axes. Each of these classifications will be
discussed in turn in the following slides.
1D PBG Crystal
The multilayer thin film show above is a one-dimensional
photonic crystal. The term “one-dimensional” refers to the
fact that the dielectric is only periodic in one direction. It
consists of alternating layers of materials (blue and green)
with different dielectric constants, spaced by a distance a.
The photonic band gap exhibited by this material increases
as the dielectric contrast increases.
1D Band Structures
The photonic band structures for on-axis propagation
shown for three different multilayer films, all of which have
layers of width 0.5a.
Left: Each layer has the same dielectric constant. ε = 13.
Center: Layers alternate between ε = 13 and ε = 12.
Right: Layers alternate between ε = 13 and ε = 1.
It is observed that the photonic gap becomes larger as the
dielectric contrast increases.
Wavelength in a 1D PBG
• A wave incident on a 1D band-gap material partially reflects off
each layer of the structure.
(2) The reflected waves are in phase and reinforce one another.
(3) They combine with the incident wave to produce a standing wave that
does not travel through the material.
Wavelength not in a 1D PBG
(1) A wavelength outside the band gap enters the 1D material.
(2) The reflected waves are out of phase and cancel out one another.
(3) The light propagates through the material only slightly attenuated.
2D PBG Crystals
Left: A periodic array of dielectric cylinders in air
forming a two-dimensional band gap.
Right: Transmission spectrum of this periodic
lattice. A full 2D band gap is observed in the
wavelength range 0.22 microns to 0.38 microns.
Defect in a 2D PBG Crystal
Left: A defect is introduced into the system by removing
one of the cylinders. This will lead to localization of a mode
in the gap at the defect site
Right: It is seen that some transmission peak is observed in
the forbidden band. This corresponds to the defect state
which leads to spatial localization of light and has useful
applications in making a resonant cavity.
2D Band Structures
A two dimensional photonic crystal with two 60o bends,
proposed by Susumu Noda’s group. These structures are
easy to fabricate but they have the problem of the photons
not being confined on the top and bottom. By introducing
point defects like making a hole larger or smaller than the
normal size, the slab can be made to act like a microcavity
and can be used for making optical add-drop filters.
Wavelength in a 2D PBG
(1) For a two-dimensional band gap, each unit cell of the structure
produces reflected waves.
(2) Reflected and refracted waves combine to cancel out the incoming
wave.
(3) This should happen in all possible directions for a full 2D bandgap.
3D PBG crystals
3D photonic bandgaps are observed in
• Diamond structure.
• Yablonovite structure.
• Woodpile Structure.
• Inverse opal structure.
• FCC Structure.
• Square Spiral structure.
• Scaffold structure.
• Tunable Electrooptic inverse opal structure.
Diamond structure
The inverted diamond structure was one of the first prototype structures
predicted by Chan and Soukoulis to exhibit a large and robust 3D PBG. It
consists of an overlapping array of air spheres arranged in a diamond lattice.
This structure can be mimicked by drilling an array of criss-crossing
cylindrical holes in a bulk dielectric. The solid backbone consists of a high
refractive index material such as silicon leading to a 3D PBG as large as 27%
of the center frequency. The minimum refractive index of the backbone for
the emergence of a PBG is 2.0
Yablonovite Structure
This is first three dimensional photonic crystal to be made and it was named
Yablonovite after Yablonovitch who conceptualized it. A slab of material is
covered by a mask consisting of triangular array of holes. Each hole is drilled
through three times, at an angle 35.26 away from normal, and spread out 120
on the azimuth. The resulting criss-cross holes below the surface of the slab
produces a full three dimensional FCC structure. The drilling can be done by
a real drill bit for microwave work, or by reactive ion etching to create a FCC
structure at optical wavelengths. The dark shaded band on the right denotes
the totally forbidden gap
Woodpile Structure
The “woodpile” structure, suggested by Susumu Noda’s group, represents a three-
dimensional PBG material that lends itself to layer-by-layer fabrication.It resembles a
criss-crossed stack of wooden logs, where in each layer the logs are in parallel orientation
to each other. To fabricate one layer of the stack, a SiO2-layer is grown on a substrate
wafer, then patterned and etched. Next, the resulting trenches are filled with a high-index
material such as silicon or GaAs and the surface of the wafer is polished in order to allow
the next SiO2 layer to be grown. The logs of second nearest layers are displaced midway
between the logs of the original layer. As a consequence, 4 layers are necessary to obtain
one unit cell in the stacking direction. In a final step, the SiO2 is removed through a
selective etching process leaving behind the high-index logs.
Inverse Opal Structure
SEM picture of a cross-section along the cubic (110) direction of a Si
inverse opal with complete 5% PBG around 1.5 um. The structure has
been obtained through infiltration of an artificial opal with silicon
(light shaded regions) and subsequent removal of SiO2 spheres of the
opal. The air sphere diameter is 870 nanometers. Clearly visible is the
complete infiltration (diamond shaped voids between spheres) and the
effect of sintering the artificial opal prior to infiltration ( small holes
connecting adjacent spheres.)
FCC Structure
Computer rendering of a three dimensional photonic crystal, put forth
by Joannopoulos and his group, showing several horizontal periods
and one vertical period consisting of a FCC lattice of air holes (radius
0.293a, height 0.93a) in dielectric. This allows one to leverage the
large body of analyses, experiments, and understanding of those
simpler structures. This structure has a 21% gap for a dielectric
constant of 12.
Square Spiral Structure
The tetragonal lattice of square spiral posts exhibits a complete 3D PBG and
can be synthesized using glancing angle deposition (GLAD) method. This
chiral structure, suggested by John and Toader, consists of slightly
overlapping square spiral posts grown on a 2D substrate that is initially seeded
with a square lattice of growth centers. Computer controlled motion of the
substrate leads to spiraling growth of posts. A large and robust PBG emerges
between the 4th and 5th bands of photon dispersion. The inverse structure
consisting of air posts in a solid background exhibits a even larger 3D PBG.
Scaffolding Structure
The scaffolding structure (for it’s similarity to a
scaffolding) is a rare example of a photonic crystal that has
a very different underlying symmetry from the diamond
structure yet has a photonic band gap. The band gap is
small but definitely forbidden and this was suggested by
Joseph Haus and his colleagues.
Tunable 3D Inverse Opal Structure
A marriage of liquid and photonic crystals as
conceptualized by Busch and John. An inverse opal
photonic crystal structure partially infiltrated with liquid
crystal molecules. Electro-optic tuning can cause the
bandgap to wink in and out of existence. This can have
disruptive influence on our present technologies as will be
discussed later.
Applications of PBG
1. Photonic Crystal Fibers
• Photonic crystal fibers (PCF) are optical fibers that employ a
microstructured arrangement of low-index material in a background
material of higher refractive index.
• The background material is undoped silica and the low index region is
typically provided by air voids running along the length of the fiber.
Types of PCF
PCFs come in two forms:
• High index guiding fibers based on the Modified Total
Internal Reflection (M-TIR) principle
• Low index guiding fibers based on the Photonic Band Gap
(PBG) effect.
M-TIR Fibers
• Tiny cylindrical holes of air separated by gaps are patterned into a fiber. The
effective cladding index (of the holes and the gaps) is lower than the core index.
• A first glance would suggest that light would escape through the gaps between
“bars” of air. But, a trick of geometry prevents this.
• The fundamental mode, being the longest wavelength, gets trapped in the core
while the higher order modes capable of squeezing in the gaps leak away
rapidly, by a process reminiscent of a kitchen sieve.
• For small enough holes, PCF remains single moded at all wavelengths and
hence given the name “endlessly single moded fiber.”
PBG Fibers
• PBG fibers are based on mechanisms fundamentally different from the M-TIR fibers.
• The bandgap effect can be found in nature, where bright colors that are seen in butterfly
wings are the result of naturally occurring periodic microstructures. The periodic
microstructure in the butterfly wing results in a photonic bandgap, which prevents
propagation of certain bands. This light is reflected back and seen as bright colors.
• In a PBG fiber, periodic holes act as core and an introduced defect (an extra air hole) act
as cladding. Since light cannot propagate in the cladding due to the photonic bandgap,
they get confined to the core, even if it has a lower refractive index.
• In fact, extremely low loss fibers with air or vacuum as the core can be created.
2. Photonic Crystal Lasers
Architectures for 2D photonic crystal micro-lasers are shown above. (a) The Band Edge
microlaser utilizes the unique feedback and memory effects associated with a photonic band
edge and stimulated emission (arising from electron-hole recombination) from the multiple
quantum well active region occurs preferentially at the band edge. There is no defect mode
Engineered in the 2D PBG. (courtesy of S. Noda, Kyoto University). (b) Defect Mode micro
laser requires the engineering of a localized state of light within the 2D PBG. This is created
through a missing pore in the 2D photonic crystal. Stimulated emission from the multiple
quantum well active region occurs preferentially into the localized mode. (courtesy of Axel
Scherer, California Institute of Technology).
3. Photonic Crystal Filters
Add-drop filter for a dense wavelength division multiplexed optical
communication system. Multiple streams of data carried at different
frequencies F1, F2, etc. (yellow) enter the optical micro-chip from an external
optical fiber and are carried through a wave guide channel (missing row of
pores). Data streams at frequency F1 (red) and F2 (green) tunnel into localized
defect modes and are routed to different destinations. The frequency of the
drop filter is defined by the defect pore diameter which is different from the
pore diameter of the background photonic crystal.
4. Photonic Crystal Planar Waveguides
• Creating a bend radius of more than few millimeters is difficult in
conventional fibers because the conditions for TIR fail leading to leaky modes.
• PC waveguides operate using a different principle. A line defect is created in
the crystal which supports a mode that is in the band gap. This mode is
forbidden from propagating in the crystal because it falls in the band gap.
• When a bend needs to be created in the waveguide, a line defect of the same
shape is introduced. It is impossible for light to escape (since it cannot
propagate in the bulk crystal). The only possibility is for the mode to
propagate through the line defect (which now takes the shape of a sharp bend)
leading to lossless propagation.
5. PIC on a 3D PBG Microchip
An artist’s conception of a 3D PBG woodpile structure into which a micro-laser
array and de-multiplexing (DEMUX) circuit have been integrated. (courtesy of S.
Noda, Kyoto University, Japan). These photonic integrated circuits will be prime
movers for deeper penetration of optical networking into telecommunications.
Future Directions
• Design of ultra compact lasers with almost zero threshold
current.
• Terahertz all-optical switch for routing data along the
internet.
• Collective switching of two-level atoms from ground to
excited state with low intensity applied laser fields leading
to all-optical transistor action.
• Ultra-small beamsplitters, Mach-Zehnder interferometers,
and functional micro-optical elements such as wavelength
add-drop filters leading to compact photonic integrated
circuits.
• Single atom memory effects for possible quantum
computer applications.
1. All Optical Transistor
Micro-photonic all-optical transistor may consist of an active region buried in the
intersection of two wave-guide channels in a 3D PBG material. The two-level systems
(“atoms”) in the active region are coherently pumped and controlled by laser beams
passing through the wave guides. In addition, the 3D PBG material is chosen to
exhibit an abrupt variation in the photon density of states near the transition
frequency of the atoms. This leads to atomic “population inversion” through
coherent pumping, an effect which is forbidden in ordinary vacuum. The inversion
threshold is characterized by a narrow region of large differential optical gain (solid
curve in the inset). A second, “control laser” allows the device to pass through this
threshold region leading to strong amplification of the output signal. In ordinary
vacuum, population inversion is unattainable (dashed curve in the inset).
2. All Optical Router
Artist’s depiction of an electro-actively tunable PBG routing device.
Here the PBG material has been infiltrated with an optically
anisotropic material (such as a liquid crystal) exhibiting a large electro-
optic response. When a voltage is applied to the electro optically
tunable PBG, the polarization state (yellow arrows) can be rotated,
leading to corresponding shifts in the photonic band structure. This
allows light from an optical fiber to be routed into one of several output
fibers.
3. Optical Computing
With optical integrated circuits and optical transistor
technology being rendered possible by photonic crystals,
quantum computing with localized light is a very
promising technology for the future. Immense parallelism,
unprecedented speeds, superior storage density, minimal
crosstalk and interference are some of the advantages that
one gets while migrating towards optical computing.
4. Optical Integrated Circuits
An artistic view of a collage
of different photonic crystal
devices going into an
integrated circuit. The
buildings are 3-D PBG
crystals. The clear buildings
with the blue balls depict a
metallo-dielectric structure.
The green "forests" show
two-dimensionally periodic
photonic crystals. The red
"roads" with holes in them
are one-dimensionally
periodic crystals.
Conclusion
• Light Localization occurs in carefully engineered
dielectrics.
• Photonic Band Gap formation is a synergetic interplay
between microscopic and macroscopic resonances.
• 1-D and 2-D photonic crystals are easy to fabricate.
• 3-D PBG materials: inverse diamond, woodpile, inverse
opal, Scaffold and square spiral.
• Plane, line or point defects can be introduced into photonic
crystals and used for making waveguides, microcavities or
perfect dielectric mirrors by localization of light.
• Applications – photonic crystal fibers, lasers, waveguides,
add drop filters, all-optical transistors, amplifiers, routers
photonic integrated circuits, optical computing.
References
1. Yablonovitch, E. Phys. Rev. Lett. 58, 2059–2062 (1987).
2. John, S. Phys. Rev. Lett. 58, 2486–2489 (1987).
3. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Phys. Rev. Lett. 65, 3152–
3155 (1990).
4. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Phys. Rev. Lett.
67, 2295–2298 (1991).
References
5. Sozuer, H. S., Haus, J. W. & Inguva, R. Phys. Rev. B 45, 13962–13972
(1992).
6. Busch, K. & John, S. Phys. Rev. Lett. 83, 967–970 (1999).
7. Yablonovitch, E, Nature 401, 540-541 (1999)
8. John.S, Encyclopedia of Science and Technology, Academic
Press 2001.
9. http://www-tkm.physik.uni-karlsruhe.de/~kurt/encyclopedia.pdf
10. http://www.aip.org/tip/INPHFA/vol-7/iss-6/p14.pdf
11. http://www.ee.ucla.edu/faculty/profpapers/eliy_SciAm_mod.pdf
12. http://oemagazine.com/fromTheMagazine/oct01/pdf/teachinglight.pdf
References
13. http://ab-initio.mit.edu/photons/bends.html
14. http://www.crystal-fibre.com/
15. http://www.blazephotonics.com/technology/index.htm
16. http://www.sciamarchive.org/pdfs/1046603.pdf
17.http://www.lightreading.com/document.asp?doc_id=2348
18. http://helios.physics.utoronto.ca/~john/
Pbg  good

More Related Content

What's hot

Metamaterials
Metamaterials Metamaterials
Metamaterials
Shuvan Prashant
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
Kedhareswara Sairam Pasupuleti
 
non linear optics
non linear opticsnon linear optics
non linear optics
Sandeep K Nair
 
Laser lecture 04
Laser lecture 04Laser lecture 04
Dielectrics_1
Dielectrics_1Dielectrics_1
Dielectrics_1
krishslide
 
Physics nanophotonics
Physics nanophotonicsPhysics nanophotonics
Physics nanophotonics
Vishal Singh
 
Plasmonics
PlasmonicsPlasmonics
Plasmonics
PhotonicSanki
 
Photonic crystal fibers (PCF)
Photonic crystal fibers (PCF)Photonic crystal fibers (PCF)
Photonic crystal fibers (PCF)
ajay singh
 
Magnetic domain and domain walls
 Magnetic domain and domain walls Magnetic domain and domain walls
Magnetic domain and domain walls
Krissanachai Sararam
 
Molecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUETMolecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUET
A. S. M. Jannatul Islam
 
Basic of semiconductors and optical properties
Basic of semiconductors and optical propertiesBasic of semiconductors and optical properties
Basic of semiconductors and optical properties
Kamran Ansari
 
Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017
Vetrea Ruffin
 
Super lattice and quantum well
Super lattice and quantum wellSuper lattice and quantum well
Super lattice and quantum well
MUHAMMAD AADIL
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
Preeti Choudhary
 
Plasmonics... A ladder to futuristic technology
Plasmonics...  A ladder to futuristic technology Plasmonics...  A ladder to futuristic technology
Plasmonics... A ladder to futuristic technology
Pragya
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
Gaurav Singh Chandel
 
Theory of surface plasmon polaritons
Theory of surface plasmon polaritonsTheory of surface plasmon polaritons
Theory of surface plasmon polaritons
Gandhimathi Muthuselvam
 
organic solar cell
organic solar cellorganic solar cell
organic solar cell
Rahul Bibave
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
Konstantin Denisenko
 
Four probe-method
Four probe-methodFour probe-method
Four probe-method
Arahan Jit Rabha
 

What's hot (20)

Metamaterials
Metamaterials Metamaterials
Metamaterials
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Laser lecture 04
Laser lecture 04Laser lecture 04
Laser lecture 04
 
Dielectrics_1
Dielectrics_1Dielectrics_1
Dielectrics_1
 
Physics nanophotonics
Physics nanophotonicsPhysics nanophotonics
Physics nanophotonics
 
Plasmonics
PlasmonicsPlasmonics
Plasmonics
 
Photonic crystal fibers (PCF)
Photonic crystal fibers (PCF)Photonic crystal fibers (PCF)
Photonic crystal fibers (PCF)
 
Magnetic domain and domain walls
 Magnetic domain and domain walls Magnetic domain and domain walls
Magnetic domain and domain walls
 
Molecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUETMolecular Beam Epitaxy-MBE---ABU SYED KUET
Molecular Beam Epitaxy-MBE---ABU SYED KUET
 
Basic of semiconductors and optical properties
Basic of semiconductors and optical propertiesBasic of semiconductors and optical properties
Basic of semiconductors and optical properties
 
Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017Dr. Jason Valentine-Metamaterials 2017
Dr. Jason Valentine-Metamaterials 2017
 
Super lattice and quantum well
Super lattice and quantum wellSuper lattice and quantum well
Super lattice and quantum well
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Plasmonics... A ladder to futuristic technology
Plasmonics...  A ladder to futuristic technology Plasmonics...  A ladder to futuristic technology
Plasmonics... A ladder to futuristic technology
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
 
Theory of surface plasmon polaritons
Theory of surface plasmon polaritonsTheory of surface plasmon polaritons
Theory of surface plasmon polaritons
 
organic solar cell
organic solar cellorganic solar cell
organic solar cell
 
Metamaterials
MetamaterialsMetamaterials
Metamaterials
 
Four probe-method
Four probe-methodFour probe-method
Four probe-method
 

Viewers also liked

Pres for LinkedIn
Pres for LinkedInPres for LinkedIn
Pres for LinkedIn
Bartosz Iżowski
 
Opal and inverse opal structures for optical device applications
Opal and inverse opal structures for optical device applicationsOpal and inverse opal structures for optical device applications
Opal and inverse opal structures for optical device applications
M. Faisal Halim
 
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancierwww.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
Energievergelijker
 
Bí quyết đối phó chứng đau khớp khi chuyển mùa
Bí quyết đối phó chứng đau khớp khi chuyển mùaBí quyết đối phó chứng đau khớp khi chuyển mùa
Bí quyết đối phó chứng đau khớp khi chuyển mùaruthie154
 
Guía n1 andrea
Guía n1 andreaGuía n1 andrea
Guía n1 andrea
andre110714
 
第2回 地図の勉強会
第2回 地図の勉強会第2回 地図の勉強会
第2回 地図の勉強会
Code for SAITAMA
 
Presentation on photonics by prince kushwaha(RJIT)
Presentation on photonics by prince kushwaha(RJIT)Presentation on photonics by prince kushwaha(RJIT)
Presentation on photonics by prince kushwaha(RJIT)
Rustamji Institute of Technology
 
Soal seleksi stis 2015 2016 bahasa inggris
Soal seleksi stis 2015 2016 bahasa inggrisSoal seleksi stis 2015 2016 bahasa inggris
Soal seleksi stis 2015 2016 bahasa inggris
Ari Saputra
 
SE2_Lec 15_ UML Activity Diagram
SE2_Lec 15_ UML Activity DiagramSE2_Lec 15_ UML Activity Diagram
SE2_Lec 15_ UML Activity Diagram
Amr E. Mohamed
 
Ss3 letter to_parents_u3
Ss3 letter to_parents_u3Ss3 letter to_parents_u3
Ss3 letter to_parents_u3
Rocio Martin
 
[GUTS-RS] Tendências de Teste de Software para 2016
[GUTS-RS] Tendências de Teste de Software para 2016[GUTS-RS] Tendências de Teste de Software para 2016
[GUTS-RS] Tendências de Teste de Software para 2016
GUTS-RS
 
Qué es una fase
Qué es una faseQué es una fase
Qué es una fase
angel martinez barrera
 
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
Carlos Lee Epic
 
Photonic Integrated Circuit Technology
Photonic Integrated Circuit TechnologyPhotonic Integrated Circuit Technology
Photonic Integrated Circuit Technology
Rinu Antony
 
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECDSAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
Martcom Digital
 
Unique opal anniversary gifts
Unique opal anniversary giftsUnique opal anniversary gifts
Unique opal anniversary gifts
opalmine3
 

Viewers also liked (17)

Pres for LinkedIn
Pres for LinkedInPres for LinkedIn
Pres for LinkedIn
 
Opal and inverse opal structures for optical device applications
Opal and inverse opal structures for optical device applicationsOpal and inverse opal structures for optical device applications
Opal and inverse opal structures for optical device applications
 
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancierwww.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
www.onlineenergievergelijker.nl/eneco-uitgeroepen-tot-groenste-stroomleverancier
 
Bí quyết đối phó chứng đau khớp khi chuyển mùa
Bí quyết đối phó chứng đau khớp khi chuyển mùaBí quyết đối phó chứng đau khớp khi chuyển mùa
Bí quyết đối phó chứng đau khớp khi chuyển mùa
 
Guía n1 andrea
Guía n1 andreaGuía n1 andrea
Guía n1 andrea
 
Certificate of Industrial Training
Certificate of Industrial TrainingCertificate of Industrial Training
Certificate of Industrial Training
 
第2回 地図の勉強会
第2回 地図の勉強会第2回 地図の勉強会
第2回 地図の勉強会
 
Presentation on photonics by prince kushwaha(RJIT)
Presentation on photonics by prince kushwaha(RJIT)Presentation on photonics by prince kushwaha(RJIT)
Presentation on photonics by prince kushwaha(RJIT)
 
Soal seleksi stis 2015 2016 bahasa inggris
Soal seleksi stis 2015 2016 bahasa inggrisSoal seleksi stis 2015 2016 bahasa inggris
Soal seleksi stis 2015 2016 bahasa inggris
 
SE2_Lec 15_ UML Activity Diagram
SE2_Lec 15_ UML Activity DiagramSE2_Lec 15_ UML Activity Diagram
SE2_Lec 15_ UML Activity Diagram
 
Ss3 letter to_parents_u3
Ss3 letter to_parents_u3Ss3 letter to_parents_u3
Ss3 letter to_parents_u3
 
[GUTS-RS] Tendências de Teste de Software para 2016
[GUTS-RS] Tendências de Teste de Software para 2016[GUTS-RS] Tendências de Teste de Software para 2016
[GUTS-RS] Tendências de Teste de Software para 2016
 
Qué es una fase
Qué es una faseQué es una fase
Qué es una fase
 
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
Examples of Photonics Applications for DAY OF PHOTONICS 21 October 2014
 
Photonic Integrated Circuit Technology
Photonic Integrated Circuit TechnologyPhotonic Integrated Circuit Technology
Photonic Integrated Circuit Technology
 
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECDSAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
SAGE | IOB CORPORATE - MAPEAMENTO DE RISCO ECD
 
Unique opal anniversary gifts
Unique opal anniversary giftsUnique opal anniversary gifts
Unique opal anniversary gifts
 

Similar to Pbg good

Photonics Metamaterials
Photonics MetamaterialsPhotonics Metamaterials
Photonics Metamaterials
Praveen Sharma
 
Nano technology.pptx
Nano technology.pptxNano technology.pptx
Nano technology.pptx
AnkitKumar556868
 
Abstract
AbstractAbstract
Abstract
ChahatGupta15
 
Xray diffraction
Xray diffractionXray diffraction
Xray diffraction
Abhishek Dharwal
 
bragg2pre
bragg2prebragg2pre
bragg2pre
Betty Slama
 
Study of highly broadening Photonic band gaps extension in one-dimensional Me...
Study of highly broadening Photonic band gaps extension in one-dimensional Me...Study of highly broadening Photonic band gaps extension in one-dimensional Me...
Study of highly broadening Photonic band gaps extension in one-dimensional Me...
IOSR Journals
 
Quantum dots 1
Quantum dots 1Quantum dots 1
Quantum dots 1
Ashraf Ali
 
Proton beam therapy
Proton beam therapy Proton beam therapy
Proton beam therapy
chaitra deshpande
 
Fall MRS 2013 - MgO grain boundaries structure and transport
Fall MRS 2013 - MgO grain boundaries structure and transportFall MRS 2013 - MgO grain boundaries structure and transport
Fall MRS 2013 - MgO grain boundaries structure and transport
Kedarnath Kolluri
 
Quantum dot solar cell
Quantum dot solar cellQuantum dot solar cell
Quantum dot solar cell
Rohil Kumar
 
Traineeship Melbourne University - Michael Beljaars
Traineeship Melbourne University - Michael BeljaarsTraineeship Melbourne University - Michael Beljaars
Traineeship Melbourne University - Michael Beljaars
Michael Beljaars
 
X ray
X ray X ray
K010436772
K010436772K010436772
K010436772
IOSR Journals
 
proposal
proposalproposal
proposal
Matthew Conrad
 
Pbg atal fdp
Pbg atal fdpPbg atal fdp
Pbg atal fdp
JyothiDigge2
 
A09130105
A09130105A09130105
A09130105
surbhi gupta
 
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
IJAEMSJORNAL
 
PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91
Devin Liner
 
Linear effects in optical fibers
Linear effects in optical fibersLinear effects in optical fibers
Linear effects in optical fibers
CKSunith1
 
Improving Splitting Efficiency in Photonic Crystal Waveguide
Improving Splitting Efficiency in Photonic Crystal WaveguideImproving Splitting Efficiency in Photonic Crystal Waveguide
Improving Splitting Efficiency in Photonic Crystal Waveguide
IJERA Editor
 

Similar to Pbg good (20)

Photonics Metamaterials
Photonics MetamaterialsPhotonics Metamaterials
Photonics Metamaterials
 
Nano technology.pptx
Nano technology.pptxNano technology.pptx
Nano technology.pptx
 
Abstract
AbstractAbstract
Abstract
 
Xray diffraction
Xray diffractionXray diffraction
Xray diffraction
 
bragg2pre
bragg2prebragg2pre
bragg2pre
 
Study of highly broadening Photonic band gaps extension in one-dimensional Me...
Study of highly broadening Photonic band gaps extension in one-dimensional Me...Study of highly broadening Photonic band gaps extension in one-dimensional Me...
Study of highly broadening Photonic band gaps extension in one-dimensional Me...
 
Quantum dots 1
Quantum dots 1Quantum dots 1
Quantum dots 1
 
Proton beam therapy
Proton beam therapy Proton beam therapy
Proton beam therapy
 
Fall MRS 2013 - MgO grain boundaries structure and transport
Fall MRS 2013 - MgO grain boundaries structure and transportFall MRS 2013 - MgO grain boundaries structure and transport
Fall MRS 2013 - MgO grain boundaries structure and transport
 
Quantum dot solar cell
Quantum dot solar cellQuantum dot solar cell
Quantum dot solar cell
 
Traineeship Melbourne University - Michael Beljaars
Traineeship Melbourne University - Michael BeljaarsTraineeship Melbourne University - Michael Beljaars
Traineeship Melbourne University - Michael Beljaars
 
X ray
X ray X ray
X ray
 
K010436772
K010436772K010436772
K010436772
 
proposal
proposalproposal
proposal
 
Pbg atal fdp
Pbg atal fdpPbg atal fdp
Pbg atal fdp
 
A09130105
A09130105A09130105
A09130105
 
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
Design and Simulation of Photonic Crystal Fiber with Low Dispersion Coefficie...
 
PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91PNAS-2013-Man-15886-91
PNAS-2013-Man-15886-91
 
Linear effects in optical fibers
Linear effects in optical fibersLinear effects in optical fibers
Linear effects in optical fibers
 
Improving Splitting Efficiency in Photonic Crystal Waveguide
Improving Splitting Efficiency in Photonic Crystal WaveguideImproving Splitting Efficiency in Photonic Crystal Waveguide
Improving Splitting Efficiency in Photonic Crystal Waveguide
 

Recently uploaded

Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
Kavitha Krishnan
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 

Recently uploaded (20)

Assessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptxAssessment and Planning in Educational technology.pptx
Assessment and Planning in Educational technology.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 

Pbg good

  • 1. Photonic Band Gap Crystals Srivatsan Balasubramanian
  • 2. Summary • Physics of photonic bandgap crystals. • Photonic Crystals Classification. • Fabrication. • Applications. • Protoype photonic band gap devices. • Current Research. • Future Directions. • Conclusion.
  • 3. What is a PBG ? • A photonic band gap (PBG) crystal is a structure that could manipulate beams of light in the same way semiconductors control electric currents. • A semiconductor cannot support electrons of energy lying in the electronic band gap. Similarly, a photonic crystal cannot support photons lying in the photonic band gap. By preventing or allowing light to propagate through a crystal, light processing can be done . This will revolutionize photonics the way transistors revolutionized electronics.
  • 4. How is a PBG fabricated ? • Photonic crystals usually consist of dielectric materials, that is, materials that serve as electrical insulators or in which an electromagnetic field can be propagated with low loss. • Holes (of the order of the relevant wavelength) are drilled into the dielectric in a lattice-like structure and repeated identically and at regular intervals. • If built precisely enough, the resulting holey crystal will have what is known as a photonic band gap, a range of frequencies within which a specific wavelength of light is blocked .
  • 5. How does a PBG work ? • In semiconductors, electrons get scattered by the row of atoms in the lattice separated by a few nanometers and consequently an electronic band gap is formed. The resulting band structure can be modified by doping. • In a photonic crystal, perforations are analogous to atoms in the semiconductor. Light entering the perforated material will reflect and refract off interfaces between glass and air. The complex pattern of overlapping beams will lead to cancellation of a band of wavelengths in all directions leading to prevention of propagation of this band into the crystal. The resulting photonic band structure can be modified by filling in some holes or creating defects in the otherwise perfectly periodic system.
  • 6. Physics of PBG PBG formation can be regarded as the synergetic interplay between two distinct resonance scattering mechanisms. The first is the “macroscopic” Bragg resonance from a periodic array of scatterers. This leads to electromagnetic stop gaps when the wave propagates in the direction of periodic modulation when an integer number, m=1,2,3…, of half wavelengths coincides with the lattice spacing, L, of the dielectric microstructure. The second is a “microscopic” scattering resonance from a single unit cell of the material. In the illustration, this (maximum backscattering) occurs when precisely one quarter of the wavelength coincides with the diameter, 2a, of a single dielectric well of refractive index n. PBG formation is enhanced by choosing the materials parameters a, L, and n such that both the macroscopic and microscopic resonances occur at the same frequency.
  • 7. Why is making a PBG hard ? • Photonic band gap formation is facilitated if the geometrical parameters of the photonic crystal are chosen so that both the microscopic and macroscopic resonances occur at precisely the same wavelength. • Both of these scattering mechanisms must individually be quite strong. In practice, this means that the underlying solid material must have a very high refractive index contrast (typically about 3.0 or higher and it is to precisely achieve this contrast, holes are drilled into the medium.) • The material should exhibit negligible absorption or extinction of light (less than 1 dB/cm of attenuation.) These conditions on the geometry, scattering strength, and the purity of the dielectric material severely restrict the set of engineered dielectrics that exhibit a PBG.
  • 8. PBG materials Materials used for making a PBG: • Silicon • Germanium • Gallium Arsenide • Indium Phosphide
  • 9. PBG Classifications Simple examples of one-, two-, and three-dimensional photonic crystals. The different colors represent materials with different dielectric constants. The defining feature of a photonic crystal is the periodicity of dielectric material along one or more axes. Each of these classifications will be discussed in turn in the following slides.
  • 10. 1D PBG Crystal The multilayer thin film show above is a one-dimensional photonic crystal. The term “one-dimensional” refers to the fact that the dielectric is only periodic in one direction. It consists of alternating layers of materials (blue and green) with different dielectric constants, spaced by a distance a. The photonic band gap exhibited by this material increases as the dielectric contrast increases.
  • 11. 1D Band Structures The photonic band structures for on-axis propagation shown for three different multilayer films, all of which have layers of width 0.5a. Left: Each layer has the same dielectric constant. ε = 13. Center: Layers alternate between ε = 13 and ε = 12. Right: Layers alternate between ε = 13 and ε = 1. It is observed that the photonic gap becomes larger as the dielectric contrast increases.
  • 12. Wavelength in a 1D PBG • A wave incident on a 1D band-gap material partially reflects off each layer of the structure. (2) The reflected waves are in phase and reinforce one another. (3) They combine with the incident wave to produce a standing wave that does not travel through the material.
  • 13. Wavelength not in a 1D PBG (1) A wavelength outside the band gap enters the 1D material. (2) The reflected waves are out of phase and cancel out one another. (3) The light propagates through the material only slightly attenuated.
  • 14. 2D PBG Crystals Left: A periodic array of dielectric cylinders in air forming a two-dimensional band gap. Right: Transmission spectrum of this periodic lattice. A full 2D band gap is observed in the wavelength range 0.22 microns to 0.38 microns.
  • 15. Defect in a 2D PBG Crystal Left: A defect is introduced into the system by removing one of the cylinders. This will lead to localization of a mode in the gap at the defect site Right: It is seen that some transmission peak is observed in the forbidden band. This corresponds to the defect state which leads to spatial localization of light and has useful applications in making a resonant cavity.
  • 16. 2D Band Structures A two dimensional photonic crystal with two 60o bends, proposed by Susumu Noda’s group. These structures are easy to fabricate but they have the problem of the photons not being confined on the top and bottom. By introducing point defects like making a hole larger or smaller than the normal size, the slab can be made to act like a microcavity and can be used for making optical add-drop filters.
  • 17. Wavelength in a 2D PBG (1) For a two-dimensional band gap, each unit cell of the structure produces reflected waves. (2) Reflected and refracted waves combine to cancel out the incoming wave. (3) This should happen in all possible directions for a full 2D bandgap.
  • 18. 3D PBG crystals 3D photonic bandgaps are observed in • Diamond structure. • Yablonovite structure. • Woodpile Structure. • Inverse opal structure. • FCC Structure. • Square Spiral structure. • Scaffold structure. • Tunable Electrooptic inverse opal structure.
  • 19. Diamond structure The inverted diamond structure was one of the first prototype structures predicted by Chan and Soukoulis to exhibit a large and robust 3D PBG. It consists of an overlapping array of air spheres arranged in a diamond lattice. This structure can be mimicked by drilling an array of criss-crossing cylindrical holes in a bulk dielectric. The solid backbone consists of a high refractive index material such as silicon leading to a 3D PBG as large as 27% of the center frequency. The minimum refractive index of the backbone for the emergence of a PBG is 2.0
  • 20. Yablonovite Structure This is first three dimensional photonic crystal to be made and it was named Yablonovite after Yablonovitch who conceptualized it. A slab of material is covered by a mask consisting of triangular array of holes. Each hole is drilled through three times, at an angle 35.26 away from normal, and spread out 120 on the azimuth. The resulting criss-cross holes below the surface of the slab produces a full three dimensional FCC structure. The drilling can be done by a real drill bit for microwave work, or by reactive ion etching to create a FCC structure at optical wavelengths. The dark shaded band on the right denotes the totally forbidden gap
  • 21. Woodpile Structure The “woodpile” structure, suggested by Susumu Noda’s group, represents a three- dimensional PBG material that lends itself to layer-by-layer fabrication.It resembles a criss-crossed stack of wooden logs, where in each layer the logs are in parallel orientation to each other. To fabricate one layer of the stack, a SiO2-layer is grown on a substrate wafer, then patterned and etched. Next, the resulting trenches are filled with a high-index material such as silicon or GaAs and the surface of the wafer is polished in order to allow the next SiO2 layer to be grown. The logs of second nearest layers are displaced midway between the logs of the original layer. As a consequence, 4 layers are necessary to obtain one unit cell in the stacking direction. In a final step, the SiO2 is removed through a selective etching process leaving behind the high-index logs.
  • 22. Inverse Opal Structure SEM picture of a cross-section along the cubic (110) direction of a Si inverse opal with complete 5% PBG around 1.5 um. The structure has been obtained through infiltration of an artificial opal with silicon (light shaded regions) and subsequent removal of SiO2 spheres of the opal. The air sphere diameter is 870 nanometers. Clearly visible is the complete infiltration (diamond shaped voids between spheres) and the effect of sintering the artificial opal prior to infiltration ( small holes connecting adjacent spheres.)
  • 23. FCC Structure Computer rendering of a three dimensional photonic crystal, put forth by Joannopoulos and his group, showing several horizontal periods and one vertical period consisting of a FCC lattice of air holes (radius 0.293a, height 0.93a) in dielectric. This allows one to leverage the large body of analyses, experiments, and understanding of those simpler structures. This structure has a 21% gap for a dielectric constant of 12.
  • 24. Square Spiral Structure The tetragonal lattice of square spiral posts exhibits a complete 3D PBG and can be synthesized using glancing angle deposition (GLAD) method. This chiral structure, suggested by John and Toader, consists of slightly overlapping square spiral posts grown on a 2D substrate that is initially seeded with a square lattice of growth centers. Computer controlled motion of the substrate leads to spiraling growth of posts. A large and robust PBG emerges between the 4th and 5th bands of photon dispersion. The inverse structure consisting of air posts in a solid background exhibits a even larger 3D PBG.
  • 25. Scaffolding Structure The scaffolding structure (for it’s similarity to a scaffolding) is a rare example of a photonic crystal that has a very different underlying symmetry from the diamond structure yet has a photonic band gap. The band gap is small but definitely forbidden and this was suggested by Joseph Haus and his colleagues.
  • 26. Tunable 3D Inverse Opal Structure A marriage of liquid and photonic crystals as conceptualized by Busch and John. An inverse opal photonic crystal structure partially infiltrated with liquid crystal molecules. Electro-optic tuning can cause the bandgap to wink in and out of existence. This can have disruptive influence on our present technologies as will be discussed later.
  • 28. 1. Photonic Crystal Fibers • Photonic crystal fibers (PCF) are optical fibers that employ a microstructured arrangement of low-index material in a background material of higher refractive index. • The background material is undoped silica and the low index region is typically provided by air voids running along the length of the fiber.
  • 29. Types of PCF PCFs come in two forms: • High index guiding fibers based on the Modified Total Internal Reflection (M-TIR) principle • Low index guiding fibers based on the Photonic Band Gap (PBG) effect.
  • 30. M-TIR Fibers • Tiny cylindrical holes of air separated by gaps are patterned into a fiber. The effective cladding index (of the holes and the gaps) is lower than the core index. • A first glance would suggest that light would escape through the gaps between “bars” of air. But, a trick of geometry prevents this. • The fundamental mode, being the longest wavelength, gets trapped in the core while the higher order modes capable of squeezing in the gaps leak away rapidly, by a process reminiscent of a kitchen sieve. • For small enough holes, PCF remains single moded at all wavelengths and hence given the name “endlessly single moded fiber.”
  • 31. PBG Fibers • PBG fibers are based on mechanisms fundamentally different from the M-TIR fibers. • The bandgap effect can be found in nature, where bright colors that are seen in butterfly wings are the result of naturally occurring periodic microstructures. The periodic microstructure in the butterfly wing results in a photonic bandgap, which prevents propagation of certain bands. This light is reflected back and seen as bright colors. • In a PBG fiber, periodic holes act as core and an introduced defect (an extra air hole) act as cladding. Since light cannot propagate in the cladding due to the photonic bandgap, they get confined to the core, even if it has a lower refractive index. • In fact, extremely low loss fibers with air or vacuum as the core can be created.
  • 32. 2. Photonic Crystal Lasers Architectures for 2D photonic crystal micro-lasers are shown above. (a) The Band Edge microlaser utilizes the unique feedback and memory effects associated with a photonic band edge and stimulated emission (arising from electron-hole recombination) from the multiple quantum well active region occurs preferentially at the band edge. There is no defect mode Engineered in the 2D PBG. (courtesy of S. Noda, Kyoto University). (b) Defect Mode micro laser requires the engineering of a localized state of light within the 2D PBG. This is created through a missing pore in the 2D photonic crystal. Stimulated emission from the multiple quantum well active region occurs preferentially into the localized mode. (courtesy of Axel Scherer, California Institute of Technology).
  • 33. 3. Photonic Crystal Filters Add-drop filter for a dense wavelength division multiplexed optical communication system. Multiple streams of data carried at different frequencies F1, F2, etc. (yellow) enter the optical micro-chip from an external optical fiber and are carried through a wave guide channel (missing row of pores). Data streams at frequency F1 (red) and F2 (green) tunnel into localized defect modes and are routed to different destinations. The frequency of the drop filter is defined by the defect pore diameter which is different from the pore diameter of the background photonic crystal.
  • 34. 4. Photonic Crystal Planar Waveguides • Creating a bend radius of more than few millimeters is difficult in conventional fibers because the conditions for TIR fail leading to leaky modes. • PC waveguides operate using a different principle. A line defect is created in the crystal which supports a mode that is in the band gap. This mode is forbidden from propagating in the crystal because it falls in the band gap. • When a bend needs to be created in the waveguide, a line defect of the same shape is introduced. It is impossible for light to escape (since it cannot propagate in the bulk crystal). The only possibility is for the mode to propagate through the line defect (which now takes the shape of a sharp bend) leading to lossless propagation.
  • 35. 5. PIC on a 3D PBG Microchip An artist’s conception of a 3D PBG woodpile structure into which a micro-laser array and de-multiplexing (DEMUX) circuit have been integrated. (courtesy of S. Noda, Kyoto University, Japan). These photonic integrated circuits will be prime movers for deeper penetration of optical networking into telecommunications.
  • 36. Future Directions • Design of ultra compact lasers with almost zero threshold current. • Terahertz all-optical switch for routing data along the internet. • Collective switching of two-level atoms from ground to excited state with low intensity applied laser fields leading to all-optical transistor action. • Ultra-small beamsplitters, Mach-Zehnder interferometers, and functional micro-optical elements such as wavelength add-drop filters leading to compact photonic integrated circuits. • Single atom memory effects for possible quantum computer applications.
  • 37. 1. All Optical Transistor Micro-photonic all-optical transistor may consist of an active region buried in the intersection of two wave-guide channels in a 3D PBG material. The two-level systems (“atoms”) in the active region are coherently pumped and controlled by laser beams passing through the wave guides. In addition, the 3D PBG material is chosen to exhibit an abrupt variation in the photon density of states near the transition frequency of the atoms. This leads to atomic “population inversion” through coherent pumping, an effect which is forbidden in ordinary vacuum. The inversion threshold is characterized by a narrow region of large differential optical gain (solid curve in the inset). A second, “control laser” allows the device to pass through this threshold region leading to strong amplification of the output signal. In ordinary vacuum, population inversion is unattainable (dashed curve in the inset).
  • 38. 2. All Optical Router Artist’s depiction of an electro-actively tunable PBG routing device. Here the PBG material has been infiltrated with an optically anisotropic material (such as a liquid crystal) exhibiting a large electro- optic response. When a voltage is applied to the electro optically tunable PBG, the polarization state (yellow arrows) can be rotated, leading to corresponding shifts in the photonic band structure. This allows light from an optical fiber to be routed into one of several output fibers.
  • 39. 3. Optical Computing With optical integrated circuits and optical transistor technology being rendered possible by photonic crystals, quantum computing with localized light is a very promising technology for the future. Immense parallelism, unprecedented speeds, superior storage density, minimal crosstalk and interference are some of the advantages that one gets while migrating towards optical computing.
  • 40. 4. Optical Integrated Circuits An artistic view of a collage of different photonic crystal devices going into an integrated circuit. The buildings are 3-D PBG crystals. The clear buildings with the blue balls depict a metallo-dielectric structure. The green "forests" show two-dimensionally periodic photonic crystals. The red "roads" with holes in them are one-dimensionally periodic crystals.
  • 41. Conclusion • Light Localization occurs in carefully engineered dielectrics. • Photonic Band Gap formation is a synergetic interplay between microscopic and macroscopic resonances. • 1-D and 2-D photonic crystals are easy to fabricate. • 3-D PBG materials: inverse diamond, woodpile, inverse opal, Scaffold and square spiral. • Plane, line or point defects can be introduced into photonic crystals and used for making waveguides, microcavities or perfect dielectric mirrors by localization of light. • Applications – photonic crystal fibers, lasers, waveguides, add drop filters, all-optical transistors, amplifiers, routers photonic integrated circuits, optical computing.
  • 42. References 1. Yablonovitch, E. Phys. Rev. Lett. 58, 2059–2062 (1987). 2. John, S. Phys. Rev. Lett. 58, 2486–2489 (1987). 3. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Phys. Rev. Lett. 65, 3152– 3155 (1990). 4. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Phys. Rev. Lett. 67, 2295–2298 (1991).
  • 43. References 5. Sozuer, H. S., Haus, J. W. & Inguva, R. Phys. Rev. B 45, 13962–13972 (1992). 6. Busch, K. & John, S. Phys. Rev. Lett. 83, 967–970 (1999). 7. Yablonovitch, E, Nature 401, 540-541 (1999) 8. John.S, Encyclopedia of Science and Technology, Academic Press 2001. 9. http://www-tkm.physik.uni-karlsruhe.de/~kurt/encyclopedia.pdf 10. http://www.aip.org/tip/INPHFA/vol-7/iss-6/p14.pdf 11. http://www.ee.ucla.edu/faculty/profpapers/eliy_SciAm_mod.pdf 12. http://oemagazine.com/fromTheMagazine/oct01/pdf/teachinglight.pdf
  • 44. References 13. http://ab-initio.mit.edu/photons/bends.html 14. http://www.crystal-fibre.com/ 15. http://www.blazephotonics.com/technology/index.htm 16. http://www.sciamarchive.org/pdfs/1046603.pdf 17.http://www.lightreading.com/document.asp?doc_id=2348 18. http://helios.physics.utoronto.ca/~john/