SlideShare a Scribd company logo
Contents
1.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Deterministic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Simplified Algorithm (SA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Kaczmarz’s Algorithm (KA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Projection Algorithm (PA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Batch Least Square (BLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.5 Weighted Least Square (WLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.6 Recursive Least Square (RLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.7 Recursive Least Square with Exponential Forgetting (RLS with λ) . . . . . . . . . . . . 4
1.2.8 Recursive Least Square with Varying Exponential Forgetting
(RLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Stochastic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Extended Recursive Least Square (ERLS) . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Extended Recursive Least Square with Exponential Forgetting
(ERLS with λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Extended Recursive Least Square with Varying Exponential Forgetting
(ERLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4 Modified Extended Recursive Least Square (MERLS) . . . . . . . . . . . . . . . . . . . 6
1.3.5 Modified Extended Recursive Least Square with Exponential Forgetting
(MERLS with λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.6 Modified Extended Recursive Least Square with Varying Exponential
Forgetting (MERLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1
1.1. PARAMETER ESTIMATION Adaptive Control
1.1 Parameter Estimation
On-line determination of process parameters is a key element in adaptive control. A recursive parameter
estimator appears explicitly as a component of a self-tuning regulator. Parameter estimation also occurs
implicitly in a model-reference adaptive controller. This section presents some methods for real-time parameter
estimation. It is useful to view parameter estimation in the broader context of system identification. The key
elements of system identification are selection of model structure, experiment design, parameter estimation,
and validation. Since system identification is executed automatically in adaptive systems. it is essential to
have a good understanding of all aspects of the problem. Selection of model structure and parameterization are
fundamental issues. Simple transfer function models will be used in this chapter. The identification problems
are simplified significantly if the models are linear in the parameters.
This is about parameter estimation of discrete linear system transfer function using linear estimation methods.
1.2 Deterministic Parameter Estimation
G(z−1
) =
z−dB(z−1)
A(z−1)
B(z−1
) = b0 + b1z−1
+ ... + bnbz−nb
A(z−1
) = 1 + a1z−1
+ ... + anaz−na
y(k) = φT
(k)ˆθ(k − 1)
φT
(k) = [−y(k − 1) − y(k − 2) ... − y(k − na)
u(k − d)u(k − d − 1) ... u(k − d − nb)]
ˆθ(k − 1) = a1 a2 ... ana b0 b1 ... bnb
T
number of knowns = nu = na + nb + 1
n = Max(na, nb + d)
number of sampled data = N > nu + n − 1
NOTE : Estimation stats from time n + 1
1.2.1 Simplified Algorithm (SA)
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
ˆθ(k + 1) = ˆθ(k) +
φ(k + 1)
φT (k + 1)φ(k + 1)
y(k + 1) − φT
(k + 1)ˆθ(k)
1.2.2 Kaczmarz’s Algorithm (KA)
φT
(k + 1) = [ −y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
ˆθ(k + 1) = ˆθ(k) +
γφ(k + 1)
φT (k + 1)φ(k + 1)
y(k + 1) − φT
(k + 1)ˆθ(k)
α ≥ 0
0 < γ < 2
Mohamed Mohamed El-Sayed Atyya Page 2 of 8
1.2. DETERMINISTIC PARAMETER ESTIMATION Adaptive Control
1.2.3 Projection Algorithm (PA)
φT
(k + 1) = [ −y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
ˆθ(k + 1) = ˆθ(k) +
γφ(k + 1)
α + φT (k + 1)φ(k + 1)
y(k + 1) − φT
(k + 1)ˆθ(k)
1.2.4 Batch Least Square (BLS)
ψ =




−y(k − 1) ... −y(k − na) u(k − d) ... u(k − d − nb)
−y(k) ... −y(k − na + 1) u(k − d + 1) ... u(k − d − nb + 1)
. ... . . ... .
−y(N − 1) ... −y(N − na) u(N − d) ... u(N − d − nb)




Y = y(k) y(k + 1) ... y(N)
T
∴ θ = ψT
ψ
−1
ψT
Y
1.2.5 Weighted Least Square (WLS)
θ = ψT
Wψ
−1
ψT
WY
Where W is a diagonal matrix with wii = γN−n−i−1 and γ < 1
1.2.6 Recursive Least Square (RLS)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
K(k + 1) = P(k)φ(k + 1) I + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
Mohamed Mohamed El-Sayed Atyya Page 3 of 8
1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control
1.2.7 Recursive Least Square with Exponential Forgetting (RLS with λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
K(k + 1) = P(k)φ(k + 1) λ + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)/λ
P(k + 1) =
P(k + 1) + PT (k + 1)
2
1.2.8 Recursive Least Square with Varying Exponential Forgetting
(RLS with varying λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
λ(k) = 0.3 → 0.999
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)]
K(k + 1) = P(k)φ(k + 1) λ(k) + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = λ(k) − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
λ(k + 1) = 1 −
1 − φT (k + 1)K(k + 1) 2(k + 1)
σ2( )µ( )
NOTE : Update λ after n times
1.3 Stochastic Parameter Estimation
y(k) =
z−dB(z−1)
A(z−1)
u +
C(z−1)
A(z−1)
= φT
(k)ˆθ(k − 1)
B(z−1
) = b0 + b1z−1
+ ... + bnbz−nb
A(z−1
) = 1 + a1z−1
+ ... + anaz−na
C(z−1
) = 1 + c1z−1
+ ... + cncz−nc
ˆθ(k − 1) = [a1 a2 ... ana b0 b1 ... bnb c1 c2 ... cnc]T
number of knowns = nu = na + nb + nc + 1
n = Max(na, nb + nc + d)
number of sampled data = N > nu + n − 1
NOTE : Estimation stats from time n + 1
Mohamed Mohamed El-Sayed Atyya Page 4 of 8
1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control
Figure 1.1: Noise is applied on the output signal
1.3.1 Extended Recursive Least Square (ERLS)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) I + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
1.3.2 Extended Recursive Least Square with Exponential Forgetting
(ERLS with λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) λ + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)/λ
P(k + 1) =
P(k + 1) + PT (k + 1)
2
Mohamed Mohamed El-Sayed Atyya Page 5 of 8
1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control
1.3.3 Extended Recursive Least Square with Varying Exponential Forgetting
(ERLS with varying λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
λ(k) = 0.3 → 0.999
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) λ(k) + φT
(k + 1)P(k)φ(k + 1)
−1
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1)
P(k + 1) = λ(k) − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
λ(k + 1) = 1 −
1 − φT (k + 1)K(k + 1) 2(k + 1)
σ2( )µ( )
NOTE : Update λ after n times
1.3.4 Modified Extended Recursive Least Square (MERLS)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) I + φT
(k + 1)P(k)φ(k + 1)
−1
−
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) −
(k + 1)
+
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
Mohamed Mohamed El-Sayed Atyya Page 6 of 8
1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control
1.3.5 Modified Extended Recursive Least Square with Exponential Forgetting
(MERLS with λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) λ + φT
(k + 1)P(k)φ(k + 1)
−1
−
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) −
(k + 1)
+
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k + 1)
P(k + 1) = I − K(k + 1)φT
(k + 1) P(k)/λ
P(k + 1) =
P(k + 1) + PT (k + 1)
2
1.3.6 Modified Extended Recursive Least Square with Varying Exponential
Forgetting (MERLS with varying λ)
P0 = 106
I , or P0 = ψT
ψ
−1
, size(P) = nu x nu
λ(k) = 0.3 → 0.999
φT
(k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1)
u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)
(k) (k − 1) ... (k − nc + 1)]
K(k + 1) = P(k)φ(k + 1) λ(k) + φT
(k + 1)P(k)φ(k + 1)
−1
−
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k)
ˆθ(k + 1) = ˆθ(k) + K(k + 1) −
(k + 1)
+
(k + 1) = y(k + 1) − φT
(k + 1)ˆθ(k + 1)
P(k + 1) = λ(k) − K(k + 1)φT
(k + 1) P(k)
P(k + 1) =
P(k + 1) + PT (k + 1)
2
λ−
(k + 1) = 1 −
1 − φT (k + 1)K(k + 1) −2
(k + 1)
σ2( −)µ( −)
λ+
(k + 1) = 1 −
1 − φT (k + 1)K(k + 1) +2
(k + 1)
σ2( +)µ( +)
σ−
=
σ2( −)
σ2( −) + σ2( +)
σ+
=
σ2( +)
σ2( −) + σ2( +)
λ(k + 1) = σ−
λ−
(k + 1) + σ+
λ+
(k + 1)
NOTE : Update λ after n times
Mohamed Mohamed El-Sayed Atyya Page 7 of 8
1.4. MATLAB CODES Adaptive Control
1.4 MATLAB Codes
1.2.1 http://goo.gl/Vddvtt
1.2.2 http://goo.gl/UwWFTW
1.2.3 http://goo.gl/tV4Ni6
1.2.4 http://goo.gl/rY2n7I
1.2.6 http://goo.gl/e7J2kq
1.2.7 http://goo.gl/3q6Yc6
1.2.8 http://goo.gl/SCPvEW
1.3.1 http://goo.gl/JnrdNh
1.3.2 http://goo.gl/xjpHha
1.3.3 http://goo.gl/6wVeuW
1.3.4 http://goo.gl/vuKeaL
1.3.5 http://goo.gl/mL0RCz
1.3.6 http://goo.gl/vzViYE
1.5 References
1. Karl Johan Astrom, Adaptive Control, 2nd Edition.
2. David I. Wilson, Advanced Control using MATLAB or Stabilising the unstabilisable, Auckland University
of Technology, New Zealand, May 15, 2015
1.6 Contacts
mohamed.atyya94@eng-st.cu.edu.eg
Mohamed Mohamed El-Sayed Atyya Page 8 of 8

More Related Content

What's hot

Introduction to Optimization.ppt
Introduction to Optimization.pptIntroduction to Optimization.ppt
Introduction to Optimization.ppt
MonarjayMalbog1
 
Practical Swarm Optimization (PSO)
Practical Swarm Optimization (PSO)Practical Swarm Optimization (PSO)
Practical Swarm Optimization (PSO)
khashayar Danesh Narooei
 
Adaline madaline
Adaline madalineAdaline madaline
Adaline madaline
Nagarajan
 
Introduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood EstimatorIntroduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood Estimator
Amir Al-Ansary
 
Probability Density Function (PDF)
Probability Density Function (PDF)Probability Density Function (PDF)
Probability Density Function (PDF)
AakankshaR
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Adaptive Resonance Theory (ART)
Adaptive Resonance Theory (ART)Adaptive Resonance Theory (ART)
Adaptive Resonance Theory (ART)
Amir Masoud Sefidian
 
Anfis (1)
Anfis (1)Anfis (1)
Anfis (1)
TarekBarhoum
 
Activation function
Activation functionActivation function
Activation function
Astha Jain
 
Activation functions
Activation functionsActivation functions
Activation functions
PRATEEK SAHU
 
Adaptive Resonance Theory
Adaptive Resonance TheoryAdaptive Resonance Theory
Adaptive Resonance Theory
Naveen Kumar
 
Overview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep LearningOverview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep Learning
Khang Pham
 
Genetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial IntelligenceGenetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial Intelligence
Sahil Kumar
 
Optimization Methods
Optimization MethodsOptimization Methods
Optimization Methods
metamath
 
Fuzzy logic ppt
Fuzzy logic pptFuzzy logic ppt
Fuzzy logic ppt
Priya_Srivastava
 
Classical relations and fuzzy relations
Classical relations and fuzzy relationsClassical relations and fuzzy relations
Classical relations and fuzzy relations
Baran Kaynak
 
Activation function
Activation functionActivation function
Activation function
RakshithGowdakodihal
 
Artificial Neural Network Lect4 : Single Layer Perceptron Classifiers
Artificial Neural Network Lect4 : Single Layer Perceptron ClassifiersArtificial Neural Network Lect4 : Single Layer Perceptron Classifiers
Artificial Neural Network Lect4 : Single Layer Perceptron Classifiers
Mohammed Bennamoun
 
2.2.ppt.SC
2.2.ppt.SC2.2.ppt.SC
2.2.ppt.SC
AMIT KUMAR
 
Convolutional Neural Networks
Convolutional Neural NetworksConvolutional Neural Networks
Convolutional Neural Networks
milad abbasi
 

What's hot (20)

Introduction to Optimization.ppt
Introduction to Optimization.pptIntroduction to Optimization.ppt
Introduction to Optimization.ppt
 
Practical Swarm Optimization (PSO)
Practical Swarm Optimization (PSO)Practical Swarm Optimization (PSO)
Practical Swarm Optimization (PSO)
 
Adaline madaline
Adaline madalineAdaline madaline
Adaline madaline
 
Introduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood EstimatorIntroduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood Estimator
 
Probability Density Function (PDF)
Probability Density Function (PDF)Probability Density Function (PDF)
Probability Density Function (PDF)
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Adaptive Resonance Theory (ART)
Adaptive Resonance Theory (ART)Adaptive Resonance Theory (ART)
Adaptive Resonance Theory (ART)
 
Anfis (1)
Anfis (1)Anfis (1)
Anfis (1)
 
Activation function
Activation functionActivation function
Activation function
 
Activation functions
Activation functionsActivation functions
Activation functions
 
Adaptive Resonance Theory
Adaptive Resonance TheoryAdaptive Resonance Theory
Adaptive Resonance Theory
 
Overview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep LearningOverview on Optimization algorithms in Deep Learning
Overview on Optimization algorithms in Deep Learning
 
Genetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial IntelligenceGenetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial Intelligence
 
Optimization Methods
Optimization MethodsOptimization Methods
Optimization Methods
 
Fuzzy logic ppt
Fuzzy logic pptFuzzy logic ppt
Fuzzy logic ppt
 
Classical relations and fuzzy relations
Classical relations and fuzzy relationsClassical relations and fuzzy relations
Classical relations and fuzzy relations
 
Activation function
Activation functionActivation function
Activation function
 
Artificial Neural Network Lect4 : Single Layer Perceptron Classifiers
Artificial Neural Network Lect4 : Single Layer Perceptron ClassifiersArtificial Neural Network Lect4 : Single Layer Perceptron Classifiers
Artificial Neural Network Lect4 : Single Layer Perceptron Classifiers
 
2.2.ppt.SC
2.2.ppt.SC2.2.ppt.SC
2.2.ppt.SC
 
Convolutional Neural Networks
Convolutional Neural NetworksConvolutional Neural Networks
Convolutional Neural Networks
 

Similar to Parameter estimation

Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
Alexander Litvinenko
 
Digital control book
Digital control bookDigital control book
Digital control book
cairo university
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
IJCI JOURNAL
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
Wathna
 
E33018021
E33018021E33018021
E33018021
IJERA Editor
 
Discrete Kalman Filter (DKF)
Discrete Kalman Filter (DKF)Discrete Kalman Filter (DKF)
Discrete Kalman Filter (DKF)
Mohamed Mohamed El-Sayed
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics Cookbook
Chairat Nuchnuanrat
 
Note 0
Note 0Note 0
Note 0
Mukesh Gupta
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Vladimir Bakhrushin
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
nutkoon
 
signals and systems_isooperations.pptx
signals and   systems_isooperations.pptxsignals and   systems_isooperations.pptx
signals and systems_isooperations.pptx
MrFanatic1
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
Alexander Litvinenko
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
JazzieJao1
 
Longest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain MultiplicationLongest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain Multiplication
JaneAlamAdnan
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
Numerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special FunctionsNumerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special Functions
Amos Tsai
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
angely alcendra
 

Similar to Parameter estimation (20)

Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Digital control book
Digital control bookDigital control book
Digital control book
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
E33018021
E33018021E33018021
E33018021
 
Discrete Kalman Filter (DKF)
Discrete Kalman Filter (DKF)Discrete Kalman Filter (DKF)
Discrete Kalman Filter (DKF)
 
Probability and Statistics Cookbook
Probability and Statistics CookbookProbability and Statistics Cookbook
Probability and Statistics Cookbook
 
Note 0
Note 0Note 0
Note 0
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
signals and systems_isooperations.pptx
signals and   systems_isooperations.pptxsignals and   systems_isooperations.pptx
signals and systems_isooperations.pptx
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
LINEAR SYSTEMS
LINEAR SYSTEMSLINEAR SYSTEMS
LINEAR SYSTEMS
 
Longest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain MultiplicationLongest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain Multiplication
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Numerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special FunctionsNumerical Algorithm for a few Special Functions
Numerical Algorithm for a few Special Functions
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 

More from Mohamed Mohamed El-Sayed

Optimal control systems
Optimal control systemsOptimal control systems
Optimal control systems
Mohamed Mohamed El-Sayed
 
Neural networks and deep learning
Neural networks and deep learningNeural networks and deep learning
Neural networks and deep learning
Mohamed Mohamed El-Sayed
 
Numerical solutions for ode (differential equations)
Numerical solutions for ode (differential equations)Numerical solutions for ode (differential equations)
Numerical solutions for ode (differential equations)
Mohamed Mohamed El-Sayed
 
Curve fitting
Curve fittingCurve fitting
Interpolation
InterpolationInterpolation
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Mohamed Mohamed El-Sayed
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiation
Mohamed Mohamed El-Sayed
 
Numerical solutions for 1 non linear eq and system of non linear eqs
Numerical solutions for 1 non linear eq and system of non linear eqsNumerical solutions for 1 non linear eq and system of non linear eqs
Numerical solutions for 1 non linear eq and system of non linear eqs
Mohamed Mohamed El-Sayed
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equations
Mohamed Mohamed El-Sayed
 
Worm gears
Worm gearsWorm gears
Bevel gears
Bevel gearsBevel gears
Helical gears
Helical gearsHelical gears
Brakes
BrakesBrakes
Clutches
ClutchesClutches
Springs
SpringsSprings
Chain drives
Chain drivesChain drives
V belt and rope drives
V belt and rope drivesV belt and rope drives
V belt and rope drives
Mohamed Mohamed El-Sayed
 
Flat belt pulleys
Flat belt pulleysFlat belt pulleys
Flat belt pulleys
Mohamed Mohamed El-Sayed
 
Flat belt drives
Flat belt drivesFlat belt drives
Flat belt drives
Mohamed Mohamed El-Sayed
 
Power screws
Power screwsPower screws

More from Mohamed Mohamed El-Sayed (20)

Optimal control systems
Optimal control systemsOptimal control systems
Optimal control systems
 
Neural networks and deep learning
Neural networks and deep learningNeural networks and deep learning
Neural networks and deep learning
 
Numerical solutions for ode (differential equations)
Numerical solutions for ode (differential equations)Numerical solutions for ode (differential equations)
Numerical solutions for ode (differential equations)
 
Curve fitting
Curve fittingCurve fitting
Curve fitting
 
Interpolation
InterpolationInterpolation
Interpolation
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiation
 
Numerical solutions for 1 non linear eq and system of non linear eqs
Numerical solutions for 1 non linear eq and system of non linear eqsNumerical solutions for 1 non linear eq and system of non linear eqs
Numerical solutions for 1 non linear eq and system of non linear eqs
 
Numerical solutions for linear system of equations
Numerical solutions for linear system of equationsNumerical solutions for linear system of equations
Numerical solutions for linear system of equations
 
Worm gears
Worm gearsWorm gears
Worm gears
 
Bevel gears
Bevel gearsBevel gears
Bevel gears
 
Helical gears
Helical gearsHelical gears
Helical gears
 
Brakes
BrakesBrakes
Brakes
 
Clutches
ClutchesClutches
Clutches
 
Springs
SpringsSprings
Springs
 
Chain drives
Chain drivesChain drives
Chain drives
 
V belt and rope drives
V belt and rope drivesV belt and rope drives
V belt and rope drives
 
Flat belt pulleys
Flat belt pulleysFlat belt pulleys
Flat belt pulleys
 
Flat belt drives
Flat belt drivesFlat belt drives
Flat belt drives
 
Power screws
Power screwsPower screws
Power screws
 

Recently uploaded

IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 

Recently uploaded (20)

IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 

Parameter estimation

  • 1. Contents 1.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Deterministic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Simplified Algorithm (SA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Kaczmarz’s Algorithm (KA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Projection Algorithm (PA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.4 Batch Least Square (BLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.5 Weighted Least Square (WLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.6 Recursive Least Square (RLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.7 Recursive Least Square with Exponential Forgetting (RLS with λ) . . . . . . . . . . . . 4 1.2.8 Recursive Least Square with Varying Exponential Forgetting (RLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Stochastic Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Extended Recursive Least Square (ERLS) . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Extended Recursive Least Square with Exponential Forgetting (ERLS with λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Extended Recursive Least Square with Varying Exponential Forgetting (ERLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.4 Modified Extended Recursive Least Square (MERLS) . . . . . . . . . . . . . . . . . . . 6 1.3.5 Modified Extended Recursive Least Square with Exponential Forgetting (MERLS with λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.6 Modified Extended Recursive Least Square with Varying Exponential Forgetting (MERLS with varying λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1
  • 2. 1.1. PARAMETER ESTIMATION Adaptive Control 1.1 Parameter Estimation On-line determination of process parameters is a key element in adaptive control. A recursive parameter estimator appears explicitly as a component of a self-tuning regulator. Parameter estimation also occurs implicitly in a model-reference adaptive controller. This section presents some methods for real-time parameter estimation. It is useful to view parameter estimation in the broader context of system identification. The key elements of system identification are selection of model structure, experiment design, parameter estimation, and validation. Since system identification is executed automatically in adaptive systems. it is essential to have a good understanding of all aspects of the problem. Selection of model structure and parameterization are fundamental issues. Simple transfer function models will be used in this chapter. The identification problems are simplified significantly if the models are linear in the parameters. This is about parameter estimation of discrete linear system transfer function using linear estimation methods. 1.2 Deterministic Parameter Estimation G(z−1 ) = z−dB(z−1) A(z−1) B(z−1 ) = b0 + b1z−1 + ... + bnbz−nb A(z−1 ) = 1 + a1z−1 + ... + anaz−na y(k) = φT (k)ˆθ(k − 1) φT (k) = [−y(k − 1) − y(k − 2) ... − y(k − na) u(k − d)u(k − d − 1) ... u(k − d − nb)] ˆθ(k − 1) = a1 a2 ... ana b0 b1 ... bnb T number of knowns = nu = na + nb + 1 n = Max(na, nb + d) number of sampled data = N > nu + n − 1 NOTE : Estimation stats from time n + 1 1.2.1 Simplified Algorithm (SA) φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] ˆθ(k + 1) = ˆθ(k) + φ(k + 1) φT (k + 1)φ(k + 1) y(k + 1) − φT (k + 1)ˆθ(k) 1.2.2 Kaczmarz’s Algorithm (KA) φT (k + 1) = [ −y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] ˆθ(k + 1) = ˆθ(k) + γφ(k + 1) φT (k + 1)φ(k + 1) y(k + 1) − φT (k + 1)ˆθ(k) α ≥ 0 0 < γ < 2 Mohamed Mohamed El-Sayed Atyya Page 2 of 8
  • 3. 1.2. DETERMINISTIC PARAMETER ESTIMATION Adaptive Control 1.2.3 Projection Algorithm (PA) φT (k + 1) = [ −y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] ˆθ(k + 1) = ˆθ(k) + γφ(k + 1) α + φT (k + 1)φ(k + 1) y(k + 1) − φT (k + 1)ˆθ(k) 1.2.4 Batch Least Square (BLS) ψ =     −y(k − 1) ... −y(k − na) u(k − d) ... u(k − d − nb) −y(k) ... −y(k − na + 1) u(k − d + 1) ... u(k − d − nb + 1) . ... . . ... . −y(N − 1) ... −y(N − na) u(N − d) ... u(N − d − nb)     Y = y(k) y(k + 1) ... y(N) T ∴ θ = ψT ψ −1 ψT Y 1.2.5 Weighted Least Square (WLS) θ = ψT Wψ −1 ψT WY Where W is a diagonal matrix with wii = γN−n−i−1 and γ < 1 1.2.6 Recursive Least Square (RLS) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] K(k + 1) = P(k)φ(k + 1) I + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 Mohamed Mohamed El-Sayed Atyya Page 3 of 8
  • 4. 1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control 1.2.7 Recursive Least Square with Exponential Forgetting (RLS with λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] K(k + 1) = P(k)φ(k + 1) λ + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k)/λ P(k + 1) = P(k + 1) + PT (k + 1) 2 1.2.8 Recursive Least Square with Varying Exponential Forgetting (RLS with varying λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu λ(k) = 0.3 → 0.999 φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1)] K(k + 1) = P(k)φ(k + 1) λ(k) + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = λ(k) − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 λ(k + 1) = 1 − 1 − φT (k + 1)K(k + 1) 2(k + 1) σ2( )µ( ) NOTE : Update λ after n times 1.3 Stochastic Parameter Estimation y(k) = z−dB(z−1) A(z−1) u + C(z−1) A(z−1) = φT (k)ˆθ(k − 1) B(z−1 ) = b0 + b1z−1 + ... + bnbz−nb A(z−1 ) = 1 + a1z−1 + ... + anaz−na C(z−1 ) = 1 + c1z−1 + ... + cncz−nc ˆθ(k − 1) = [a1 a2 ... ana b0 b1 ... bnb c1 c2 ... cnc]T number of knowns = nu = na + nb + nc + 1 n = Max(na, nb + nc + d) number of sampled data = N > nu + n − 1 NOTE : Estimation stats from time n + 1 Mohamed Mohamed El-Sayed Atyya Page 4 of 8
  • 5. 1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control Figure 1.1: Noise is applied on the output signal 1.3.1 Extended Recursive Least Square (ERLS) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) I + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 1.3.2 Extended Recursive Least Square with Exponential Forgetting (ERLS with λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) λ + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k)/λ P(k + 1) = P(k + 1) + PT (k + 1) 2 Mohamed Mohamed El-Sayed Atyya Page 5 of 8
  • 6. 1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control 1.3.3 Extended Recursive Least Square with Varying Exponential Forgetting (ERLS with varying λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu λ(k) = 0.3 → 0.999 φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) λ(k) + φT (k + 1)P(k)φ(k + 1) −1 (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) (k + 1) P(k + 1) = λ(k) − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 λ(k + 1) = 1 − 1 − φT (k + 1)K(k + 1) 2(k + 1) σ2( )µ( ) NOTE : Update λ after n times 1.3.4 Modified Extended Recursive Least Square (MERLS) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) I + φT (k + 1)P(k)φ(k + 1) −1 − (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) − (k + 1) + (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 Mohamed Mohamed El-Sayed Atyya Page 6 of 8
  • 7. 1.3. STOCHASTIC PARAMETER ESTIMATION Adaptive Control 1.3.5 Modified Extended Recursive Least Square with Exponential Forgetting (MERLS with λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) λ + φT (k + 1)P(k)φ(k + 1) −1 − (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) − (k + 1) + (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k + 1) P(k + 1) = I − K(k + 1)φT (k + 1) P(k)/λ P(k + 1) = P(k + 1) + PT (k + 1) 2 1.3.6 Modified Extended Recursive Least Square with Varying Exponential Forgetting (MERLS with varying λ) P0 = 106 I , or P0 = ψT ψ −1 , size(P) = nu x nu λ(k) = 0.3 → 0.999 φT (k + 1) = [−y(k) − y(k − 1) ... − y(k − na + 1) u(k − d + 1) u(k − d − 2) ... u(k − d − nb + 1) (k) (k − 1) ... (k − nc + 1)] K(k + 1) = P(k)φ(k + 1) λ(k) + φT (k + 1)P(k)φ(k + 1) −1 − (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k) ˆθ(k + 1) = ˆθ(k) + K(k + 1) − (k + 1) + (k + 1) = y(k + 1) − φT (k + 1)ˆθ(k + 1) P(k + 1) = λ(k) − K(k + 1)φT (k + 1) P(k) P(k + 1) = P(k + 1) + PT (k + 1) 2 λ− (k + 1) = 1 − 1 − φT (k + 1)K(k + 1) −2 (k + 1) σ2( −)µ( −) λ+ (k + 1) = 1 − 1 − φT (k + 1)K(k + 1) +2 (k + 1) σ2( +)µ( +) σ− = σ2( −) σ2( −) + σ2( +) σ+ = σ2( +) σ2( −) + σ2( +) λ(k + 1) = σ− λ− (k + 1) + σ+ λ+ (k + 1) NOTE : Update λ after n times Mohamed Mohamed El-Sayed Atyya Page 7 of 8
  • 8. 1.4. MATLAB CODES Adaptive Control 1.4 MATLAB Codes 1.2.1 http://goo.gl/Vddvtt 1.2.2 http://goo.gl/UwWFTW 1.2.3 http://goo.gl/tV4Ni6 1.2.4 http://goo.gl/rY2n7I 1.2.6 http://goo.gl/e7J2kq 1.2.7 http://goo.gl/3q6Yc6 1.2.8 http://goo.gl/SCPvEW 1.3.1 http://goo.gl/JnrdNh 1.3.2 http://goo.gl/xjpHha 1.3.3 http://goo.gl/6wVeuW 1.3.4 http://goo.gl/vuKeaL 1.3.5 http://goo.gl/mL0RCz 1.3.6 http://goo.gl/vzViYE 1.5 References 1. Karl Johan Astrom, Adaptive Control, 2nd Edition. 2. David I. Wilson, Advanced Control using MATLAB or Stabilising the unstabilisable, Auckland University of Technology, New Zealand, May 15, 2015 1.6 Contacts mohamed.atyya94@eng-st.cu.edu.eg Mohamed Mohamed El-Sayed Atyya Page 8 of 8