SlideShare a Scribd company logo
On Parallel Transport
Anamitra
Palit.anamitra@gmail.com
Part I
Let 𝐴 𝜇be a tensordefinedwithrespecttosome transformation𝑥̅ 𝜇 ↔ 𝑥 𝑗: 𝑥̅ 𝜇 = 𝑥̅ 𝜇( 𝑥 𝑗);𝑖, 𝑗 =
0,1,2,3zerodenotingthe time component
𝐴̅ 𝜇 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝐴 𝑗 (1)
Differentiatingwithrespecttopropertime we obtain:
𝑑𝐴̅ 𝜇
𝑑𝜏
=
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) (2)
Againwe have the standardresult
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞](2.1)
Or,
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 (3)
Using(2) with(3) we obtain
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
)+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗 Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞
Or,
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) + Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 = +
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 (4)
Nowletrus consideranarbitrarychoice :
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 = 𝑋 𝑗 andconsequently,
𝑑𝐴̅ 𝜇
𝑑𝜏
+
Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 = 𝑌 𝜇
Usingthis choice with(4) we obtain
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) −
𝑑𝐴̅ 𝜇
𝑑𝜏
+ 𝑌 𝜇 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[−
𝑑𝐴 𝑗
𝑑𝜏
+ 𝑋 𝑗]
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) −
𝑑𝐴̅ 𝜇
𝑑𝜏
+ 𝑌 𝜇 = −
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗 𝑋 𝑗
But 𝑌 𝜇 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑋 𝑗Or,
𝑑𝐴̅ 𝜇
𝑑𝜏
=
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑑𝐴 𝑗
𝑑𝜏
+
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) (5)
To note that
𝑑𝐴 𝑗
𝑑𝜏
+
𝑑
𝑑𝜏
(
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
) =
𝑑𝑥 𝛽
𝑑𝜏
∇ 𝛽 𝐴𝑗 = 𝑈 𝛽∇ 𝛽 𝐴 𝑗
Equation(5) is the same as (2) or (1) withsuitable initial conditions..From(2) youcanarrive at (2.1) or
(4). 𝐼𝑡𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑓𝑜𝑟 𝑋 𝑗[andhence for 𝑌 𝜇 to be the null tensor[rankone].Itmightappearthat
relation(2.1) will holdforanyarbitrarytransformationwithnon-singular determinantof the Jacobian.
But thisisnot true since the properspeedsontwosidesof (2.1) are relatedtothe transformation
elements.Properspeeds
𝑑𝑥 𝑝
𝑑𝜏
and
𝑑𝑥̅ 𝛼
𝑑𝜏
are connectedwiththe transformationitself ,itselementsbeing
𝜕𝑥̅ 𝛼
𝜕𝑥 𝑝
For parallel transportwe specificallyuse 𝑋 𝑗 = 0andconsequrently 𝑌 𝜇 = 0
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 = 𝑋 𝑗
We find 𝑓(𝑡, 𝑥, 𝑦, 𝑧) and 𝑔(𝑡, 𝑥, 𝑦, 𝑧) suchthat
𝑑( 𝑓𝐴 𝑗)
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
( 𝑓𝐴 𝑞) = 0
𝑑( 𝑔𝐴̅ 𝜇)
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
( 𝑔𝐴̅ 𝛽) = 0
𝑓
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝑓𝐴 𝑞 + 𝐴 𝑗
𝑑𝑓
𝑑𝜏
= 0
𝑓 (
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞)+ 𝐴 𝑗
𝑑𝑓
𝑑𝜏
= 0
∇ 𝛽 𝐴 𝑗 is rank twotensorof mixedorderwhile 𝑈 𝛽∇ 𝛽 𝐴 𝑗 isarank one tensor: 𝛽 disappearson
contraction.’ 𝑗’isthe survivingindex[uncontractedindex]
An important property of parallel transport ispreservationof dot product as we move along the
concernedworld line : this is possible onlywhen 𝑿𝒋 = 𝟎 and 𝒀 𝝁 = 𝟎. Preservationof dot product
is also a salientattribute for coordinate transformations. This goesin favor of identifyingparallel
transport product as a transformation
𝑓𝑋 𝑗 + 𝐴 𝑗
𝑑𝑓
𝑑𝜏
= 0
Similarly
𝑔𝑌 𝜇 + 𝐴̅ 𝑗
𝑑𝑔
𝑑𝜏
= 0
We are upgradingarbitraryvectorfieldstoonesthathave zero covariantderivativesalongcurvesunder
investigationbythe use of scale factorslike f and g[foreachcomponentwe have a suitable scale factor]
PointstoObserve
1)
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 = 0 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 = 0 are parallel transportequations
As we move alonga curve[worldline]fromone segmenttothe next
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝑔𝑒𝑡𝑠 𝑓𝑖𝑥𝑒𝑑 𝑢𝑝 .I can determine
the tensorinthe nextsegment onlyif Ihave the knowledge of
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
.Informationof thistransformation
rule inrelationto
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
isembeddedinthe properspeedsoneitherside of (2.1).[See Special note]
2) Covariantderivative=0impliesdirectionalderivative iszero.
Duringdifferentiationwe have toevaluate quantitieslike 𝑑𝐴 𝑗 = 𝐴 𝑗( 𝜏 + Δ𝜏) − 𝐴 𝑗(𝜏).The vector
𝐴 𝑗( 𝜏 + Δ𝜏) has to be parallel translatedoveraninfinitesimal distancesothatthe initial pointsof
𝐴 𝑗( 𝜏 + Δ𝜏) and 𝐴 𝑗(𝜏)coincide.Duringparallel translationthe componentschange:thisistrue evenin
flatspace time contextif the systemisnotrectangular.The Christoffel symbolstake care of the changes
incomponentsdue toparallel translation[infinitesimal].Now
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞] and
𝜕𝐴̅ 𝜇
𝜕𝑥̅ 𝛼
+ Γ̅ 𝜇
𝛼𝛽 𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[
𝜕𝐴 𝑗
𝜕𝑥 𝑝
+ Γ 𝑗
𝑝𝑞 𝐴 𝑞] are derivable
fromeach otherbut
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 ≠
𝜕𝐴 𝑗
𝜕𝑥 𝑝
+ Γ 𝑗
𝑝𝑞 𝐴 𝑞 and
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 ≠
𝜕𝐴̅ 𝜇
𝜕𝑥̅ 𝛼
+ Γ̅ 𝜇
𝛼𝛽 𝐴̅ 𝛽
Properspeedof relatingtothe transformationitself isinvolvedin(2.1):a conspicuouspointtotake not
of carefully.
WhenI move throughdifferentpointsof acurve usingtransformingthe vectorthrougha chainof
movingreference fames the validformulaisof course
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 = 0,our usual parallel
transportformula
𝑑𝐴 𝑗
𝑑𝜏
= −Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 impliesthanlocally 𝐴 𝑗 changessimilarlyinrelationtocurvature
elements[determinedbyChristoffelsymbols] andlocal properspeed
If Γ 𝑗
𝑝𝑞 = 0
𝑑𝐴 𝑗
𝑑𝜏
= 0
𝐴 𝑗 = 𝐶 𝑗[local constant]
𝐴 𝑗
𝐴 𝑘 =
𝐶 𝑗
𝐶 𝑗
Or,
𝐴 𝑗 = 𝐶𝐴 𝑘 is a scalingeffecttypical of lineartransformationsThe constantCis independentof proiper
time
If you lookat Lorentztransformationsthe original andtransformedsidesare notdependentonproper
time considerations
Importantto keepinmindthat
𝑑𝐴 𝑗
𝑑𝜏
= −Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞 considersaparticulartype of covariantderivative
whichiszero.In general itshouldnobe zero
For flatspac e time youhave
𝑑𝐴 𝑗
𝑑𝜏
= 0insteadof
𝑑𝐴 𝑗
𝑑𝜏
= −Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞
Part II
In transformationthe same objectisviewedindifferentframes.The normremainsinvariant.Since the
objectremainsthe same, the transformation rule definesparallelismwithrespecttto differentframes.
In parallel transportwe move a4-vectorA alonga curve parameterizedby 𝜏 accodingtothe equation:
𝑑𝐴 𝜇
𝑑𝜏
= −Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽 (A)
𝑑𝐴 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽 = 0
𝑑(𝑛𝐴 𝜇)
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝑛𝐴 𝛽 = 0 (A’)
N:constant
We are movingthe vector 𝐴 𝜇 alonga curve 𝑥 𝛼 = 𝑥 𝛼(𝜏)
We assume thatsome transformation 𝑥̅ 𝑗 = 𝑥̅ 𝑗( 𝑥 𝛼)aswe move alongthe curve from one segmentto
another
Let forsome four vectorB we have
𝐵̅ 𝜇 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
𝐵 𝜇 as you move alongthe curve,
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
indicatingthe specifictransformationelements/rule
[
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
representthe appropriate transformationelementsforpassingfromone segmentof the curve to
another] ]:
Since B isfour vector
We denote:
𝑑𝐵 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐵 𝛽 = 𝑓 𝜇 (B)
𝑓 𝜇:fourvector component
NowfromA’ and B we have,
𝑑( 𝐵 𝜇−𝑛𝐴 𝜇)
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
( 𝐵 𝛽 − 𝑛𝐴 𝜇) = 𝑓 𝜇 (C)
Since n can be variedat random, 𝐵 𝛽 = 𝑛𝐴 𝛽 and 𝑓 𝜇 = 0 seemtobe readilyrecognizable solutionsof C
It wouldbe appropriate tosolve A toobtainparallel transportresult
[
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽] =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞](D)
The above relationissatisfiedirrespective of the nature of transformationif A isa tensor.
As I move the vectoralonghe curve I have to make sure thatI alwayshave a tensorad I proceedwith
such movement
Successof relation(D) will insome sense indicate that 𝐴 𝜇 isa vector
If
𝑑𝐴 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽 = 0 for everymovement: 𝐵 𝛽 = 𝑛𝐴 𝛽 and 𝑓 𝜇 = 0
ThenrelationDis automaticallyvalidforanyarbitrarytransferindicatingvisa 4-vector. Earlierwe have
shownthat the appropriate transformationwasbeingfollowed:
𝑑𝐴 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽 beingplausible .If
youstart witha tensor,the transformationshave tobe specified.These transformationcanbe rbitrary.
We choose suchtransformationthatwill transformitforframes alongthe curve.RelationDwill
automaticallybe successfulevenwithnozero:
𝑑𝐴 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽:But we will nothave 𝐵 𝛽 = 𝑛𝐴 𝛽 and
𝑓 𝜇 = 0 if
𝑑𝐴 𝜇
𝑑𝜏
+ Γ 𝜇
𝛼𝛽
𝑑𝑥 𝛼
𝑑𝜏
𝐴 𝛽 ≠ 0
Special Note:
We recall:
𝑑𝐴̅ 𝜇
𝑑𝜏
+ Γ̅ 𝜇
𝛼𝛽
𝑑𝑥̅ 𝛼
𝑑𝜏
𝐴̅ 𝛽 =
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
[
𝑑𝐴 𝑗
𝑑𝜏
+ Γ 𝑗
𝑝𝑞
𝑑𝑥 𝑝
𝑑𝜏
𝐴 𝑞](2.1)
Again:
Takingthe correspondence: 𝑥̅ 𝜇 = 𝑥̅ 𝜇( 𝑥𝑖)fromthe relations 𝑥 𝑗 = 𝑥 𝑗(𝜏)and 𝑥̅ 𝜇 = 𝑥̅ 𝜇(𝜏)inthe two
segments
we have ,
𝑑𝑥̅ 𝜇 =
𝜕𝑥̅ 𝜇
𝜕 𝑥 𝑖
𝑑𝑥 𝑖 (A)
𝑑𝑥̅ 𝜇
𝑑𝑥 𝑘
=
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑖
𝑑𝑥 𝑖
𝑑𝑥 𝑘
(B)
𝑑𝑥̅ 𝜇 and 𝑑𝑥 𝑘 have beenconsideredalongthe twosegmentsof the curve andhence the d operator
The quantities
𝑑𝑥 𝑖
𝑑𝑥 𝑘
and
𝑑𝑥̅ 𝜇
𝑑𝑥 𝑘
will be determinedbythe shape of the curves/worldlines: 𝑥 𝑗 = 𝑥 𝑗(𝜏)and
𝑥̅ 𝜇 = 𝑥̅ 𝜇(𝜏)
𝑑𝑥̅ 𝜇
𝑑𝑥 𝑘 =
𝑑𝑥̅ 𝜇
𝑑𝜏
𝑑𝑥 𝑘
𝑑𝜏
[We have to maintain 𝑑𝜏 same inthe numeratorand inthe denominatortopreserve the manifold
picture]
We have sixteenequationsof the type (B) andsixteenunknowns
𝜕𝑥̅ 𝜇
𝜕 𝑥 𝑖
tobe solvedoutif the proper
speedsonthe twosectionsof the curve are knownto us
The properspeedsleadusto the transformationelements
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑗
Transformationrule isembeddedinthe properspeedsoneitherside whichare knowntous
Steps
1) From
𝑑𝑥̅ 𝜇
𝑑𝜏
and
𝑑𝑥 𝑘
𝑑𝜏
we find
𝑑𝑥̅ 𝜇
𝑑𝑥 𝑘
2)
𝑑𝑥 𝑖
𝑑𝑥 𝑘
is knownfromfromthe curve to be transformed
3) We solve
𝑑𝑥̅ 𝜇
𝑑𝑥 𝑘
=
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑖
𝑑𝑥 𝑖
𝑑𝑥 𝑘
tofind
𝜕𝑥̅ 𝜇
𝜕 𝑥 𝑖
Let usrecall the metricfor a moment
𝑑𝜏2 = 𝑔𝑡𝑡 𝑑𝑡2 − 𝑔 𝑥𝑥 𝑑𝑡2 − 𝑔 𝑦𝑦 𝑑𝑡2 − 𝑔 𝑧𝑧 𝑑𝑡2
1 = 𝑔 𝑡𝑡 (
𝑑𝑡
𝑑𝜏
)
2
− 𝑔 𝑥𝑥(
𝑑𝑥
𝑑𝜏
)
2
− 𝑔 𝑦𝑦 (
𝑑𝑦
𝑑𝜏
)
2
− 𝑔 𝑧𝑧 (
𝑑𝑧
𝑑𝜏
)
2
The Christoffel symbolsare functionsof the metriccoefficientsandtheirderivatives
We mightconsiderthe metricfunctionsasfunctionsof the Christoffel symbolsanduse such
substitutioninthe above metric.
The quadruplet (
𝑑𝑡
𝑑𝜏
,
𝑑𝑥
𝑑𝜏
,
𝑑𝑦
𝑑𝜏
,
𝑑𝑧
𝑑𝜏
)isconstrainedbythe metricandhence by the Christoffel symbols.
Thisclearlyimpliesfromthe earlierpartof the special note thatthe transformationelements
𝜕𝑥̅ 𝜇
𝜕𝑥 𝑖
dependonthe Christofellsymbolsandconsequentlyonthe curvature tensor
Again,
We multiplybothsidesof the metricbythe constant n2
𝑛2 = 𝑔𝑡𝑡 ( 𝑛
𝑑𝑡
𝑑𝜏
)
2
− 𝑔 𝑥𝑥 ( 𝑛
𝑑𝑥
𝑑𝜏
)
2
− 𝑔 𝑦𝑦 ( 𝑛
𝑑𝑦
𝑑𝜏
)
2
− 𝑔 𝑧𝑧 ( 𝑛
𝑑𝑧
𝑑𝜏
)
2
Againwe obtain
1 = 𝑔 𝑡𝑡 (
𝑑𝑡
𝑑𝜏
)
2
− 𝑔 𝑥𝑥(
𝑑𝑥
𝑑𝜏
)
2
− 𝑔 𝑦𝑦 (
𝑑𝑦
𝑑𝜏
)
2
− 𝑔 𝑧𝑧 (
𝑑𝑧
𝑑𝜏
)
2
That is , foreach fourdirectionwe have aunique quadruplet (
𝑑𝑡
𝑑𝜏
,
𝑑𝑥
𝑑𝜏
,
𝑑𝑦
𝑑𝜏
,
𝑑𝑧
𝑑𝜏
).
[Will be continued]

More Related Content

What's hot

Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
foxtrot jp R
 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
foxtrot jp R
 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
foxtrot jp R
 
Lecture Ch 03
Lecture Ch 03Lecture Ch 03
Lecture Ch 03
rtrujill
 
Motion graphs
Motion graphsMotion graphs
Motion graphs
ndward
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a Projectile
Abduljalil AlAbidi
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC Blocks
Hoopeer Hoopeer
 
Kinematics 2
Kinematics 2Kinematics 2
Kinematics 2
yapshinn
 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
foxtrot jp R
 
Kinematic equations of motion
Kinematic equations of motionKinematic equations of motion
Kinematic equations of motion
mantlfin
 
chapter-1
chapter-1chapter-1
chapter-1
ahmedmosallm
 
mathematical_model_of_motion_notes
mathematical_model_of_motion_notesmathematical_model_of_motion_notes
mathematical_model_of_motion_notes
Michael Che
 
Derivation of Kinematic Equations
Derivation of Kinematic EquationsDerivation of Kinematic Equations
Derivation of Kinematic Equations
omar_egypt
 
1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus
cpphysics
 
Lecture Ch 02
Lecture Ch 02Lecture Ch 02
Lecture Ch 02
rtrujill
 
1D Kinematics Notes
1D Kinematics Notes1D Kinematics Notes
1D Kinematics Notes
cpphysics
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
Mashauri William
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
University of Education
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
 

What's hot (19)

Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
 
Lecture Ch 03
Lecture Ch 03Lecture Ch 03
Lecture Ch 03
 
Motion graphs
Motion graphsMotion graphs
Motion graphs
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a Projectile
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC Blocks
 
Kinematics 2
Kinematics 2Kinematics 2
Kinematics 2
 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
 
Kinematic equations of motion
Kinematic equations of motionKinematic equations of motion
Kinematic equations of motion
 
chapter-1
chapter-1chapter-1
chapter-1
 
mathematical_model_of_motion_notes
mathematical_model_of_motion_notesmathematical_model_of_motion_notes
mathematical_model_of_motion_notes
 
Derivation of Kinematic Equations
Derivation of Kinematic EquationsDerivation of Kinematic Equations
Derivation of Kinematic Equations
 
1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus1D graphs, kinematics, and calculus
1D graphs, kinematics, and calculus
 
Lecture Ch 02
Lecture Ch 02Lecture Ch 02
Lecture Ch 02
 
1D Kinematics Notes
1D Kinematics Notes1D Kinematics Notes
1D Kinematics Notes
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 

Viewers also liked

Supervisors at the Front-Line: Is Training Worth It?
Supervisors at the Front-Line: Is Training Worth It?Supervisors at the Front-Line: Is Training Worth It?
Supervisors at the Front-Line: Is Training Worth It?
Moementum, Inc.
 
Bridgeway Consulting Ltd - Final Inspection Report
Bridgeway Consulting Ltd - Final Inspection ReportBridgeway Consulting Ltd - Final Inspection Report
Bridgeway Consulting Ltd - Final Inspection Report
Steven Baker-Mason
 
Many new years yet to be celebrated in 2015
Many new years yet to be celebrated in 2015Many new years yet to be celebrated in 2015
Many new years yet to be celebrated in 2015
Natalia Koryakina
 
Spring Mustang Messenger 2015 Online
Spring Mustang Messenger 2015 OnlineSpring Mustang Messenger 2015 Online
Spring Mustang Messenger 2015 Online
Robert Feasley
 
Theodoros Aristodemou Business Profile
Theodoros Aristodemou Business ProfileTheodoros Aristodemou Business Profile
Theodoros Aristodemou Business Profile
Aristo Developers
 
10 digital & social media trends for Higher Education marketing in 2015
10 digital & social media trends for Higher Education marketing in 201510 digital & social media trends for Higher Education marketing in 2015
10 digital & social media trends for Higher Education marketing in 2015
Jim Tudor
 
Webqest
WebqestWebqest
Webqest
halbar913
 
TRIANGULAR DISTRIBUTIONS
TRIANGULAR  DISTRIBUTIONSTRIANGULAR  DISTRIBUTIONS
TRIANGULAR DISTRIBUTIONS
Cyriac Pius
 
Phrasal verb
Phrasal verbPhrasal verb
Phrasal verb
halbar913
 
Fall 2014 Messenger W: Pages
Fall 2014 Messenger W: PagesFall 2014 Messenger W: Pages
Fall 2014 Messenger W: Pages
Robert Feasley
 

Viewers also liked (10)

Supervisors at the Front-Line: Is Training Worth It?
Supervisors at the Front-Line: Is Training Worth It?Supervisors at the Front-Line: Is Training Worth It?
Supervisors at the Front-Line: Is Training Worth It?
 
Bridgeway Consulting Ltd - Final Inspection Report
Bridgeway Consulting Ltd - Final Inspection ReportBridgeway Consulting Ltd - Final Inspection Report
Bridgeway Consulting Ltd - Final Inspection Report
 
Many new years yet to be celebrated in 2015
Many new years yet to be celebrated in 2015Many new years yet to be celebrated in 2015
Many new years yet to be celebrated in 2015
 
Spring Mustang Messenger 2015 Online
Spring Mustang Messenger 2015 OnlineSpring Mustang Messenger 2015 Online
Spring Mustang Messenger 2015 Online
 
Theodoros Aristodemou Business Profile
Theodoros Aristodemou Business ProfileTheodoros Aristodemou Business Profile
Theodoros Aristodemou Business Profile
 
10 digital & social media trends for Higher Education marketing in 2015
10 digital & social media trends for Higher Education marketing in 201510 digital & social media trends for Higher Education marketing in 2015
10 digital & social media trends for Higher Education marketing in 2015
 
Webqest
WebqestWebqest
Webqest
 
TRIANGULAR DISTRIBUTIONS
TRIANGULAR  DISTRIBUTIONSTRIANGULAR  DISTRIBUTIONS
TRIANGULAR DISTRIBUTIONS
 
Phrasal verb
Phrasal verbPhrasal verb
Phrasal verb
 
Fall 2014 Messenger W: Pages
Fall 2014 Messenger W: PagesFall 2014 Messenger W: Pages
Fall 2014 Messenger W: Pages
 

Similar to ParallelABX

3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
FernandoDanielMamani1
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
SEMINARGROOT
 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
foxtrot jp R
 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
IOSR Journals
 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
Wasswaderrick3
 
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
iosrjce
 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
JAGARANCHAKMA2
 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
Sindhu Rumesh Kumar
 
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
FernandoDanielMamani1
 
Navier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normalNavier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normal
Carlos López
 
Change variablethm
Change variablethmChange variablethm
Change variablethm
Jasonleav
 
F04573843
F04573843F04573843
F04573843
IOSR-JEN
 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
DHRUBANKA Sarma
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
DHRUBANKA Sarma
 
Differentiation
DifferentiationDifferentiation
Differentiation
Anirudh Gaddamanugu
 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
tarini8
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
Farzad Javidanrad
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
FernandoDanielMamani1
 
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
IJERA Editor
 
linear algebra (malak,).pptx
linear algebra (malak,).pptxlinear algebra (malak,).pptx
linear algebra (malak,).pptx
malakahmadwsu
 

Similar to ParallelABX (20)

3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d3 capitulo-iii-matriz-asociada-sem-14-t-l-d
3 capitulo-iii-matriz-asociada-sem-14-t-l-d
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
 
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
CR-Submanifolds of a Nearly Hyperbolic Cosymplectic Manifold with Semi-Symmet...
 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
 
Simple Linear Regression
Simple Linear RegressionSimple Linear Regression
Simple Linear Regression
 
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c3 capitulo-iii-matriz-asociada-sem-13-t-l-c
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
 
Navier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normalNavier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normal
 
Change variablethm
Change variablethmChange variablethm
Change variablethm
 
F04573843
F04573843F04573843
F04573843
 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
 
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater S...
 
linear algebra (malak,).pptx
linear algebra (malak,).pptxlinear algebra (malak,).pptx
linear algebra (malak,).pptx
 

ParallelABX

  • 1. On Parallel Transport Anamitra Palit.anamitra@gmail.com Part I Let 𝐴 𝜇be a tensordefinedwithrespecttosome transformation𝑥̅ 𝜇 ↔ 𝑥 𝑗: 𝑥̅ 𝜇 = 𝑥̅ 𝜇( 𝑥 𝑗);𝑖, 𝑗 = 0,1,2,3zerodenotingthe time component 𝐴̅ 𝜇 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝐴 𝑗 (1) Differentiatingwithrespecttopropertime we obtain: 𝑑𝐴̅ 𝜇 𝑑𝜏 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) (2) Againwe have the standardresult 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [ 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞](2.1) Or, 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 (3) Using(2) with(3) we obtain 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 )+ Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 Or, 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = + 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 (4) Nowletrus consideranarbitrarychoice : 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 = 𝑋 𝑗 andconsequently, 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝑌 𝜇 Usingthis choice with(4) we obtain 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) − 𝑑𝐴̅ 𝜇 𝑑𝜏 + 𝑌 𝜇 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [− 𝑑𝐴 𝑗 𝑑𝜏 + 𝑋 𝑗] 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) − 𝑑𝐴̅ 𝜇 𝑑𝜏 + 𝑌 𝜇 = − 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑋 𝑗
  • 2. But 𝑌 𝜇 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑋 𝑗Or, 𝑑𝐴̅ 𝜇 𝑑𝜏 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑑𝐴 𝑗 𝑑𝜏 + 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) (5) To note that 𝑑𝐴 𝑗 𝑑𝜏 + 𝑑 𝑑𝜏 ( 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 ) = 𝑑𝑥 𝛽 𝑑𝜏 ∇ 𝛽 𝐴𝑗 = 𝑈 𝛽∇ 𝛽 𝐴 𝑗 Equation(5) is the same as (2) or (1) withsuitable initial conditions..From(2) youcanarrive at (2.1) or (4). 𝐼𝑡𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑓𝑜𝑟 𝑋 𝑗[andhence for 𝑌 𝜇 to be the null tensor[rankone].Itmightappearthat relation(2.1) will holdforanyarbitrarytransformationwithnon-singular determinantof the Jacobian. But thisisnot true since the properspeedsontwosidesof (2.1) are relatedtothe transformation elements.Properspeeds 𝑑𝑥 𝑝 𝑑𝜏 and 𝑑𝑥̅ 𝛼 𝑑𝜏 are connectedwiththe transformationitself ,itselementsbeing 𝜕𝑥̅ 𝛼 𝜕𝑥 𝑝 For parallel transportwe specificallyuse 𝑋 𝑗 = 0andconsequrently 𝑌 𝜇 = 0 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 = 𝑋 𝑗 We find 𝑓(𝑡, 𝑥, 𝑦, 𝑧) and 𝑔(𝑡, 𝑥, 𝑦, 𝑧) suchthat 𝑑( 𝑓𝐴 𝑗) 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 ( 𝑓𝐴 𝑞) = 0 𝑑( 𝑔𝐴̅ 𝜇) 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 ( 𝑔𝐴̅ 𝛽) = 0 𝑓 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝑓𝐴 𝑞 + 𝐴 𝑗 𝑑𝑓 𝑑𝜏 = 0 𝑓 ( 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞)+ 𝐴 𝑗 𝑑𝑓 𝑑𝜏 = 0 ∇ 𝛽 𝐴 𝑗 is rank twotensorof mixedorderwhile 𝑈 𝛽∇ 𝛽 𝐴 𝑗 isarank one tensor: 𝛽 disappearson contraction.’ 𝑗’isthe survivingindex[uncontractedindex] An important property of parallel transport ispreservationof dot product as we move along the concernedworld line : this is possible onlywhen 𝑿𝒋 = 𝟎 and 𝒀 𝝁 = 𝟎. Preservationof dot product is also a salientattribute for coordinate transformations. This goesin favor of identifyingparallel transport product as a transformation
  • 3. 𝑓𝑋 𝑗 + 𝐴 𝑗 𝑑𝑓 𝑑𝜏 = 0 Similarly 𝑔𝑌 𝜇 + 𝐴̅ 𝑗 𝑑𝑔 𝑑𝜏 = 0 We are upgradingarbitraryvectorfieldstoonesthathave zero covariantderivativesalongcurvesunder investigationbythe use of scale factorslike f and g[foreachcomponentwe have a suitable scale factor] PointstoObserve 1) 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 = 0 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 0 are parallel transportequations As we move alonga curve[worldline]fromone segmenttothe next 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝑔𝑒𝑡𝑠 𝑓𝑖𝑥𝑒𝑑 𝑢𝑝 .I can determine the tensorinthe nextsegment onlyif Ihave the knowledge of 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 .Informationof thistransformation rule inrelationto 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 isembeddedinthe properspeedsoneitherside of (2.1).[See Special note] 2) Covariantderivative=0impliesdirectionalderivative iszero. Duringdifferentiationwe have toevaluate quantitieslike 𝑑𝐴 𝑗 = 𝐴 𝑗( 𝜏 + Δ𝜏) − 𝐴 𝑗(𝜏).The vector 𝐴 𝑗( 𝜏 + Δ𝜏) has to be parallel translatedoveraninfinitesimal distancesothatthe initial pointsof 𝐴 𝑗( 𝜏 + Δ𝜏) and 𝐴 𝑗(𝜏)coincide.Duringparallel translationthe componentschange:thisistrue evenin flatspace time contextif the systemisnotrectangular.The Christoffel symbolstake care of the changes incomponentsdue toparallel translation[infinitesimal].Now 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [ 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞] and 𝜕𝐴̅ 𝜇 𝜕𝑥̅ 𝛼 + Γ̅ 𝜇 𝛼𝛽 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [ 𝜕𝐴 𝑗 𝜕𝑥 𝑝 + Γ 𝑗 𝑝𝑞 𝐴 𝑞] are derivable fromeach otherbut 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 ≠ 𝜕𝐴 𝑗 𝜕𝑥 𝑝 + Γ 𝑗 𝑝𝑞 𝐴 𝑞 and 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 ≠ 𝜕𝐴̅ 𝜇 𝜕𝑥̅ 𝛼 + Γ̅ 𝜇 𝛼𝛽 𝐴̅ 𝛽 Properspeedof relatingtothe transformationitself isinvolvedin(2.1):a conspicuouspointtotake not of carefully. WhenI move throughdifferentpointsof acurve usingtransformingthe vectorthrougha chainof movingreference fames the validformulaisof course 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 = 0,our usual parallel transportformula 𝑑𝐴 𝑗 𝑑𝜏 = −Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 impliesthanlocally 𝐴 𝑗 changessimilarlyinrelationtocurvature elements[determinedbyChristoffelsymbols] andlocal properspeed If Γ 𝑗 𝑝𝑞 = 0
  • 4. 𝑑𝐴 𝑗 𝑑𝜏 = 0 𝐴 𝑗 = 𝐶 𝑗[local constant] 𝐴 𝑗 𝐴 𝑘 = 𝐶 𝑗 𝐶 𝑗 Or, 𝐴 𝑗 = 𝐶𝐴 𝑘 is a scalingeffecttypical of lineartransformationsThe constantCis independentof proiper time If you lookat Lorentztransformationsthe original andtransformedsidesare notdependentonproper time considerations Importantto keepinmindthat 𝑑𝐴 𝑗 𝑑𝜏 = −Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 considersaparticulartype of covariantderivative whichiszero.In general itshouldnobe zero For flatspac e time youhave 𝑑𝐴 𝑗 𝑑𝜏 = 0insteadof 𝑑𝐴 𝑗 𝑑𝜏 = −Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞 Part II In transformationthe same objectisviewedindifferentframes.The normremainsinvariant.Since the objectremainsthe same, the transformation rule definesparallelismwithrespecttto differentframes. In parallel transportwe move a4-vectorA alonga curve parameterizedby 𝜏 accodingtothe equation: 𝑑𝐴 𝜇 𝑑𝜏 = −Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽 (A) 𝑑𝐴 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽 = 0 𝑑(𝑛𝐴 𝜇) 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝑛𝐴 𝛽 = 0 (A’) N:constant We are movingthe vector 𝐴 𝜇 alonga curve 𝑥 𝛼 = 𝑥 𝛼(𝜏) We assume thatsome transformation 𝑥̅ 𝑗 = 𝑥̅ 𝑗( 𝑥 𝛼)aswe move alongthe curve from one segmentto another
  • 5. Let forsome four vectorB we have 𝐵̅ 𝜇 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 𝐵 𝜇 as you move alongthe curve, 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 indicatingthe specifictransformationelements/rule [ 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 representthe appropriate transformationelementsforpassingfromone segmentof the curve to another] ]: Since B isfour vector We denote: 𝑑𝐵 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐵 𝛽 = 𝑓 𝜇 (B) 𝑓 𝜇:fourvector component NowfromA’ and B we have, 𝑑( 𝐵 𝜇−𝑛𝐴 𝜇) 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 ( 𝐵 𝛽 − 𝑛𝐴 𝜇) = 𝑓 𝜇 (C) Since n can be variedat random, 𝐵 𝛽 = 𝑛𝐴 𝛽 and 𝑓 𝜇 = 0 seemtobe readilyrecognizable solutionsof C It wouldbe appropriate tosolve A toobtainparallel transportresult [ 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽] = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [ 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞](D) The above relationissatisfiedirrespective of the nature of transformationif A isa tensor. As I move the vectoralonghe curve I have to make sure thatI alwayshave a tensorad I proceedwith such movement Successof relation(D) will insome sense indicate that 𝐴 𝜇 isa vector If 𝑑𝐴 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽 = 0 for everymovement: 𝐵 𝛽 = 𝑛𝐴 𝛽 and 𝑓 𝜇 = 0 ThenrelationDis automaticallyvalidforanyarbitrarytransferindicatingvisa 4-vector. Earlierwe have shownthat the appropriate transformationwasbeingfollowed: 𝑑𝐴 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽 beingplausible .If youstart witha tensor,the transformationshave tobe specified.These transformationcanbe rbitrary. We choose suchtransformationthatwill transformitforframes alongthe curve.RelationDwill automaticallybe successfulevenwithnozero: 𝑑𝐴 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽:But we will nothave 𝐵 𝛽 = 𝑛𝐴 𝛽 and 𝑓 𝜇 = 0 if 𝑑𝐴 𝜇 𝑑𝜏 + Γ 𝜇 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝜏 𝐴 𝛽 ≠ 0 Special Note:
  • 6. We recall: 𝑑𝐴̅ 𝜇 𝑑𝜏 + Γ̅ 𝜇 𝛼𝛽 𝑑𝑥̅ 𝛼 𝑑𝜏 𝐴̅ 𝛽 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 [ 𝑑𝐴 𝑗 𝑑𝜏 + Γ 𝑗 𝑝𝑞 𝑑𝑥 𝑝 𝑑𝜏 𝐴 𝑞](2.1) Again: Takingthe correspondence: 𝑥̅ 𝜇 = 𝑥̅ 𝜇( 𝑥𝑖)fromthe relations 𝑥 𝑗 = 𝑥 𝑗(𝜏)and 𝑥̅ 𝜇 = 𝑥̅ 𝜇(𝜏)inthe two segments we have , 𝑑𝑥̅ 𝜇 = 𝜕𝑥̅ 𝜇 𝜕 𝑥 𝑖 𝑑𝑥 𝑖 (A) 𝑑𝑥̅ 𝜇 𝑑𝑥 𝑘 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑖 𝑑𝑥 𝑖 𝑑𝑥 𝑘 (B) 𝑑𝑥̅ 𝜇 and 𝑑𝑥 𝑘 have beenconsideredalongthe twosegmentsof the curve andhence the d operator The quantities 𝑑𝑥 𝑖 𝑑𝑥 𝑘 and 𝑑𝑥̅ 𝜇 𝑑𝑥 𝑘 will be determinedbythe shape of the curves/worldlines: 𝑥 𝑗 = 𝑥 𝑗(𝜏)and 𝑥̅ 𝜇 = 𝑥̅ 𝜇(𝜏) 𝑑𝑥̅ 𝜇 𝑑𝑥 𝑘 = 𝑑𝑥̅ 𝜇 𝑑𝜏 𝑑𝑥 𝑘 𝑑𝜏 [We have to maintain 𝑑𝜏 same inthe numeratorand inthe denominatortopreserve the manifold picture] We have sixteenequationsof the type (B) andsixteenunknowns 𝜕𝑥̅ 𝜇 𝜕 𝑥 𝑖 tobe solvedoutif the proper speedsonthe twosectionsof the curve are knownto us The properspeedsleadusto the transformationelements 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑗 Transformationrule isembeddedinthe properspeedsoneitherside whichare knowntous Steps 1) From 𝑑𝑥̅ 𝜇 𝑑𝜏 and 𝑑𝑥 𝑘 𝑑𝜏 we find 𝑑𝑥̅ 𝜇 𝑑𝑥 𝑘 2) 𝑑𝑥 𝑖 𝑑𝑥 𝑘 is knownfromfromthe curve to be transformed 3) We solve 𝑑𝑥̅ 𝜇 𝑑𝑥 𝑘 = 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑖 𝑑𝑥 𝑖 𝑑𝑥 𝑘 tofind 𝜕𝑥̅ 𝜇 𝜕 𝑥 𝑖 Let usrecall the metricfor a moment
  • 7. 𝑑𝜏2 = 𝑔𝑡𝑡 𝑑𝑡2 − 𝑔 𝑥𝑥 𝑑𝑡2 − 𝑔 𝑦𝑦 𝑑𝑡2 − 𝑔 𝑧𝑧 𝑑𝑡2 1 = 𝑔 𝑡𝑡 ( 𝑑𝑡 𝑑𝜏 ) 2 − 𝑔 𝑥𝑥( 𝑑𝑥 𝑑𝜏 ) 2 − 𝑔 𝑦𝑦 ( 𝑑𝑦 𝑑𝜏 ) 2 − 𝑔 𝑧𝑧 ( 𝑑𝑧 𝑑𝜏 ) 2 The Christoffel symbolsare functionsof the metriccoefficientsandtheirderivatives We mightconsiderthe metricfunctionsasfunctionsof the Christoffel symbolsanduse such substitutioninthe above metric. The quadruplet ( 𝑑𝑡 𝑑𝜏 , 𝑑𝑥 𝑑𝜏 , 𝑑𝑦 𝑑𝜏 , 𝑑𝑧 𝑑𝜏 )isconstrainedbythe metricandhence by the Christoffel symbols. Thisclearlyimpliesfromthe earlierpartof the special note thatthe transformationelements 𝜕𝑥̅ 𝜇 𝜕𝑥 𝑖 dependonthe Christofellsymbolsandconsequentlyonthe curvature tensor Again, We multiplybothsidesof the metricbythe constant n2 𝑛2 = 𝑔𝑡𝑡 ( 𝑛 𝑑𝑡 𝑑𝜏 ) 2 − 𝑔 𝑥𝑥 ( 𝑛 𝑑𝑥 𝑑𝜏 ) 2 − 𝑔 𝑦𝑦 ( 𝑛 𝑑𝑦 𝑑𝜏 ) 2 − 𝑔 𝑧𝑧 ( 𝑛 𝑑𝑧 𝑑𝜏 ) 2 Againwe obtain 1 = 𝑔 𝑡𝑡 ( 𝑑𝑡 𝑑𝜏 ) 2 − 𝑔 𝑥𝑥( 𝑑𝑥 𝑑𝜏 ) 2 − 𝑔 𝑦𝑦 ( 𝑑𝑦 𝑑𝜏 ) 2 − 𝑔 𝑧𝑧 ( 𝑑𝑧 𝑑𝜏 ) 2 That is , foreach fourdirectionwe have aunique quadruplet ( 𝑑𝑡 𝑑𝜏 , 𝑑𝑥 𝑑𝜏 , 𝑑𝑦 𝑑𝜏 , 𝑑𝑧 𝑑𝜏 ). [Will be continued]