SlideShare a Scribd company logo
1 of 6
Very Brief Highlights On Some Key Details: Vacuum-To-Vacuum Matrix In the Presence Of
Cubic Self Interaction
Roa, F. J. P.
Remarks: This draft is based on my answer notes dealing on some basic drills and workouts in
quantum field theory so the reader is highly encouraged to figure things out independently and
compare his results to the ones presented here.
Say we start at an initial time 𝑑 = 0 for a quantum mechanical description of a scalar particle in
the vacuum state |0⟩. With the application of the time evolution operator (teo) π‘ˆ1(𝑇) on the
given vacuum state we evolve this vacuum state into another state | πœ“βŸ© that is given at a later time
𝑑 = 𝑇 > 0.
(1)
|0⟩ β†’ | πœ“βŸ© = π‘ˆ1(𝑇)|0⟩
We take the projection of this evolved state on the vacuum state. Thus, getting the vacuum-to-
vacuum matrix
(2)
⟨0| π‘ˆ1(𝑇)|0⟩
for the probability amplitude that a particle initially in the vacuum state at an initial time will still
be in the vacuum state at a later time.
The time evolution operator (TEO)
(3)
π‘ˆ1 ( 𝑇) = π‘ˆ1 ( 𝑇,0) = 𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑𝑑 𝐻(𝑑)
𝑇
0
)
is given for a system Hamiltonian for scalar fields considered in this particular drill and this
Hamiltonian has implicit time dependence being a Hamiltonian H(J(t)) that is a functional of
time dependent source J(t). This Hamiltonian can be derived from the scalar field system
Lagrangian via Legendre transformation. However, we shall no longer give the details of such
transformation here.
In this prior set-up, we are not yet taking into account the self-interactions in our Lagrangian and
consequently, in our Hamiltonian so our initial matrix given by (2) is in the absence of the said
interactions. These self-interactions enter into the Lagrangian and Hamiltonian in the form of
potential functions and in my personal convenience, I don’t include in these functions the scalar
field mass terms as I put these mass terms already explicitly in the Lagrangian and Hamiltonian.
Without going into the details of how these self-interactions enter into the vacuum-to-vacuum
(VTV) matrix we will only give this VTV matrix here that comes with the presence of the said
interactions via potential operators
(4)
⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚)
𝐡
𝐴 ) |0⟩|
𝐽=0
= 𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉 (𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐡
𝐴
) ⟨0| π‘ˆ1(𝑇)|0⟩|
𝐽=0
and in this particular drill we are considering cubic self- interaction in the form given by
(5)
𝑉[ πœ‘( π‘₯, 𝐽)] =
1
3!
𝑔(3) πœ‘3( π‘₯, 𝐽)
In this current presentation, I am also not going to dwell on the lengthy details to arrive at the
end results of this exercise but this more elaborate presentation will be done in future drafts.
The VTV matrix that includes the cubic self-interaction (5) is obtained upon the setting of all
sources to zero, J = 0. This matrix is given by
(6)
⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’
𝑖
ℏ
∫ 𝑑4 𝑦 𝑉( πœ‘Μ‚)
𝐡
𝐴 ) |0⟩|
𝐽=0
= 𝐢 [ 𝐽 = 0] Γ—
(1 +
1
12
𝑔(3)
2
(𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
+
1
8
𝑔(3)
2
(𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦 β€²)
(2πœ‹)2
𝐺( 𝑦 β€² βˆ’ 𝑦 )
(2πœ‹)2
𝐺(𝑦 βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
)
In my personal convenience, I am used to writing the Green’s function as (for example)
(7)
𝐺( 𝑦 β€² βˆ’ 𝑦) =
1
(2πœ‹)2
∫ 𝑑4 π‘˜
𝑒 π‘–π‘˜ 𝜎(𝑦′ πœŽβˆ’ 𝑦 𝜎)
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
where I have already inserted an imaginary part π‘–πœ– to shift the poles as contour integration will be
required afterwards. The Green’s functions in the matrix expression act as propagators.
The resulting matrix (6), upon the setting of J = 0, consists of two groups (aside from the term
with numerical 1) of relevant identical terms. These terms are as written in coordinate space.
Let us take the group of terms with the numerical factor
1
12
and write this in momentum space
(8)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€²
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ–
𝛿4( π‘˜ βˆ’ π‘˜ β€²
+ π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦
The Dirac-delta functions in this expression represent vertices at the respective space-time points
𝑦 β€² and 𝑦. As indicated above there are three four-momentum integration variables with two
initial four-momentum vertices that we have just mentioned.
As written in coordinate space (8) can be depicted with the following Feynman graph
(Fig.1)
where at the spacetime point 𝑦 β€² is the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€², while at the
spacetime point y the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 . (Note the symmetric property of
the Dirac-delta function, 𝛿4(βˆ’π‘Ž) = 𝛿4( π‘Ž)).
We also have the Fourier components of the propagators
(8.1)
𝑔̃( π‘˜) =
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
(8.2)
𝑔̃( π‘˜ β€²) =
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
and
(8.3)
𝑔̃( π‘˜ β€²β€²) =
1
βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ–
We can integrate over π‘˜ β€²β€² at the space-time point 𝑦 with a picking π‘˜ β€²β€² = k ’ – k so that we can
reduce (8) into (noted (k ’ – k )2
= (k – k β€² )2
)
(9)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐺( 𝑦 βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺(𝑦 β€² βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
∫ 𝑑4 π‘˜β€²
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
∫ 𝑑4 π‘˜
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’ ( k – k β€² )
2
+ 𝑀2 + π‘–πœ–
𝛿4( π‘˜ β€² βˆ’ π‘˜
+ k – k β€² ) 𝑦 β€²
In momentum space as given by (9), we have the corresponding Feynman graph
(Fig.2)
where
(9.1)
𝑔̃( π‘˜) =
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
(9.2)
𝑔̃( π‘˜ β€²) =
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
and
(9.3)
𝑔̃(k – k β€² ) =
1
βˆ’ (k – k β€² )
2
+ 𝑀2 + π‘–πœ–
In (9), we have chosen the four-momentum k as internal four-momentum and k’ as the external
four-momentum and such recognition enables us to construct the Feynman graph Fig.2.
In (9) we take note of the remaining Dirac-delta function that we write as (caution: with
symmetric integral limits)
(9.4)
𝛿4( π‘˜ β€² βˆ’ π‘˜ + k – k β€² ) 𝑦 β€² = 𝛿4(0 ) 𝑦 β€² =
1
(2πœ‹)4
∫ 𝑑4 𝑦 β€²
This might imply a singularity if we are to base this on the basic definition of a Dirac-delta
function with an argument that is vanishing, which is 𝛿4(0 ) 𝑦 β€² = ∞. However, for the moment let
us take (9.4) as a definite constant.
We continue with the other group of terms that collectively go with the numerical factor
1
8
as given by (6)
in coordinate space. This we translate into momentum space
(10)
∫ 𝑑4 𝑦 ′𝑑4 𝑦
𝐺(𝑦 β€² βˆ’ 𝑦 β€² )
(2πœ‹)2
𝐺( 𝑦 β€² βˆ’ 𝑦 )
(2πœ‹)2
𝐺(𝑦 βˆ’ 𝑦)
(2πœ‹)2
𝐡
𝐴
=
1
(2πœ‹)4
∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€²
1
βˆ’π‘˜2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ–
1
βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ–
𝛿4( π‘˜ βˆ’ π‘˜ "
+ π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€² ) 𝑦
This is depicted in the following Feynman graph
(Fig.3)
Ref’s:
[1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]
[2]Baal, P., A COURSE IN FIELD THEORY,
http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html
[3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY,
http://www.phys.uu.nl/~thooft/
[4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
[5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond,
arXiv:0909.4541v1
[6]Cardy, J., Introduction to Quantum Field Theory
[7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory

More Related Content

What's hot

One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020foxtrot jp R
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1foxtrot jp R
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqdfoxtrot jp R
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrdfoxtrot jp R
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
Β 
Contraction mapping
Contraction mappingContraction mapping
Contraction mappingHancheol Choi
Β 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorHancheol Choi
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
Β 
Disjoint sets
Disjoint setsDisjoint sets
Disjoint setsCore Condor
Β 
The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayfoxtrot jp R
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220foxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updtsfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrdfoxtrot jp R
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020foxtrot jp R
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasdfoxtrot jp R
Β 

What's hot (19)

One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
Β 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
Β 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
Β 
Contraction mapping
Contraction mappingContraction mapping
Contraction mapping
Β 
Passivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulatorPassivity-based control of rigid-body manipulator
Passivity-based control of rigid-body manipulator
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Β 
Disjoint sets
Disjoint setsDisjoint sets
Disjoint sets
Β 
The klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-displayThe klein gordon field in two-dimensional rindler space-time 200920ver-display
The klein gordon field in two-dimensional rindler space-time 200920ver-display
Β 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbacc
Β 
The klein gordon field in two-dimensional rindler space-time 14072020
The klein gordon field in two-dimensional rindler space-time  14072020The klein gordon field in two-dimensional rindler space-time  14072020
The klein gordon field in two-dimensional rindler space-time 14072020
Β 
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
The klein gordon field in two-dimensional rindler space-time 28072020ver-drft...
Β 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
Β 
The klein gordon field in two-dimensional rindler space-time 04232020updts
The klein gordon field in two-dimensional rindler space-time  04232020updtsThe klein gordon field in two-dimensional rindler space-time  04232020updts
The klein gordon field in two-dimensional rindler space-time 04232020updts
Β 
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
The klein gordon field in two-dimensional rindler space-time  23052020-sqrdThe klein gordon field in two-dimensional rindler space-time  23052020-sqrd
The klein gordon field in two-dimensional rindler space-time 23052020-sqrd
Β 
The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020The klein gordon field in two-dimensional rindler space-time 16052020
The klein gordon field in two-dimensional rindler space-time 16052020
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
Β 

Similar to Very brief highlights on some key details 2

Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbfoxtrot jp R
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsplyfoxtrot jp R
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18foxtrot jp R
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbfoxtrot jp R
Β 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD Editor
Β 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.comIJERD Editor
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssfoxtrot jp R
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 

Similar to Very brief highlights on some key details 2 (20)

Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Β 
A05330107
A05330107A05330107
A05330107
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
Β 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
Β 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
lec21.ppt
lec21.pptlec21.ppt
lec21.ppt
Β 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
Β 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
Β 
The klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforssThe klein gordon field in two-dimensional rindler space-timeforss
The klein gordon field in two-dimensional rindler space-timeforss
Β 
Outgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 

Recently uploaded

THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
Β 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
Β 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
Β 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
Β 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
Β 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
Β 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
Β 

Recently uploaded (20)

THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
Β 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Β 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
Β 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
Β 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
Β 
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Β 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Β 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Β 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
Β 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
Β 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
Β 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
Β 

Very brief highlights on some key details 2

  • 1. Very Brief Highlights On Some Key Details: Vacuum-To-Vacuum Matrix In the Presence Of Cubic Self Interaction Roa, F. J. P. Remarks: This draft is based on my answer notes dealing on some basic drills and workouts in quantum field theory so the reader is highly encouraged to figure things out independently and compare his results to the ones presented here. Say we start at an initial time 𝑑 = 0 for a quantum mechanical description of a scalar particle in the vacuum state |0⟩. With the application of the time evolution operator (teo) π‘ˆ1(𝑇) on the given vacuum state we evolve this vacuum state into another state | πœ“βŸ© that is given at a later time 𝑑 = 𝑇 > 0. (1) |0⟩ β†’ | πœ“βŸ© = π‘ˆ1(𝑇)|0⟩ We take the projection of this evolved state on the vacuum state. Thus, getting the vacuum-to- vacuum matrix (2) ⟨0| π‘ˆ1(𝑇)|0⟩ for the probability amplitude that a particle initially in the vacuum state at an initial time will still be in the vacuum state at a later time. The time evolution operator (TEO) (3) π‘ˆ1 ( 𝑇) = π‘ˆ1 ( 𝑇,0) = 𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑𝑑 𝐻(𝑑) 𝑇 0 ) is given for a system Hamiltonian for scalar fields considered in this particular drill and this Hamiltonian has implicit time dependence being a Hamiltonian H(J(t)) that is a functional of time dependent source J(t). This Hamiltonian can be derived from the scalar field system Lagrangian via Legendre transformation. However, we shall no longer give the details of such transformation here. In this prior set-up, we are not yet taking into account the self-interactions in our Lagrangian and consequently, in our Hamiltonian so our initial matrix given by (2) is in the absence of the said interactions. These self-interactions enter into the Lagrangian and Hamiltonian in the form of
  • 2. potential functions and in my personal convenience, I don’t include in these functions the scalar field mass terms as I put these mass terms already explicitly in the Lagrangian and Hamiltonian. Without going into the details of how these self-interactions enter into the vacuum-to-vacuum (VTV) matrix we will only give this VTV matrix here that comes with the presence of the said interactions via potential operators (4) ⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(πœ‘Μ‚) 𝐡 𝐴 ) |0⟩| 𝐽=0 = 𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉 (𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐡 𝐴 ) ⟨0| π‘ˆ1(𝑇)|0⟩| 𝐽=0 and in this particular drill we are considering cubic self- interaction in the form given by (5) 𝑉[ πœ‘( π‘₯, 𝐽)] = 1 3! 𝑔(3) πœ‘3( π‘₯, 𝐽) In this current presentation, I am also not going to dwell on the lengthy details to arrive at the end results of this exercise but this more elaborate presentation will be done in future drafts. The VTV matrix that includes the cubic self-interaction (5) is obtained upon the setting of all sources to zero, J = 0. This matrix is given by (6) ⟨0|π‘ˆ1(𝑇)𝑒π‘₯𝑝 (βˆ’ 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉( πœ‘Μ‚) 𝐡 𝐴 ) |0⟩| 𝐽=0 = 𝐢 [ 𝐽 = 0] Γ— (1 + 1 12 𝑔(3) 2 (𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 + 1 8 𝑔(3) 2 (𝑖ℏ)3∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦 β€²) (2πœ‹)2 𝐺( 𝑦 β€² βˆ’ 𝑦 ) (2πœ‹)2 𝐺(𝑦 βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 ) In my personal convenience, I am used to writing the Green’s function as (for example) (7) 𝐺( 𝑦 β€² βˆ’ 𝑦) = 1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎(𝑦′ πœŽβˆ’ 𝑦 𝜎) βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– where I have already inserted an imaginary part π‘–πœ– to shift the poles as contour integration will be required afterwards. The Green’s functions in the matrix expression act as propagators.
  • 3. The resulting matrix (6), upon the setting of J = 0, consists of two groups (aside from the term with numerical 1) of relevant identical terms. These terms are as written in coordinate space. Let us take the group of terms with the numerical factor 1 12 and write this in momentum space (8) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 ∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€² 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ– 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 The Dirac-delta functions in this expression represent vertices at the respective space-time points 𝑦 β€² and 𝑦. As indicated above there are three four-momentum integration variables with two initial four-momentum vertices that we have just mentioned. As written in coordinate space (8) can be depicted with the following Feynman graph (Fig.1) where at the spacetime point 𝑦 β€² is the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 β€², while at the spacetime point y the Dirac-delta function 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€²β€² ) 𝑦 . (Note the symmetric property of the Dirac-delta function, 𝛿4(βˆ’π‘Ž) = 𝛿4( π‘Ž)). We also have the Fourier components of the propagators (8.1) 𝑔̃( π‘˜) = 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– (8.2)
  • 4. 𝑔̃( π‘˜ β€²) = 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– and (8.3) 𝑔̃( π‘˜ β€²β€²) = 1 βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ– We can integrate over π‘˜ β€²β€² at the space-time point 𝑦 with a picking π‘˜ β€²β€² = k ’ – k so that we can reduce (8) into (noted (k ’ – k )2 = (k – k β€² )2 ) (9) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐺( 𝑦 βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺(𝑦 β€² βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 ∫ 𝑑4 π‘˜β€² 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– ∫ 𝑑4 π‘˜ 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’ ( k – k β€² ) 2 + 𝑀2 + π‘–πœ– 𝛿4( π‘˜ β€² βˆ’ π‘˜ + k – k β€² ) 𝑦 β€² In momentum space as given by (9), we have the corresponding Feynman graph (Fig.2) where (9.1) 𝑔̃( π‘˜) = 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– (9.2) 𝑔̃( π‘˜ β€²) = 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– and
  • 5. (9.3) 𝑔̃(k – k β€² ) = 1 βˆ’ (k – k β€² ) 2 + 𝑀2 + π‘–πœ– In (9), we have chosen the four-momentum k as internal four-momentum and k’ as the external four-momentum and such recognition enables us to construct the Feynman graph Fig.2. In (9) we take note of the remaining Dirac-delta function that we write as (caution: with symmetric integral limits) (9.4) 𝛿4( π‘˜ β€² βˆ’ π‘˜ + k – k β€² ) 𝑦 β€² = 𝛿4(0 ) 𝑦 β€² = 1 (2πœ‹)4 ∫ 𝑑4 𝑦 β€² This might imply a singularity if we are to base this on the basic definition of a Dirac-delta function with an argument that is vanishing, which is 𝛿4(0 ) 𝑦 β€² = ∞. However, for the moment let us take (9.4) as a definite constant. We continue with the other group of terms that collectively go with the numerical factor 1 8 as given by (6) in coordinate space. This we translate into momentum space (10) ∫ 𝑑4 𝑦 ′𝑑4 𝑦 𝐺(𝑦 β€² βˆ’ 𝑦 β€² ) (2πœ‹)2 𝐺( 𝑦 β€² βˆ’ 𝑦 ) (2πœ‹)2 𝐺(𝑦 βˆ’ 𝑦) (2πœ‹)2 𝐡 𝐴 = 1 (2πœ‹)4 ∫ 𝑑4 π‘˜ ∫ 𝑑4 π‘˜ β€²βˆ« 𝑑4 π‘˜ β€²β€² 1 βˆ’π‘˜2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²2 + 𝑀2 + π‘–πœ– 1 βˆ’π‘˜ β€²β€²2 + 𝑀2 + π‘–πœ– 𝛿4( π‘˜ βˆ’ π‘˜ " + π‘˜ β€²β€² ) 𝑦 β€² 𝛿4( π‘˜ βˆ’ π‘˜ β€² + π‘˜ β€² ) 𝑦 This is depicted in the following Feynman graph (Fig.3)
  • 6. Ref’s: [1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph] [2]Baal, P., A COURSE IN FIELD THEORY, http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html [3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY, http://www.phys.uu.nl/~thooft/ [4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2 [5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond, arXiv:0909.4541v1 [6]Cardy, J., Introduction to Quantum Field Theory [7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory