Optimizing Hive Queries

Owen O’Malley
Founder and Architect
owen@hortonworks.com
@owen_omalley




© Hortonworks Inc. 2013:   Page 1
Who Am I?

• Founder and Architect at Hortonworks
 – Working on Hive, working with customer
 – Formerly Hadoop MapReduce & Security
 – Been working on Hadoop since beginning
• Apache Hadoop, ASF
 – Hadoop PMC (Original VP)
 – Tez, Ambari, Giraph PMC
 – Mentor for: Accumulo, Kafka, Knox
 – Apache Member
    © Hortonworks Inc. 2013                 Page 2
Outline

• Data Layout
• Data Format
• Joins
• Debugging




    © Hortonworks Inc. 2013   Page 3
Data Layout
Location, Location, Location




© Hortonworks Inc. 2013        Page 4
Fundamental Questions

• What is your primary use case?
  – What kind of queries and filters?
• How do you need to access the data?
  – What information do you need together?
• How much data do you have?
  – What is your year to year growth?
• How do you get the data?



    © Hortonworks Inc. 2013                  Page 5
HDFS Characteristics

• Provides Distributed File System
  – Very high aggregate bandwidth
  – Extreme scalability (up to 100 PB)
  – Self-healing storage
  – Relatively simple to administer
• Limitations
  – Can’t modify existing files
  – Single writer for each file
  – Heavy bias for large files ( > 100 MB)
    © Hortonworks Inc. 2013                  Page 6
Choices for Layout

• Partitions
  – Top level mechanism for pruning
  – Primary unit for updating tables (& schema)
  – Directory per value of specified column
• Bucketing
  – Hashed into a file, good for sampling
  – Controls write parallelism
• Sort order
  – The order the data is written within file
    © Hortonworks Inc. 2013                     Page 7
Example Hive Layout

• Directory Structure
  warehouse/$database/$table
• Partitioning
  /part1=$partValue/part2=$partValue
• Bucketing
  /$bucket_$attempt (eg. 000000_0)
• Sort
  – Each file is sorted within the file

    © Hortonworks Inc. 2013               Page 8
Layout Guidelines

• Limit the number of partitions
  – 1,000 partitions is much faster than 10,000
  – Nested partitions are almost always wrong
• Gauge the number of buckets
  – Calculate file size and keep big (200-500MB)
  – Don’t forget number of files (Buckets * Parts)
• Layout related tables the same way
  – Partition
  – Bucket and sort order
    © Hortonworks Inc. 2013                    Page 9
Normalization

• Most databases suggest normalization
  – Keep information about each thing together
  – Customer, Sales, Returns, Inventory tables
• Has lots of good properties, but…
  – Is typically slow to query
• Often best to denormalize during load
  – Write once, read many times
  – Additionally provides snapshots in time.


    © Hortonworks Inc. 2013                    Page 10
Data Format
How is your data stored?




© Hortonworks Inc. 2013    Page 11
Choice of Format

• Serde
  – How each record is encoded?
• Input/Output (aka File) Format
  – How are the files stored?
• Primary Choices
  – Text
  – Sequence File
  – RCFile
  – ORC (Coming Soon!)
    © Hortonworks Inc. 2013        Page 12
Text Format

• Critical to pick a Serde
  – Default - ^A’s between fields
  – JSON – top level JSON record
  – CSV – commas between fields (on github)
• Slow to read and write
• Can’t split compressed files
  – Leads to huge maps
• Need to read/decompress all fields

    © Hortonworks Inc. 2013               Page 13
Sequence File

• Traditional MapReduce binary file format
  – Stores keys and values as classes
  – Not a good fit for Hive, which has SQL types
  – Hive always stores entire row as value
• Splittable but only by searching file
  – Default block size is 1 MB
• Need to read and decompress all fields



    © Hortonworks Inc. 2013                  Page 14
RC (Row Columnar) File

• Columns stored separately
  – Read and decompress only needed ones
  – Better compression
• Columns stored as binary blobs
  – Depends on metastore to supply types
• Larger blocks
  – 4 MB by default
  – Still search file for split boundary


    © Hortonworks Inc. 2013                Page 15
ORC (Optimized Row Columnar)

• Columns stored separately
• Knows types
  – Uses type-specific encoders
  – Stores statistics (min, max, sum, count)
• Has light-weight index
  – Skip over blocks of rows that don’t matter
• Larger blocks
  – 256 MB by default
  – Has an index for block boundaries
    © Hortonworks Inc. 2013                      Page 16
ORC - File Layout




   © Hortonworks Inc. 2013   Page 17
Example File Sizes from TPC-DS




   © Hortonworks Inc. 2013       Page 18
Compression

• Need to pick level of compression
  – None
  – LZO or Snappy – fast but sloppy
      – Best for temporary tables
  – ZLIB – slow and complete
      – Best for long term storage




    © Hortonworks Inc. 2013           Page 19
Joins
Putting the pieces together




© Hortonworks Inc. 2013       Page 20
Default Assumption

• Hive assumes users are either:
  – Noobies
  – Hive developers
• Default behavior is always finish
  – Little Engine that Could!
• Experts could override default behaviors
  – Get better performance, but riskier
• We’re working on improving heuristics

    © Hortonworks Inc. 2013               Page 21
Shuffle Join

• Default choice
  – Always works (I’ve sorted a petabyte!)
  – Worst case scenario
• Each process
  – Reads from part of one of the tables
  – Buckets and sorts on join key
  – Sends one bucket to each reduce
• Works everytime!

    © Hortonworks Inc. 2013                  Page 22
Map Join

• One table is small (eg. dimension table)
  – Fits in memory
• Each process
  – Reads small table into memory hash table
  – Streams through part of the big file
  – Joining each record from hash table
• Very fast, but limited



    © Hortonworks Inc. 2013                Page 23
Sort Merge Bucket (SMB) Join

• If both tables are:
  – Sorted the same
  – Bucketed the same
  – And joining on the sort/bucket column
• Each process:
  – Reads a bucket from each table
  – Process the row with the lowest value
• Very efficient if applicable

    © Hortonworks Inc. 2013                 Page 24
Debugging
What could possibly go wrong?




© Hortonworks Inc. 2013         Page 25
Performance Question

• Which of the following is faster?
  – select count(distinct(Col)) from Tbl
  – select count(*) from
       (select distict(Col) from Tbl)




    © Hortonworks Inc. 2013                Page 26
Count Distinct




   © Hortonworks Inc. 2013   Page 27
Answer

• Surprisingly the second is usually faster
  – In the first case:
      – Maps send each value to the reduce
      – Single reduce counts them all
  – In the second case:
      – Maps split up the values to many reduces
      – Each reduce generates its list
      – Final job counts the size of each list
  – Singleton reduces are almost always BAD

    © Hortonworks Inc. 2013                        Page 28
Communication is Good!

• Hive doesn’t tell you what is wrong.
  – Expects you to know!
  – “Lucy, you have some ‘splaining to do!”
• Explain tool provides query plan
  – Filters on input
  – Numbers of jobs
  – Numbers of maps and reduces
  – What the jobs are sorting by
  – What directories are they reading or writing
    © Hortonworks Inc. 2013                   Page 29
Blinded by Science

• The explanation tool is confusing.
  – It takes practice to understand.
  – It doesn’t include some critical details like
   partition pruning.
• Running the query makes things clearer!
  – Pay attention to the details
  – Look at JobConf and job history files



    © Hortonworks Inc. 2013                         Page 30
Skew

• Skew is typical in real datasets.
• A user complained that his job was slow
  – He had 100 reduces
  – 98 of them finished fast
  – 2 ran really slow
• The key was a boolean…




    © Hortonworks Inc. 2013            Page 31
Root Cause Analysis

• Ambari
  – Apache project building Hadoop installation
   and management tool
  – Provides metrics (Ganglia & Nagios)
  – Root Cause Analysis
      – Processes MapReduce job logs
      – Displays timing of each part of query plan




    © Hortonworks Inc. 2013                          Page 32
Root Cause Analysis Screenshots




   © Hortonworks Inc. 2013        Page 33
Root Cause Analysis Screenshots




   © Hortonworks Inc. 2013        Page 34
Thank You!
Questions & Answers




@owen_omalley



       © Hortonworks Inc. 2012: DO NOT SHARE. CONTAINS HORTONWORKS CONFIDENTIAL & PROPRIETARY INFORMATION   Page 35
ORCFile - Comparison

                               RC File   Trevni   ORC File
 Hive Type Model               N         N        Y
 Separate complex columns      N         Y        Y
 Splits found quickly          N         Y        Y
 Default column group size     4MB       64MB*    250MB
 Files per a bucket            1         >1       1
 Store min, max, sum, count    N         N        Y
 Versioned metadata            N         Y        Y
 Run length data encoding      N         N        Y
 Store strings in dictionary   N         N        Y
 Store row count               N         Y        Y
 Skip compressed blocks        N         N        Y
 Store internal indexes        N         N        Y

     © Hortonworks Inc. 2013                                 Page 36

Optimizing Hive Queries

  • 1.
    Optimizing Hive Queries OwenO’Malley Founder and Architect owen@hortonworks.com @owen_omalley © Hortonworks Inc. 2013: Page 1
  • 2.
    Who Am I? • Founderand Architect at Hortonworks – Working on Hive, working with customer – Formerly Hadoop MapReduce & Security – Been working on Hadoop since beginning • Apache Hadoop, ASF – Hadoop PMC (Original VP) – Tez, Ambari, Giraph PMC – Mentor for: Accumulo, Kafka, Knox – Apache Member © Hortonworks Inc. 2013 Page 2
  • 3.
  • 4.
    Data Layout Location, Location,Location © Hortonworks Inc. 2013 Page 4
  • 5.
    Fundamental Questions • What isyour primary use case? – What kind of queries and filters? • How do you need to access the data? – What information do you need together? • How much data do you have? – What is your year to year growth? • How do you get the data? © Hortonworks Inc. 2013 Page 5
  • 6.
    HDFS Characteristics • Provides DistributedFile System – Very high aggregate bandwidth – Extreme scalability (up to 100 PB) – Self-healing storage – Relatively simple to administer • Limitations – Can’t modify existing files – Single writer for each file – Heavy bias for large files ( > 100 MB) © Hortonworks Inc. 2013 Page 6
  • 7.
    Choices for Layout • Partitions – Top level mechanism for pruning – Primary unit for updating tables (& schema) – Directory per value of specified column • Bucketing – Hashed into a file, good for sampling – Controls write parallelism • Sort order – The order the data is written within file © Hortonworks Inc. 2013 Page 7
  • 8.
    Example Hive Layout • DirectoryStructure warehouse/$database/$table • Partitioning /part1=$partValue/part2=$partValue • Bucketing /$bucket_$attempt (eg. 000000_0) • Sort – Each file is sorted within the file © Hortonworks Inc. 2013 Page 8
  • 9.
    Layout Guidelines • Limit thenumber of partitions – 1,000 partitions is much faster than 10,000 – Nested partitions are almost always wrong • Gauge the number of buckets – Calculate file size and keep big (200-500MB) – Don’t forget number of files (Buckets * Parts) • Layout related tables the same way – Partition – Bucket and sort order © Hortonworks Inc. 2013 Page 9
  • 10.
    Normalization • Most databases suggestnormalization – Keep information about each thing together – Customer, Sales, Returns, Inventory tables • Has lots of good properties, but… – Is typically slow to query • Often best to denormalize during load – Write once, read many times – Additionally provides snapshots in time. © Hortonworks Inc. 2013 Page 10
  • 11.
    Data Format How isyour data stored? © Hortonworks Inc. 2013 Page 11
  • 12.
    Choice of Format • Serde – How each record is encoded? • Input/Output (aka File) Format – How are the files stored? • Primary Choices – Text – Sequence File – RCFile – ORC (Coming Soon!) © Hortonworks Inc. 2013 Page 12
  • 13.
    Text Format • Critical topick a Serde – Default - ^A’s between fields – JSON – top level JSON record – CSV – commas between fields (on github) • Slow to read and write • Can’t split compressed files – Leads to huge maps • Need to read/decompress all fields © Hortonworks Inc. 2013 Page 13
  • 14.
    Sequence File • Traditional MapReducebinary file format – Stores keys and values as classes – Not a good fit for Hive, which has SQL types – Hive always stores entire row as value • Splittable but only by searching file – Default block size is 1 MB • Need to read and decompress all fields © Hortonworks Inc. 2013 Page 14
  • 15.
    RC (Row Columnar)File • Columns stored separately – Read and decompress only needed ones – Better compression • Columns stored as binary blobs – Depends on metastore to supply types • Larger blocks – 4 MB by default – Still search file for split boundary © Hortonworks Inc. 2013 Page 15
  • 16.
    ORC (Optimized RowColumnar) • Columns stored separately • Knows types – Uses type-specific encoders – Stores statistics (min, max, sum, count) • Has light-weight index – Skip over blocks of rows that don’t matter • Larger blocks – 256 MB by default – Has an index for block boundaries © Hortonworks Inc. 2013 Page 16
  • 17.
    ORC - FileLayout © Hortonworks Inc. 2013 Page 17
  • 18.
    Example File Sizesfrom TPC-DS © Hortonworks Inc. 2013 Page 18
  • 19.
    Compression • Need to picklevel of compression – None – LZO or Snappy – fast but sloppy – Best for temporary tables – ZLIB – slow and complete – Best for long term storage © Hortonworks Inc. 2013 Page 19
  • 20.
    Joins Putting the piecestogether © Hortonworks Inc. 2013 Page 20
  • 21.
    Default Assumption • Hive assumesusers are either: – Noobies – Hive developers • Default behavior is always finish – Little Engine that Could! • Experts could override default behaviors – Get better performance, but riskier • We’re working on improving heuristics © Hortonworks Inc. 2013 Page 21
  • 22.
    Shuffle Join • Default choice – Always works (I’ve sorted a petabyte!) – Worst case scenario • Each process – Reads from part of one of the tables – Buckets and sorts on join key – Sends one bucket to each reduce • Works everytime! © Hortonworks Inc. 2013 Page 22
  • 23.
    Map Join • One tableis small (eg. dimension table) – Fits in memory • Each process – Reads small table into memory hash table – Streams through part of the big file – Joining each record from hash table • Very fast, but limited © Hortonworks Inc. 2013 Page 23
  • 24.
    Sort Merge Bucket(SMB) Join • If both tables are: – Sorted the same – Bucketed the same – And joining on the sort/bucket column • Each process: – Reads a bucket from each table – Process the row with the lowest value • Very efficient if applicable © Hortonworks Inc. 2013 Page 24
  • 25.
    Debugging What could possiblygo wrong? © Hortonworks Inc. 2013 Page 25
  • 26.
    Performance Question • Which ofthe following is faster? – select count(distinct(Col)) from Tbl – select count(*) from (select distict(Col) from Tbl) © Hortonworks Inc. 2013 Page 26
  • 27.
    Count Distinct © Hortonworks Inc. 2013 Page 27
  • 28.
    Answer • Surprisingly the secondis usually faster – In the first case: – Maps send each value to the reduce – Single reduce counts them all – In the second case: – Maps split up the values to many reduces – Each reduce generates its list – Final job counts the size of each list – Singleton reduces are almost always BAD © Hortonworks Inc. 2013 Page 28
  • 29.
    Communication is Good! • Hivedoesn’t tell you what is wrong. – Expects you to know! – “Lucy, you have some ‘splaining to do!” • Explain tool provides query plan – Filters on input – Numbers of jobs – Numbers of maps and reduces – What the jobs are sorting by – What directories are they reading or writing © Hortonworks Inc. 2013 Page 29
  • 30.
    Blinded by Science • Theexplanation tool is confusing. – It takes practice to understand. – It doesn’t include some critical details like partition pruning. • Running the query makes things clearer! – Pay attention to the details – Look at JobConf and job history files © Hortonworks Inc. 2013 Page 30
  • 31.
    Skew • Skew is typicalin real datasets. • A user complained that his job was slow – He had 100 reduces – 98 of them finished fast – 2 ran really slow • The key was a boolean… © Hortonworks Inc. 2013 Page 31
  • 32.
    Root Cause Analysis • Ambari – Apache project building Hadoop installation and management tool – Provides metrics (Ganglia & Nagios) – Root Cause Analysis – Processes MapReduce job logs – Displays timing of each part of query plan © Hortonworks Inc. 2013 Page 32
  • 33.
    Root Cause AnalysisScreenshots © Hortonworks Inc. 2013 Page 33
  • 34.
    Root Cause AnalysisScreenshots © Hortonworks Inc. 2013 Page 34
  • 35.
    Thank You! Questions &Answers @owen_omalley © Hortonworks Inc. 2012: DO NOT SHARE. CONTAINS HORTONWORKS CONFIDENTIAL & PROPRIETARY INFORMATION Page 35
  • 36.
    ORCFile - Comparison RC File Trevni ORC File Hive Type Model N N Y Separate complex columns N Y Y Splits found quickly N Y Y Default column group size 4MB 64MB* 250MB Files per a bucket 1 >1 1 Store min, max, sum, count N N Y Versioned metadata N Y Y Run length data encoding N N Y Store strings in dictionary N N Y Store row count N Y Y Skip compressed blocks N N Y Store internal indexes N N Y © Hortonworks Inc. 2013 Page 36